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Actuarial senescence has been viewed for a long time as an inevitable and
uniform process. However, the work on senescence has mainly focused on
endotherms with deterministic growth and low regeneration capacity
during the adult stage, leading to a strong taxonomic bias in the study of
ageing. Recent studies have highlighted that senescence could indeed dis-
play highly variable trajectories that correlate with species life-history
traits. Slow life histories and indeterminate growth seem to be associated
with weak and late senescence. Furthermore, high regenerative abilities
could lead to negligible senescence in ectotherms. However, demographic
data for species that would allow testing of these hypotheses are scarce.
Here, we investigated senescence patterns in ‘true salamanders’ from the
western Palaearctic. Our results showed that salamanders have slow life his-
tories and that they experience negligible senescence. This pattern was
consistent at both intra- and interspecific levels, suggesting that the absence
of senescence may be a phylogenetically conserved trait. The regenerative
capacities of salamanders, in combination with other physiological and
developmental features such as an indeterminate growth and a low metabolic
rate, probably explain why these small ectotherms have lifespans similar to
that of large endotherms and, in contrast with most amniotes, undergo negli-
gible senescence. Our study seriously challenges the idea that senescence is a
ubiquitous phenomenon in the tree of life.
1. Introduction
The great diversity of life histories continues to fascinate population biologists
[1–3]. There have been many attempts to summarize the variety of life-history
patterns that are observed (e.g. [4–6]). Among the spate of life-history traits,
senescence is generally defined as a physiologically caused, irreversible increase
in mortality (i.e. actuarial senescence; hereafter senescence) and/or a decline in
fertility with age (i.e. reproductive senescence) [7,8]. Historically, senescence
was expected to show a limited amount of variation across species. The senes-
cence process was expected to be ubiquitous among age-structured populations
[7], which led to the view that senescence was an unavoidable process in organ-
isms with a clear distinction between somatic and germ lines [9–11]. In
addition, regardless of the species considered, the age at the onset of senescence
was expected to be immutably set at the age of first reproduction [7,12]. This
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long-held view was overturned when it was shown that the
there is a bewildering diversity of senescence patterns across
animal and plant species [13–16]. There is an obvious need
to further describe and explain the diversity of senescence
patterns which was recently reinforced by the observation
that senescence patterns can strongly affect population
growth rates and how species respond to environmental
change [16].

In a recent analysis of senescence on a wide range of taxa,
Jones et al. [13] demonstrated patterns of senescence are more
diverse than previously thought. Although Jones et al. [13],
and more recently Colchero et al. [16], present results from
a broad variety of species, their studies highlighted the lack
of data for many taxa and thus, there is still a great need to
uncover and explain senescence patterns. In particular, it is
necessary to evaluate the extent to which species can escape
senescence or even show ‘negative senescence’ and to deter-
minate the eco-evolutionary roots of such patterns [17–19].
As the life-history theory of ageing postulates that senescence
is related to somatic maintenance [20,21], one may expect that
species who invest more into this item of expenditure such as
‘slow’ species (i.e. low annual fecundity and high adult survi-
val) should show slower rates of senescence (e.g. [22]). This
expectation is supported by the findings of Jones et al. [23]
who showed that in both mammals and birds, the onset
and rate of senescence are predicted by generation time and
age at maturity. Because the life histories of species can be
arranged along a fast–slow life-history continuum [6,24–26],
the speed of the life history can be used to predict senescence
[23]. Later, Jones et al. [13] showed that the initial explanation
of Jones et al. [23] did not fully account for the diversity of
senescence patterns, suggesting that other mechanisms may
be at work as well. For example, their study revealed the
absence of senescence in Hydra (and few other organisms),
potentially allowed by regenerative capacity [27].

Most of our understanding of senescence in wild animal
populations is based on mammals and birds because there
are many long-term individual-based datasets for these
species [13]. Yet, patterns of senescence among mammals
are rather uniform. For example, Colchero et al. [16] found
that bathtub-shaped mortality trajectories were most com-
monly observed in ungulates and carnivores. The dataset of
Colchero et al. [16] included only four amphibian species
but four different models explained the data best (simple logis-
tic, bathtub logistic, Gompertz, Weibull), suggesting great
interspecific diversity within the amphibians. Interestingly,
senescence was negligible in a salamander (Salamandra
salamandra), an organism with an indeterminate (i.e. continu-
ous) growth [28] that is well known for its regenerative
capacity at the adult stage [29–31].

Here, we investigated how slow life histories with an
implicit high level of investment in somatic maintenance
are associated with a negligible actuarial senescence in a
clade of salamanders from the western Palaearctic (known
as the ‘true salamanders’). We used both unpublished and
published capture–recapture data for our analyses. First, we
analysed novel demographic data from a poorly known Med-
iterranean salamander (Lyciasalamandra fazilae) and examined
if this species had a slow life history (i.e. high adult survival
and low recruitment) consistent with the other species of true
salamanders [32,33]. Then, we examined senescence patterns
in L. fazilae and two other species, Salamandrina perspicillata
and S. salamandra, from western Europe. We expected
negligible senescence in the three taxa and hypothesized
that this pattern was consistent among populations.
2. Material and methods
(a) Demography of Lyciasalamandra fazilae
(i) Study species and capture–recapture survey
Lyciasalamandra fazilae is terrestrial salamander occurring along
the southern Anatolian coast in Turkey. This species is a
member of the phylogenetic clade called ‘true’ salamanders that
encompasses the genera Salamandra, Lyciasalamandra,
Mertensiella, Salamandrina andChioglossa [34]. Lyciasalamandra fazi-
lae is viviparous salamander that gives birth to one or two fully
metamorphosed young after 1 year of gestation. Sexual maturity
is attained at an age of 3 years in both sexes [35]. The individual
growth curve presents an asymptotic trend even if adult salaman-
ders seem to continue to grow over their entire lifespan [35].

The studywas conducted on a population of L. fazilae between
1999 and 2009 inwestern Turkey nearDalyan (36° 500 N, 28° 410 E).
A detailed description of the study area can be found in Olgun
et al. [35]. Several capture–recapture sessions (in February,
March and April) were carried out each year. The salamanders
were captured by hand, and were then released back in the
place where they were initially caught after being marked using
passive integrated transponder (PIT)-tags, identified and
measured. The sex of the individuals was assessed using second-
ary sexual characters [35]. Juveniles were not included in the
analysis because only 12 juveniles were encountered during the
study but never recaptured. Furthermore, owing to small size of
the dataset (133 individuals marked), we pooled the two sexes
in analyses to avoid model overparametrization. We assumed
that sex should have a little influence on adult survival as males
and females have the same age structure in the population [35].

Body size of salamanders was determined by measuring
snout–vent length (SVL): individuals were measured from the
tip of the snout to the posterior margin of the vent. We used
the size data in multievent capture–recapture models to estimate
size-dependent survival. We also benefited from age data
assessed using skeletochronological analyses (a robust approach
to evaluate age in amphibians, [36]) for individuals marked over
the period 1999–2003 [35]. Those age data were included in
BaSTA models [37,38] to examine age-dependent survival and
mortality rate.

(ii) Multievent model for size-dependent adult survival
We quantified size-dependent annual survival using multievent
capture–recapture models [39]. Note that we did not perform
goodness-of-fit tests before building the models because no test
is currently available for multievent models; note that it was
also possible to consider potential transience, trap-dependence
and recapture heterogeneity in BaSTA models presented below.
We considered a model based on three latent states that include
information about individuals’ size. The states s and l correspond
to small (SVL, from 45 to 60 mm) and large (SVL, from 61 to
81 mm) adults, respectively; the classes were fixed to obtain a
relatively similar number of observations in the two classes.
The state d corresponds to the dead state. The models include
three observations coded as following in the capture histories:
individuals that are not captured are coded ‘0’; small and large
individuals captured are coded ‘1’ and ‘2’, respectively.

At their first capture, individuals may occupy two distinct
states of departure, s and l. At each time step, the information
about individual state is progressively updated through two suc-
cessive modelling steps: (i) survival and (ii) size transition. Each
step is conditional on all previous steps. At the first modelling
step, survival information is updated. A small individual may



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20191498

3
survive with a probability ws or die with a probability 1–ws.
A large individual can survive with a probability wl or not with
a probability 1–wl. These results are shown in the following
matrix (the state of the individual at t− 1 is in column and state
at t is in row):

ws 0 1� ws
0 wl 1� wl
0 0 1

2
4

3
5:

In the second modelling step, information about individual
size is updated. A small individual can become a large individ-
ual with a probability ds or remain in the same class with a
probability 1–ds, leading to the following matrix:

1� ds ds 0
0 1 0
0 0 1

2
4

3
5:

The last component of the model links observation to states.
Small and large individual can be captured with a probability ps
or pl, which results in the following matrix:

1� ps ps 0
1� pl 0 pl
1 0 0

2
4

3
5:

This parametrization was implemented in the program
E-SURGE [40]. We ranked models using Akaike information cri-
teria adjusted for small sample size (AICc) and Akaike weights
(w). If the Akaike weight of the best supported model was less
than 0.9, we used model-averaging to obtain parameter esti-
mates. We examined our hypotheses about survival and
recapture probability from the following general model [w(size),
d(.), p(t + size)]. The effects considered in the models were size
and year (t). We hypothesized that survival w probability dif-
fered between the two size classes (i.e. small and large). We
also expected that recapture probability varies according to size
and year. Age transition was set constant (.) in the model.
We tested all the possible combinations of effects, resulting
in the consideration of eight competing models (electronic
supplementary material, table S2).

(iii) Multievent model for recruitment
We estimated recruitment rate of small-size adults using a modi-
fied Pradel [41] model in which recruitment is modelled by
reversing capture histories and analysing them backwards.
Recruitment probability was estimated as the probability that a
small-sized individual present at t was not present at t− 1, i.e.
the proportion of ‘new’ small individuals in the population at
t. The model had a structure similar to that of the survival
model. The survival matrix was replaced by the recruitment
matrix. At each time step, small individuals may be recruited
with a probability cs or not with a probability 1 – cs, leading
to the following matrix:

1� cs 0 cs
0 1 0
0 0 1

2
4

3
5:

The size transition matrix was also modified to allow
reversed size transition:

1 0 0
dL 1� dL 0
0 0 1

2
4

3
5:

This parametrization was implemented in the E-SURGE
program. We considered the most general model [c(.), d(.),
p(t + size)]. We examined all the possible combination of effects
leading to the consideration of four candidate models.
(b) Age-dependent survival and senescence patterns
in true salamanders

(i) Capture–recapture data
To estimate age-dependent survival and senescence, we re-ana-
lysed two datasets of true salamanders that were analysed
previously (figure 1a). The capture–recapture data of S. perspicil-
lata were collected over a 9-year period (1998–2006) in a
population of central Italy (Monti Lepini, Latium; [42]). The cap-
ture–recapture data of S. salamandra were collected in two
populations from southern France (Ardèche region, pop1) and
northwestern Germany (Nordrhein-Westfalen, pop2). pop1 and
pop2 were surveyed over 8 years (2008–2015) and 21 years
(1965–1985) period, respectively [43,44]. A summary of the age-
dependent capture–recapture data in the four populations of sal-
amanders is provided in the electronic supplementary material,
table S1. In all cases, the survey length was equal or longer
than the mean lifespan of adults in the four populations (elec-
tronic supplementary material, table S1). Given the simulations
of Colchero & Clark [37], we are therefore confident in our ability
to detect senescence if it actually occurred. Note that the sex was
not considered in the further analyses as only females were
caught in S. perspicillata (males do not occur at breeding sites)
and because sex cannot be easily ascertained by non-expert
observers in S. salamandra.

(ii) Age-dependent survival and mortality rate
We investigated actuarial senescence patterns in the three salaman-
der species using Bayesian survival trajectory analyses
implemented in the R package BaSTA [37,38]. BaSTA allowed us
to account for imperfect detection, left-truncated (i.e. unknown
birth date) and right-censored (i.e. unknown death date) capture–
recapture data in our analysis. It allows estimating two demo-
graphic functions: cumulative probability survival until a given
age and mortality rate (i.e. hazard rate) at a given age. Given the
results of previous analyses [42–44],we allowed recapture probabil-
ities to vary among years. As the study period and number of
survey years differ among populations (electronic supplementary
material, table S1), the four populations and species were analysed
separately. We used deviance information criterion (DIC) to select
models that fit the data best and we compared the outputs of the
best supported model of the four populations by inspecting mean
estimates and 95% confidence intervals (CI). This allowed us to
investigate population/species-specific variation in the shape of
the age-specific mortality patterns. We considered the four mor-
tality functions implemented in BaSTA: exponential, Gompertz,
Weibull and logistic. For the three last functions, we considered
three potential shapes: simple that only uses the basic functions
described above; Makeham [45]; and bathtub [46]. As individuals
cannot be individually surveyed before their sexual maturity
(3 years old in the three species), we conditioned the analyses at
a minimum age of 3. Four Markov chain Monte Carlo chains
were run with 50 000 iterations and a burn-in of 5000. Chains
were thinned by a factor of 50. Model convergence was evaluated
using the diagnostic analyses implemented in BaSTA, which calcu-
late the potential scale reduction for each parameter to assess
convergence. For all populations, we used DIC to compare the pre-
dictive power of eachmortality function and its refinements [38,47].
3. Results
(a) Demography of Lyciasalamandra fazilae
Over the 8-year study period, we made 179 captures of sala-
manders. We identified 121 adults (51 males and 70 females)
and 12 juveniles. The mean age was 5.5 years and the
maximum was 10 years.
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The best supported survival model was [w(.), d(.), p(t +
size)] (electronic supplementary material, table S2); its
Akaike weight was 0.54 and we therefore model-averaged
the estimates. The recapture probability of small individuals
was higher than that of large individuals and varied over
time. In 2001, the recapture probability of small individuals
was 0.05 ± 0.05, while it was 0.01 ± 0.01 in large individuals;
in 2007, the recapture probability of small and large individ-
uals was 0.78 ± 0.18 and 0.41 ± 0.17, respectively. The
probability that a small individual changed size class and
became a large individual was 0.28 ± 0.09. Annual survival
did not differ between small (0.72 ± 0.06) and large (0.75 ±
0.04) individuals (figure 1b).

The best supported recruitment model was [c(.), d(.),
p(t + size)] (electronic supplementary material, table S2); its
AICc weight was 0.54 and we therefore model-averaged the
estimates. The recapture probabilities were relatively similar
to that provided by survival model; we did not report them
for this reason. The rate of small individual recruitment
was 0.15 ± 0.15.
(b) Age-dependent survival and senescence in true
salamanders

In L. fazilae, the age-specific capture–recapture data were best
described by an exponential function (electronic supplemen-
tary material, table S3). The probability of surviving was 0.75
until age 4, 0.50 until age 5 and 0.25 until age 7 (figure 2a). Fur-
thermore, the model indicates the absence of age-dependent
mortality rate: mortality rate remained stable (around 0.34)
regardless of age (figure 3a).
In S. perspicillata, the best supported model included a
Gompertz function (electronic supplementary material,
table S3). The probability of surviving was 0.75 until age 5,
0.50 until age 8 and 0.25 until age 12 (figure 2b). Moreover,
our results indicate that age had no influence on mortality
rate (figure 3b). Mortality rate remained stable (around
0.20) regardless of age.

In S. salamandra, the best supported model included a
Weibull function in pop1 and a Gompertz function in pop2
(electronic supplementary material, table S3). The probability
of surviving was 0.75 until age 5, 0.50 until age 8 and 0.25
until age 13 in pop2 (figure 2c); in pop1, the survival esti-
mates were very imprecise (figure 2d ). Moreover, our
results indicate that mortality rate was not affected by age
(figure 3c,d). Mortality rate remained stable (around 0.05
and 0.15 in pop1 and pop2, respectively) regardless of age.
4. Discussion
The three species of true salamanders analysed in this study
are characterized by a slow life-history strategy (i.e. low
recruitment and high adult survival). Survival of all three
species of salamanders decreased slowly with age and mor-
tality rate remained constant regardless of salamander age,
suggesting negligible actuarial senescence in this clade.

(a) Demography of Lyciasalamandra fazilae
Using capture–recapture data, we have provided, to our
knowledge, the first detailed demographic characterization
of L. fazilae and demonstrated that it is a species with a rela-
tively ‘slow’ life history. The survival estimate of our
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multievent model (mean annual adult survival = 0.74 ± 0.05)
was very close to the survival estimate (0.79) provided by
the skeletochronological analysis in the same population
[35]. We are therefore confident that the survival estimate
of L. fazilae is not biased by a methodological artefact; for
example, permanent emigration leads to underestimated sur-
vival rates (i.e. apparent survival) in capture–recapture
studies [48]. Our study revealed that the probability of sur-
viving was 0.50 until age 5, and less than 0.05 until age 12.
These results are also congruent with skeletochronological
data that reported a maximum longevity of 10 years in the
population. Furthermore, we did not find evidence of an
effect of body size on adult survival. It is possible that a
small body size negatively affects survival at the juvenile
stage (as commonly reported in amphibians; e.g. [49,50])
and that the effect of size on survival vanishes at either
some point before or rapidly after sexual maturation. Further-
more, our study also revealed that recruitment was relatively
low in L. fazilae (0.15). This is probably owing to the low
fecundity of females that produce one or two young after a
gestation of 1 year [35]. All together, these results indicate
that L. fazilae has a relatively slow life history.
(b) Slow life histories in true salamanders
Our study and previous ones [42–44] indicate that true
salamanders have slow life-history strategies. First,
adult survival is relatively high in this clade (figure 1c).
In S. salamandra, survival probability was 0.85 in both popu-
lations, while it ranges from 0.86 to 0.90 among S. perspicillata
populations, indicating little variation at the intraspecific
level (figure 1c). At the interspecific scale, survival is rela-
tively high in these three genera, which suggests that a long
lifespan is a highly conserved trait in salamanders of the wes-
tern Palaearctic. Yet, L. fazilae has a lower survival (0.74 and
0.79 from capture–recapture and skeletochronological ana-
lyses, respectively) than S. salamandra and S. perspicillata
(figure 1c). This pattern was also perceptible in the survival
estimates provided by our study: a survival probability of 0.50
was reached at 5 years in L. fazilae, 7.5 years in S. perspicillata
and 8 years in S. Salamandra (in pop2, the estimate of pop1
was very imprecise). These adult survival rates for true salaman-
ders are higher than for most anurans [51] and many newts
and plethodontid salamanders [52–54] supporting the idea
that these species exhibit slow life histories.

Through a trade-off, the relatively long lifespan of sala-
manders is also associated with a low annual fecundity
(compared to other amphibians; [55,56]) that is modulated
by their reproductive modes. Oviparous species have the
highest annual fecundity (e.g. Salamandra infraimmaculata,
218 eggs per female per year, [57]; S. perspicillata, 40–65
eggs, [58,59]). Salamanders with lecithotrophic viviparity
(i.e. giving birth to larvae) have an intermediate annual
fecundity (e.g. S. salamandra, 23 larvae per female per year,
[60]; Salamandra algira, 13 larvae, [61]), whereas species with
matrotrophic viviparity (i.e. giving birth to fully developed
young) have the lowest annual fecundity (e.g. L. fazilae and
Salamandra atra, 1 young per female per year; [62,63]).
Fecundity adjustments of true salamander result from poten-
tially rapid (less than 1000 generations, [64]) changes in
reproductive modes that may occur at the intraspecific level
[64]. These characteristics make ‘true’ salamanders an excep-
tional biological system to extend our understanding of the
evolution reproductive modes and the modularity of life-history
strategies in amniotes.
(c) Negligible actuarial senescence in true salamanders
We observed negligible actuarial senescence in the three
species of true salamanders considered in our study. The
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mortality rate was relatively stable and weakly affected
by age in the three taxa and the two populations of
S. salamandra. This mortality pattern markedly differs from
age-dependent mortality rates found in various species of
anurans and newts (using capture–recapture data with
relatively similar sample size, and a similar modelling
approach), which may experience a sharp, early senescence
[16,65]; but also see [13]. The detection of actuarial senescence
in other species using similar modelling tools [16,65] indi-
cates that the negligible senescence in true salamanders is
not a methodological artefact. It has previously been
suggested that detecting senescence would be difficult in
wild animals because high levels of mortality would
remove individuals from the population before they start to
senesce [66]. However, by revealing a great diversity of senes-
cence patterns, studies using capture–recapture data collected
across a broad range of taxa showed that this assumption was
untrue ([13,16,23]; see also [19] for a review). Furthermore,
Colchero’s model has proven to be particularly efficient for
detecting senescence when it is actually present [37,38].
Simulations showed that the model is able to detect senes-
cence when the study period is equal or longer than the
mean lifespan in the population [37], which was the case in
the four datasets considered in our study.

A long lifespan, a high level of iteroparity and a low
reproductive effort appear to be closely associated with neg-
ligible actuarial senescence in the three species of true
salamanders considered in our study. This pattern is congru-
ent with the results of Jones et al. [23] showing that
senescence rate is negatively correlated with generation
time and age at primiparity, and is positively associated
with maximum fecundity in endotherm vertebrates; the
opposite relationships were detected with the age at senes-
cence onset. Interestingly, our results suggest an absence of
trade-off between senescence and offspring production in
true salamanders. Although they display large variation in
annual offspring numbers, the three species experience negli-
gible senescence. This seems to indicate a partial decoupling
of senescence and reproductive effort whose variation is
rather associated with species-specific reproductive mode
(oviparity, lecithotrophic viviparity and matrotrophic vivi-
parity). However, our study focused on a limited number
of salamander species and further investigations are required
to examine in detail covariation between senescence (speed
and age at onset of senescence) and life-history traits at the
clade level.

The negligible senescence of salamanders probably relies
on their high regenerative capacities. Contrary to other
amniotes, salamanders are able to retain near perfect regener-
ation of most organs and appendages (e.g. spinal cord, heart,
brain, skin, digit and lens) well into adulthood [31]. Although
almost no studies have tested these abilities in old animals
[31], their great potential for tissue repair and regeneration
probably allow true salamanders to escape actuarial senes-
cence. In parallel, although we did not detect size-dependent
survival in L. fazilae, an indeterminate growth [19] could also
contribute to the negligible senescence reported in our study.
Furthermore, a low body temperature and a low metabolic
rate [67,68] might also limit actuarial senescence.

Our results also showed that negligible senescence is a
consistent pattern at both intraspecific and interspecific
levels in true salamanders (at least in the species considered
in this study). This indicates that negligible senescence may
be a phylogenetically conserved trait within a clade contain-
ing species that have diverged a long time ago (several
million years; [34]). These results suggest a strong genetic
determinism in ageing mechanisms and the existence of
orthologous genes involved in the repression of actuarial
senescence in urodeles. However, the genomic architecture
of life-history components as senescence rate and onset
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remains poorly understood, except in few model species (e.g.
Drosophila: [69,70]; human: [71]). The recent development of
powerful genomic tools should allow identification of candi-
date genes and gene networks involved in senescence
regulation.
publishing.org/journal/rspb
Proc.R.Soc.
5. Conclusion
Negligible actuarial senescence is highlighted in a growing
number of taxa, mainly ectotherms (e.g. corals, hydras and
amphibians; [13]). These cases have been considered for a
long time as exceptions or the product of methodological
artefacts, in the light of senescence having been presented
as a nearly ubiquitous phenomenon in the living world. We
argue that this representation was partly owing to a taxo-
nomic bias where the study of senescence has for many
years been focused on endotherm vertebrates (mainly
mammals) with reduced regenerative capacities at adult
stages [31]. The regenerative capacities of true salamanders,
and urodeles in general, probably explains why these small
ectotherm amniotes (the body mass of the largest true sala-
manders is approx. 50 g) have lifespans similar to that of
large endotherm amniotes (e.g. ungulates, large birds) and
undergo a negligible actuarial senescence contrary to most
vertebrates including humans [13].
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