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The active uptake of exogenous nucleic acids by spermatozoa of virtually all
animal species is a well-established phenomenon whose significance has
long been underappreciated. A growing body of published data demon-
strates that extracellular vesicles released from mammalian somatic tissues
pass an RNA-based flow of information to epididymal spermatozoa, thereby
crossing the Weismann barrier. That information is delivered to oocytes at
fertilization and affects the fate of the developing progeny. We propose
that this essential process of epigenetic transmission depends upon the
documented ability of epididymal spermatozoa to bind and internalize
foreign nucleic acids in their nuclei. In other words, spermatozoa are not
passive vectors of exogenous molecules but rather active participants in
essential somatic communication across generations.
1. Introduction
The development of epigenetic studies in recent years has profoundly enriched
our view of genetic inheritance. Most significantly, the nuclear genome has
gradually lost its function as the unique and exclusive determinant of inherited
characteristics due to mounting waves of data revealing the complex epigenetic
networks that heritably control genome expression. A comprehensive picture of
epigenetic patterns is now emerging where DNA methylation, histone modifi-
cation, chromatin patterning and RNA-mediated functions play key regulatory
roles on a variety of cellular processes [1,2] and on the programming of early
embryonic development [3].

Growing evidence indicates that epigenetic states can be transmitted to the
germline—most significantly via spermatozoa—and then delivered to the off-
spring at fertilization and inherited by the progeny (extensively reviewed by
Lane et al. [4] and Rando [5]). A fundamental role in this process is played
by extracellular vesicles, heterogeneous membrane-coated particles that can
transfer RNA, DNA, proteins and lipids between a broad range of cell types
and across species [6]. The cargo of extracellular vesicles is predominantly
constituted by a wide range of RNAs including regulatory miRNA, tRNA,
lncRNA, piRNA and snRNA, which collectively can modulate the expression
of an ample spectrum of genes [7]. In the past decade, extracellular vesicles, par-
ticularly exosomes, have emerged as crucial vehicles mediating intercellular
communication in a variety of physiological [8] and pathological processes
[9,10]. Extracellular vesicle-mediated intercellular trafficking is not restricted
to somatic cells, but is also a phenomenon involving germline cells—most
significantly, mature spermatozoa. During sperm maturation, the regulatory
RNA content is selectively modified by the interaction with epididymosomes,
a class of extracellular vesicles released from somatic epididymis that deliver
their cargoes to epididymal spermatozoa [11–16]. Some of these epididymal
RNAs are essential for proper embryonic development [17].

In summary, a growing body of published data now supports the idea that
spermatozoa provide an active system of soma-to-germline communication that
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crosses the Weismann barrier and contributes to epigenetic
formatting of progeny development (for an exhaustive
review, see [18]).
 lsocietypublishing.org/journal/rspb
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2. Programmed transport of RNA to spermatozoa
A unifying concept in the field is emerging, according to
which an RNA-based flow of information connects somatic
tissues to the germline—particularly mature spermatozoa—
and can be delivered to the next generation of embryos at fer-
tilization. Soma-to-sperm RNA delivery is an unprecedented
dynamic, well-regulated process, mediated by extracellular
vesicles occurring during the epididymal maturation of
sperm cells in mice [14,18,19]. These RNAs comprise mostly
regulatory miRNAs and tRNA fragments [11,12,14,20] that
are delivered to oocytes at fertilization, are essential to early
embryonic development [17] and have been demonstrated
to affect the fate of the progeny [21–26] up to the fourth gen-
eration [27,28]. The effect on embryonic development is a
consequence of spermatozoa delivering their RNA cargos to
oocytes at fertilization [29]. Together, these results highlight
a central role of epididymal spermatozoa in the rising tide
of evidence for radically new modes of transgenerational
epigenetic inheritance that can cross the Weismann barrier.
As remarked, such a model would be consistent with a
Lamarckian model of inheritance and the related idea
of somatic-derived transmission known as Darwinian
Pangenesis [30–33].
3. Unprogrammed extracellular vesicle transport
from somatic tissues to germ cells and next-
generation embryos

Extracellular vesicles are recognized as effective mediators of
intercellular communication. They are released from diverse
cellular sources and can pass many different RNA molecules,
which may vary in response to stressing stimuli [34] and with
the health of the donors [35].

Because epididymal spermatozoa are permeable to both
naked nucleic acid molecules and extracellular vesicles (as
discussed in more depth in the next section), it is not unrea-
sonable to speculate that extracellular vesicles of somatic cell
origin can deliver their ‘altered’ RNA cargo to epididymal
spermatozoa and, eventually, to the germline. Indeed, exper-
imental data are available in support of this view. When
human melanoma cells were engineered to express EGFP,
and subsequently inoculated subcutaneously in nude mice,
they released traceable EGFP RNA-containing extracellular
vesicles into the bloodstream, which reached the epididymis
and transferred EGFP mRNA to spermatozoa [36]. These
results suggest that the RNA-based information can actually
reach the epididymal spermatozoa even when released from
a distant tissue, not necessarily from closely related epididy-
mal tissue [14,19,37]. Another possible interpretation is that
tumour cell-released extracellular vesicles first transfer their
RNA cargo to epididymosomes, which then deliver it to epi-
didymal spermatozoa. In either pathway, epididymosomes
would consistently mediate the flow of somatic RNA-based
information to spermatozoa.

We can now retrospectively appreciate earlier results indi-
cating a role of epididymal spermatozoa as collectors of
somatic RNA-based epigenetic information and vectors
delivering that information to fertilized oocytes and embryos
[2]. That is of particular interest in the light of the notion
that sperm RNA acts as a transgenerational modifier,
transmitting paternal responses to environmental stressors
[21,22,24,25,38] (for comprehensive reviews, see [26,39]).
4. Spermatozoa actively internalize, process and
transmit exogenous DNA

In 1971, it was first demonstrated that rabbit spermatozoa,
depleted of seminal fluid, were able to incorporate Simian
Virus 40 DNA and deliver it to oocytes at fertilization [40].
In the pre-Internet era, that work remained long ignored by
the scientific community. Eighteen years later, we rediscov-
ered this phenomenon demonstrating that surgically
withdrawn mouse epididymal spermatozoa could spon-
taneously bind and internalize plasmid DNA and deliver it
to oocytes during in vitro fertilization (IVF). The introduced
DNA sequences became heritable to the extent that they
were identified in tail tissue samples of F0 and F1 offspring
[41]. The process was called sperm-mediated gene transfer
(SMGT) and is mediated by specific surface proteins acting
as DNA-binding substrates [42] that trigger the internalization
process [43] (reviewed in [44]).

Microscopic inspection shows that epididymal spermato-
zoa, or ejaculated spermatozoa depleted of seminal fluid,
incorporate large amounts of exogenous DNA in a spatially
organized manner preferentially in the subacrosomal seg-
ment of spermatozoa (figure 1a–c). That interaction is
strongly antagonized by the mammalian seminal fluid:
thus, only epididymal spermatozoa, or ejaculated spermato-
zoa subjected to thorough washes, are ‘permeable’ to
exogenous molecules [44]. It is interesting to remark that
the epididymis-to-spermatozoa communication, mediated
by epididymosomes, and the ability of spermatozoa to take
up exogenous DNA and RNAmolecules, both reflect the con-
stitutive high permeability of mature sperm cells to molecules
and extracellular vesicles. The finding that the ejaculated
seminal fluid contains factors able to inhibit the permeability
of spermatozoa likely reflects the need to preserve the
paternal genome from undesired intrusions of foreign
molecules in their travel towards fertilization. Prior to ejacu-
lation, epididimal spermatozoa are permeable and a specific
network is in place to regulate their permeablility: the intern-
alization of exogenous nucleic acid molecules requires
CD4 molecules present on the spermatozoa surface and is
inhibited in sperm cells from CD4 knock-out mice [44,45].

Similar to DNA, foreign exosomes can also interact and
deliver their cargo to sperm heads (figure 1d–f ). Recent
reports have shown that the subacrosomal domain of sperm
cells is the predominant docking and cargo delivery site of
epididymosome–spermatozoa interaction [15,16].

The binding and internalization of foreign nucleic acids
trigger metabolic functions such as endonucleases [46] and
reverse transcriptase (RT) [47] that, under normal conditions,
remains otherwise silent in spermatozoa.

Initially, SMGT had been wrongly interpreted as the result
of an ‘anomalous’ behaviour of spermatozoa which, neverthe-
less, could potentially provide an exploitable tool for the
generation of transgenic animals. However, attempts to estab-
lish it as a biotechnological application declined in
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Figure 1. Exogenous plasmid DNA and human exosomes are taken up by mouse epididymal spermatozoa: (a) DAPI staining of sperm DNA; (b) subacrosomal
localization of foreign plasmid DNA revealed by FISH analysis; (c) merge of the DAPI and FISH images. Confocal microscopic images of: (d ) murine spermatozoa
incubated for 2 h with rhodamine-stained human exosomes (red hue) and nuclei counterstained with Hoechst (blue hue); (e) spermatozoa morphology visualized by
differential interference contrast (DIC); ( f ) merged Rhodamine/Hoechst/DIC signals. Exosomes were extracted from A-375 human melanoma cell line as in [36]. The
exosome samples shown in (d–f ) were provided by courtesy of Drs S. Fais and A. Logozzi (Italian National Institute of Health). (Online version in colour.)
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subsequent years as the real nature of the phenomenon became
clear. Indeed, it has been clarified that free exogenous nucleic
acid molecules delivered to oocytes at fertilization are further
propagated as low-copy episomes throughout embryogenesis
and inherited in a mosaic pattern within progeny tissues
[48,49]. Both DNA and RNA sequences introduced by
SMGT were expressed in the F0 and F1 offspring, yet were
propagatedmainly as non-integrated extrachromosomal struc-
tures [48,49]. The SMGT-delivered DNA sequences are (i)
maintained unintegrated as low-copy episomes (less than one
copy per genome), (ii) sexually transmitted in a non-Mendelian
fashion from founders to the next generation (reviewed in [50])
and (iii) transcriptionally competent by means of RNA poly-
merase activity present in sperm cells [51] (and, remarkably,
they are highly expressed in progeny tissues [48,49]).
5. Reverse transcription in spermatozoa
A similar unstable transmission of exogenous nucleic acid
occurs using spermatozoa incubated with RNA, in a process
called sperm-mediated reverse gene transfer (SMRGT) [48].
SMRGT requires the LINE-1-encoded RT activity present in
both mature spermatozoa [47] and early preimplantation
embryos [49]. The RT activity can reverse-transcribe RNA
molecules either internalized in sperm heads after direct
incubation or transcribed from internalized DNA molecules.
In both the direct (DNA-mediated) and the reverse
(RNA-mediated) process, biologically active ‘retrogenes’ are
generated via reverse transcription in spermatozoa and
early embryos, where the LINE-1-encoded RT is active
[47,49] (reviewed in [52]). The resulting cDNA copies then
become the actual substrates of the SMGT process. Moreover,
since RT activity can interact with the products of sperm
RNA polymerase [51], a kind of ‘natural’ PCR/RT–PCR
cycle arises capable of replicating both RNA and DNA
molecules incorporated by spermatozoa.
6. Spermatozoa as agents for acquisition,
processing, replication and delivery of somatic
nucleic acids across generations

Together, the data summarized above show that sperm are
not mere passive containers, permeable to foreign nucleic
acid sequences and extracellular vesicles, but are functional
cells with an active biochemical machinery that generates,
processes and amplifies additional information via transcrip-
tion and reverse transcription [52]. In other words, mature
spermatozoa act as active collectors of somatic information,
carrying it across the Weismann barrier and delivering it in
episomal fashion to the next generation.

In an evolutionary context, the ability of spermatozoa to
take up exogenous nucleic acids is conserved in virtually all
animal species, from sea urchins to mammals [53]. Sperm-
mediated transgenerational inheritance can be regarded as an
active process that plays more than one key role in early devel-
opment. Spermatozoa transmit programmed epigenetic signals
necessary for embryonic development [17]. But they are also
capable of transmitting information contained in extracellular
vesicles and free nucleic acids generated in response to external
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stimuli. Thus, sperm-mediated transgenerational inheritance
has the potential to remodel the embryonic epigenetic
landscape favouring the adaptation of newborns when their
fathers encounter stressful conditions [54].

Clearly, spermatozoa are more complex cells than
previously believed and are endowed with many more func-
tions than just the delivery of the male genome.
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