Table 6.
Ranked ECFP6 Fingerprint-Based Prediction Scores for Each Machine Learning Algorithm by Metrics (Average over Three Datasets)a
| algorithms | AUC | F1_score | ACC | Cohen’s κ | MCC | precision | recall | mean | rank |
|---|---|---|---|---|---|---|---|---|---|
| SVM | 0.912 | 0.572 | 0.909 | 0.511 | 0.544 | 0.479 | 0.793 | 0.674 | 9 |
| MLP_1 | 0.947 | 0.619 | 0.922 | 0.568 | 0.601 | 0.534 | 0.838 | 0.719 | 3 |
| MLP_2 | 0.938 | 0.609 | 0.920 | 0.552 | 0.582 | 0.516 | 0.818 | 0.705 | 5 |
| MLP_3 | 0.943 | 0.610 | 0.923 | 0.564 | 0.598 | 0.530 | 0.828 | 0.714 | 4 |
| MLP_4 | 0.940 | 0.605 | 0.922 | 0.554 | 0.582 | 0.542 | 0.782 | 0.704 | 6 |
| MLP_5 | 0.932 | 0.600 | 0.915 | 0.544 | 0.583 | 0.505 | 0.848 | 0.704 | 6 |
| RF | 0.889 | 0.575 | 0.902 | 0.479 | 0.492 | 0.501 | 0.683 | 0.646 | 10 |
| ABDT | 0.932 | 0.573 | 0.907 | 0.520 | 0.560 | 0.489 | 0.827 | 0.687 | 8 |
| DT | 0.816 | 0.487 | 0.878 | 0.398 | 0.422 | 0.416 | 0.659 | 0.582 | 11 |
| NB | 0.957 | 0.626 | 0.923 | 0.572 | 0.603 | 0.536 | 0.838 | 0.722 | 2 |
| logistic | 0.948 | 0.624 | 0.924 | 0.574 | 0.609 | 0.527 | 0.856 | 0.723 | 1 |
Each bold entry shows the highest metric value among the machine learning models using different algorithms.