Skip to main content
. Author manuscript; available in PMC: 2019 Sep 8.
Published in final edited form as: Mol Pharm. 2019 May 3;16(6):2605–2615. doi: 10.1021/acs.molpharmaceut.9b00182

Table 5.

Ranked MACCS Fingerprint-Based Prediction Scores for Each Machine Learning Algorithm by Metrics (Average over Three Datasets)a

algorithms AUC F1_score ACC Cohen’s κ MCC precision recall mean rank
SVM 0.915 0.526 0.847 0.441 0.498 0.438 0.878 0.649 7
MLP_1 0.932 0.553 0.884 0.492 0.545 0.480 0.860 0.678 1
MLP_2 0.923 0.524 0.854 0.452 0.520 0.431 0.920 0.661 4
MLP_3 0.927 0.561 0.900 0.489 0.521 0.475 0.775 0.664 3
MLP_4 0.924 0.555 0.892 0.482 0.524 0.465 0.817 0.666 2
MLP_5 0.919 0.531 0.869 0.441 0.496 0.430 0.850 0.648 8
RF 0.869 0.485 0.831 0.374 0.431 0.392 0.818 0.600 10
ABDT 0.915 0.548 0.907 0.491 0.525 0.465 0.766 0.660 6
DT 0.823 0.520 0.889 0.435 0.455 0.454 0.675 0.607 9
NB 0.839 0.459 0.792 0.326 0.388 0.368 0.817 0.570 11
logistic 0.923 0.525 0.852 0.445 0.518 0.423 0.938 0.661 4
a

Each bold entry shows the highest metric value among the machine learning models using different algorithms.