Table 5.
Ranked MACCS Fingerprint-Based Prediction Scores for Each Machine Learning Algorithm by Metrics (Average over Three Datasets)a
algorithms | AUC | F1_score | ACC | Cohen’s κ | MCC | precision | recall | mean | rank |
---|---|---|---|---|---|---|---|---|---|
SVM | 0.915 | 0.526 | 0.847 | 0.441 | 0.498 | 0.438 | 0.878 | 0.649 | 7 |
MLP_1 | 0.932 | 0.553 | 0.884 | 0.492 | 0.545 | 0.480 | 0.860 | 0.678 | 1 |
MLP_2 | 0.923 | 0.524 | 0.854 | 0.452 | 0.520 | 0.431 | 0.920 | 0.661 | 4 |
MLP_3 | 0.927 | 0.561 | 0.900 | 0.489 | 0.521 | 0.475 | 0.775 | 0.664 | 3 |
MLP_4 | 0.924 | 0.555 | 0.892 | 0.482 | 0.524 | 0.465 | 0.817 | 0.666 | 2 |
MLP_5 | 0.919 | 0.531 | 0.869 | 0.441 | 0.496 | 0.430 | 0.850 | 0.648 | 8 |
RF | 0.869 | 0.485 | 0.831 | 0.374 | 0.431 | 0.392 | 0.818 | 0.600 | 10 |
ABDT | 0.915 | 0.548 | 0.907 | 0.491 | 0.525 | 0.465 | 0.766 | 0.660 | 6 |
DT | 0.823 | 0.520 | 0.889 | 0.435 | 0.455 | 0.454 | 0.675 | 0.607 | 9 |
NB | 0.839 | 0.459 | 0.792 | 0.326 | 0.388 | 0.368 | 0.817 | 0.570 | 11 |
logistic | 0.923 | 0.525 | 0.852 | 0.445 | 0.518 | 0.423 | 0.938 | 0.661 | 4 |
Each bold entry shows the highest metric value among the machine learning models using different algorithms.