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1  |   INTRODUCTION

Mucopolysaccharidosis type I (MPS I) is a lysosomal stor-
age disorder caused by biallelic loss‐of‐function variants in 
the IDUA (MIM #252800). Pathogenic IDUA variants lead to 
the deficiency of lysosomal alpha‐l iduronidase (IDUA; EC 

3.2.1.76), a hydrolase involved in the catabolism of glycosami-
noglycans (GAGs) dermatan and heparan sulfate. Reduced or 
absent IDUA enzyme activity results in the lysosomal accu-
mulation of GAGs and the onset of pathology in specific cells, 
tissues, and organs (Poletto, Pasqualim, Giugliani, Matte, & 
Baldo, ; Scott et al., ). There are three clinical subtypes of MPS 
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Abstract
Background: Mucopolysaccharidosis type I (MPS I) is a rare, recessively inherited 
lysosomal storage disorder, characterized by progressive multi‐systemic disease. It is 
caused by a reduced or absent alpha‐l iduronidase (IDUA) enzyme activity second-
ary to biallelic loss‐of‐function variants in the IDUA. Over 200 causative variants in 
IDUA have been identified. Nevertheless, there is a fraction of MPS I patients with 
only a single mutated IDUA allele detectable.
Methods: As genetic testing of MPS I is usually based on sequencing methods, copy 
number variations (CNVs) in IDUA can be missed and therefore presumably remain 
underdiagnosed. The aim of this study was the detection of CNVs using an IDUA‐
specific in house multiplex ligation‐dependent probe amplification (MLPA) assay.
Results: A total of five unrelated MPS I patient samples were re‐analyzed after only 
a single heterozygous IDUA mutation c.979G>C (p.A327P), c.1469T>C (p.L490P), 
c.1598C>G (p.P533R), c.1205G>A (p.W402X), c.973‐7C>G (p.?) could be identi-
fied. We detected a novel splice site variant c.973‐7C>G (p.?), as well as two novel 
CNVs, a large deletion of IDUA exon 14 and 3’UTR c.(1828 + 1_1829‐1)_(*1963_?)
del, and a large duplication extending from IDUA exon 2 to intron 12 
c.(157 + 1_158‐1)_(1727 + 1_1728‐1)dup.
Conclusion: Together with the CNVs we previously identified, a total of four patho-
genic IDUA CNVs have now been reported.
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I: Hurler syndrome (MPS I H, MIM #607014; severe), Hurler‐
Scheie syndrome (MPS I H/S, MIM #607015; intermediate), 
and Scheie syndrome (MPS I S, MIM #607016; attenuated). 
According to the severity of the disease, clinical signs and symp-
toms of MPS I are present in the first decade of life, including 
organomegaly, obstructive airway disease, heart disease, skele-
tal deformities, growth retardation, neurological complications, 
and severe mental retardation (Beck et al., ; Cleary & Wraith, 
). However, the phenotypical spectrum is continuous and the 
classification is frequently complex (Poletto et al., ). The clin-
ical diagnosis of MPS I is confirmed biochemically based on 
elevated GAGs in urine, and reduced or absent IDUA activity 
in leucocytes or skin fibroblasts (Beesley et al., ; Scott et al., ). 
While clinical and biochemical abnormalities are present, ge-
netic background still remains unresolved in a fraction of MPS 
I patients (Bunge et al., ; Ghosh et al., ; Scott et al., ).

The spectrum of causative genetic variants in IDUA is 
highly heterogeneous as more than 200 single‐gene defects 
have been reported, including missense, nonsense, splice 
site, insertions, as well as small deletions and duplications 
(Bertola et al., ). Recently we described a novel mutational 
mechanism for MPS I: two distinct large IDUA‐deleterious 
copy number variations (CNVs) detected by an in house mul-
tiplex ligation‐dependent probe amplification (MLPA) ap-
proach (Breen et al., ).

In this study we used the same copy number screening 
tool as well as the Sanger‐based sequencing to re‐analyze five 
unrelated MPS I DNA samples, which were initially tested 
positive for a pathogenic variant on a single IDUA allele.

2  |   MATERIALS AND METHODS

2.1  |  Ethical compliance
The study was approved by the Ethics Committee of the 
Faculty of Medicine of Friedrich‐Schiller‐University Jena 
(reference number: 2018‐1107).

2.2  |  Patients
Following publication of the first two IDUA deletions and in-
troduction of an IDUA MLPA assay (Breen et al., ), the cor-
responding author was contacted by several clinicians who 
had MPS I patients in whom only a single mutated IDUA 
allele could be identified. DNA samples with consent for 
extended genetic workup were eventually enrolled. Table 1 
summarizes the geographic, clinical, biochemical, and ge-
netic backgrounds of the patients investigated.

2.3  |  Genetic analyses
The IDUA coding sequence plus >50 nucleotides of neighbor-
ing UTR or intronic sequence was amplified from genomic 
DNA (primers available upon request). PCR products were 
gel‐purified and Sanger‐sequenced from both directions 
using a commercial service (Macrogen Europe, Amsterdam, 
The Netherlands).

IDUA‐specific MLPA was based on the synthetic kit 
presented by us previously (Breen et al., ). In the frame of 
the study, this assay was extended with additional MLPA 
probes; corresponding oligonucleotides were purchased 
from Biolegio (Nijmegen, The Netherlands). Supporting 
Information Table S1 AB provides all target sequences 
and product sizes. Variants were described at cDNA and  
protein level using reference sequences NM_000203.4 and 
NP_000194.2, respectively.

3  |   RESULTS

3.1  |  Sanger‐sequencing detects a single 
heterozygous IDUA variant in five unrelated 
patients with a clinical diagnosis of MPS I
All patients enrolled in this study had a clinical diag-
nosis of MPS I, but Sanger‐sequencing performed in a 

T A B L E  1   IDUA variants identified in this study. Nomenclature for cDNA and protein is based on reference sequences NM_000203.4 and 
NP_000194.2, respectively

Patient

1st allele variant 2nd allele variant IDUA enzyme

Clinical subtype OriginDNA Protein DNA Protein Activity Ref. range

I c.973‐7C>G n/a n.i. n.i. 0.00 0.27 – 9.00 H Germany/Italy

II c.979G>C p.A327P n.i. n.i. 0.01 ctrl sample H Germany

III c.1205G>A p.W402X n.i. n.i. 0.60 14.0 – 40.0 S Holland

IV c.1469T>C p.L490P c.(1828 + 1_1829‐1)_
(*1963_?)del

n/a 0.00 0.14 – 0.35 H Pakistani/Norway

V c.1598C>G p.P533R c.(157 + 1_158‐1)_
(1727 + 1_1728‐1)
dup

n/a n.a. n.a. H United Kingdom

n/a, not applicable; n.a., not available; n.i., not identified; variants highlighted in bold: novel variants; leucocyte IDUA enzyme activity has been measured in: nmol/
mg*hour (patient I and III), mU (patient II), μmol/mg*hour (patient IV); ctrl sample, control blood sample; ref. range, reference range, H, Hurler, S, Scheie.



      |  3 of 6JAHIC et al.

routine diagnostic setting had only detected a single het-
erozygous IDUA mutation. By repeating Sanger‐sequenc-
ing of the whole gene, we confirmed the presence of the 
previously reported heterozygous variants (Figure 1), 
and the lack of additional, potentially pathogenic vari-
ants (data not shown). The five mutations comprised the 
three missense variants c.979G>C (p.A327P), c.1469T>C 
(p.L490P) and c.1598C>G (p.P533R), and the nonsense 
variant c.1205G>A (p.W402X), all of which have been 
found in patients previously (Bunge et al., ; Scott, Litjens, 
Hopwood, & Morris, ; Scott, Litjens, Nelson et al., ; Tieu, 
Bach, Matynia, Hwang, & Neufeld, ), as well as the splice 
site variant c.973‐7C>G (p.?), which is reported here for 

the first time. The splice site variant was further analyzed 
by in silico prediction tools which strongly suggested mis‐
splicing of exon 8 (p.?) to be the primary consequence 
(Supporting Information Table S2).

3.2  |  Application of a previously introduced, 
IDUA‐specific MLPA assay suggests the 
presence of a heterozygous deletion in one 
patient and the presence of a heterozygous 
duplication in another
An IDUA‐specific MLPA assay as presented by us previ-
ously (Breen et al., ) suggested normal diploid IDUA copy 
number in three of the five patients. In the sample with the 
heterozygous c.1469T>C variant, the signal for a 3'UTR‐
specific probe was reduced by ~50%, while in the sample 
with the heterozygous c.1598C>G variant, the signals for 
exons 2, and 7 were increased by ~50% (data not shown). 
These observations suggested the heterozygous presence of 
one presumably large deletion and one presumably large du-
plication, respectively.

3.3  |  Additional MLPA probes confirm the 
two suspected IDUA CNVs, define their 
extent, and characterize the remaining three 
samples as definitely CNV‐negative
Based on the above described suggestive observations, we 
designed additional MLPA probes for exons not covered by 
our initial assay, and applied them to the two samples of inter-
est. A second 3'UTR‐specific probe confirmed the deletion in 
sample with the heterozygous c.1469T>C variant. Two novel 
probes which target the penultimate exon 13 and a sequence 
near the stop codon in exon 14, respectively, revealed that 
the deletion was restricted to exon 14, and that it overlapped 
with the coding sequence. Its 3’‐extend, however, could not 
be delineated by the set of MLPA probes used (Figure 2a). 
The duplication as suggested by the increased MLPA sig-
nals for exons 2 and 7 was first confirmed by a novel MLPA 
probe against exon 5. Based on additional probes, its 3’‐ex-
tend was subsequently mapped to intron 12 (Figure 2b). The 
application of all novel MLPA probes to the three samples 
that had remained negative upon analysis with the original 
MLPA assay did still not reveal evidence for IDUA CNVs 
(data not shown).

4  |   DISCUSSION

This study reports on a heterozygous deletion and a heterozy-
gous duplication which partially affect the IDUA. Several 
lines of evidence support pathogenicity of these CNVs. First, 
they are not listed by variation databases (ExAC, database 

F I G U R E  1   Molecular findings based on Sanger‐sequencing in 
five unrelated MPS‐I patients. Exemplary sequence traces showing the 
hereozygous presence of five pathogenic IDUA variants (red arrow) 
in DNA from index patients (I‐V) as well as in DNA from mother 
of patient IV. Father of patient IV carries a benign single nucleotide 
variant rs115929690 (green arrow) sugesting that patient IV has 
inherited a pathogenic variant from his mother and a benign variant 
from his father, respectively
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of genomic variants, Decipher). Second, they were identified 
in MPS I patients in whom conventional Sanger‐sequencing 
had only identified a pathogenic IDUA variant on one allele. 
Third, they are predicted to result in reduced IDUA mRNA 
levels. For the duplication, this is based on the out‐of‐frame 
nature of the duplicated region, and nonsense‐mediated 
mRNA decay as the likely consequence (Nagy & Maquat, 
). The deletion, which involves the gene's 3’‐end including 
some coding nucleotides and the stop codon, should entail 
nonstop‐mediated mRNA decay (Hamby, Thomas, Cooper, 
& Chuzhanova, ; Rebelo et al., ). By thereby representing 
bona fide loss‐of‐function alleles, both CNVs thus resemble 
the majority of already known pathogenic variants in IDUA 
(Bertola et al., ; Poletto et al., ). We conclude that the above 
arguments represent strong cumulative evidence for patho-
genicity of both the deletion and the duplication.

We previously presented an MPS I patient who carried 
two distinct large IDUA deletions (Breen et al., ). Together 
with the findings presented here, a total of four patho-
genic IDUA CNVs have now been identified. This num-
ber is small compared to the long list of known “small” 

aberrations [HGMD]. However, a fraction of patients for 
whom homozygous variants have been reported may in 
fact be compound heterozygous for this variant and a large 
overlapping deletion. In addition, MPS I patients with only 
one identified mutant IDUA allele are frequently encoun-
tered (Bertola et al., ; Scott et al., ; Uttarilli et al., ). The 
existence of hitherto undetected IDUA CNVs can therefore 
be expected. The availability of MLPA assays has greatly 
facilitated the detection of deletions as well as duplications 
in many other inherited disorders (Günther et al., ). Our 
corresponding tool will be made available to researchers 
interested in more accurately defining the prevalence of 
IDUA CNVs.

We compiled a total of five MPS I samples in which a sec-
ond pathogenic variant could not be identified. Two of these 
could eventually be explained by pathogenic CNVs, while for 
three samples a second mutation remains to be discovered. 
One may therefore hypothesize that undetected/unscreened 
variants in the promotor, in other regulatory elements or in 
deep intronic regions (Beesley et al., ; Vazna et al., ) and/
or large genomic inversions (Scott, Litjens, Nelson et al., ; 

F I G U R E  2   IDUA‐specific MLPA 
findings for CNV‐positive patients. (a) 
Reduced relative probe signals for exon 
14 and both 3’UTR probes indicate a 
heterozygous deletion in the index case 
“NOR” (black; patient IV) and her father 
(white). (b) Increased relative probe signals 
for exons 2 to 12 indicate a heterozygous 
duplication in index case “Manch TP” 
(patient V). p, primary MLPA probe derived 
from our previously published probe set; 
sec, secondary MLPA probe added in the 
frame of the present study; gray box, signal 
range (0.7–1.3) that is considered to indicate 
presence of two genomic copies; stippled 
boxes, deduced (minimal) range of the 
CNVs
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Scott et al., ) contribute to the mutational spectrum in the 
IDUA. More generalized approaches such as whole genome 
sequencing will be required to eventually complete the muta-
tional spectrum in IDUA.
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