Skip to main content
. Author manuscript; available in PMC: 2019 Sep 8.
Published in final edited form as: Mol Pharm. 2019 May 3;16(6):2605–2615. doi: 10.1021/acs.molpharmaceut.9b00182

Table 6.

Ranked ECFP6 Fingerprint-Based Prediction Scores for Each Machine Learning Algorithm by Metrics (Average over Three Datasets)a

algorithms AUC F1_score ACC Cohen’s κ MCC precision recall mean rank
SVM 0.912 0.572 0.909 0.511 0.544 0.479 0.793 0.674 9
MLP_1 0.947 0.619 0.922 0.568 0.601 0.534 0.838 0.719 3
MLP_2 0.938 0.609 0.920 0.552 0.582 0.516 0.818 0.705 5
MLP_3 0.943 0.610 0.923 0.564 0.598 0.530 0.828 0.714 4
MLP_4 0.940 0.605 0.922 0.554 0.582 0.542 0.782 0.704 6
MLP_5 0.932 0.600 0.915 0.544 0.583 0.505 0.848 0.704 6
RF 0.889 0.575 0.902 0.479 0.492 0.501 0.683 0.646 10
ABDT 0.932 0.573 0.907 0.520 0.560 0.489 0.827 0.687 8
DT 0.816 0.487 0.878 0.398 0.422 0.416 0.659 0.582 11
NB 0.957 0.626 0.923 0.572 0.603 0.536 0.838 0.722 2
logistic 0.948 0.624 0.924 0.574 0.609 0.527 0.856 0.723 1
a

Each bold entry shows the highest metric value among the machine learning models using different algorithms.