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ABSTRACT: A novel strategy is described to prepare magnetic Pd nanocatalyst by
conjugating lignin with Fe3O4 nanoparticles via activation of calcium lignosulfonate, followed
by combination with Fe3O4 nanoparticles. Tethering 5-amino-1H-tetrazole to calcium
lignosulfonate-magnetite hybrid through 3-chloropropyl triethoxysilane enabled coordination
of Pd salt with Fe3O4-lignosulfonate@5-amino-1H-tetrazole. The underlying changes of
the lignosulfonate are identified, and the structural morphology of attained Fe3O4-
lignosulfonate@5-amino-1H-tetrazole-Pd(II) (FLA-Pd) is characterized by Fourier transform
infrared, thermogravimetry differential thermal analysis, energy-dispersive spectrometry, field-
emission scanning electron microscopy, transmission electron microscopy, and vibrating sample
magnetometer (VSM). The synthesized FLA-Pd displayed high activity for phosphine-free
C(sp2)−C(sp2) coupling in water, and the catalyst could be reused for seven successive cycles.

■ INTRODUCTION

Lignin is an amorphous polymer that comprise three main
monomer blocks, namely coniferyl, p-coumaryl, and sinapyl
alcohol1,2 and is the second most plentiful biomass on the
planet earth after cellulose. One of the most important sources
of commercial lignin is the byproduct from biorefineries and
pulp industries,3,4 and its conversion to a high value-added prod-
ucts has been continually explored.5 Because of the attendance
of phenolic, hydroxyl, methoxy, carbonyl, carboxyl, and aldehyde
groups, lignin and its derivatives are endowed with exclusive uses
such as antioxidants, antimicrobial agents, in removal of heavy
metal ions and toxic dyes, carbon precursors, UV adsorbents,
and biomaterials for gene therapy and tissue engineering;6−12

progressive lignin modification has created various functional
lignin-based materials with unique properties.13

The preparation of heterogeneous catalysts has been exten-
sively investigated in contrast to homogeneous counterparts
because of recyclability, facile work-up, and ease of handling.14,15

Among heterogeneous catalysts, magnetite nanoparticles
(MNPs) have garnered abundant attention owing to their low
cost, stability and toxicity, high reactivity, good biocompatibility,
easy separation by an external magnet, and importantly, the
small size, large surface area, and good magnetic permeability.16−21

The C−C coupling reactions22 like Sonogashira,23 Suzuki−
Miyaura,24 Hiyama,25 and Heck26 represent strong synthetic
tools to generate new natural products, heterocycles, molecular
electronics, dendrimers, and conjugated polymers. Among these,
Suzuki−Miyaura coupling reactions offer an effective process for
the preparation of pharmaceuticals because of compatibility of
functional groups and accessibility of organoboron compounds
under mild reaction conditions;27,28 Pd-catalyzed C−C coupling

reactions are one of the most important advancements in
synthetic organic chemistry due to high production yields, fast
reaction rates, high turnover frequency, and selectivity.29,30

We envisioned an efficient method for the fabrication of the
Pd(II) complex supported on Fe3O4-lignosulfonate (FLA-Pd)
(Scheme 1) and demonstrate its prowess for the phosphine-
free Suzuki−Miyaura reaction (Scheme 2) in water as a non-
toxic solvent wherein lignin biopolymer, a renewable resource,
functions as a natural support for the immobilization of Pd
complex.

■ RESULTS AND DISCUSSION

FLA-Pd Characterization. The characterization of the
FLA-Pd was carried out using X-ray diffraction (XRD), trans-
mission electron microscopy (TEM), field-emission scanning
electron microscopy (FESEM), energy-dispersive spectrometry
(EDS), Fourier transform infrared (FT-IR), vibrating sample
magnetometer (VSM), and thermogravimetry differential thermal
analysis (TG-DTA) techniques. An XRD pattern of the prepared
FLA-Pd was applied for lignosulfonate adsorption on the Fe3O4
surface (Figure 1).
The XRD pattern of FLA-Pd was very similar to that of the

magnetic NPs, implying that the crystal Fe3O4 did not change,
and magnetic NPs have been coated with lignosulfonate.
The patterns at 2θ values 28.6°, 35.8°, 50.4°, 57.6°, and

63.1° can be attributed to (2 2 0), (3 1 1), (4 2 2), (5 1 1), and
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(4 4 0) planes of the cubic structure of Fe3O4 (JCPDS 19-0629),
demonstrating the crystalline structure of Fe3O4. In addition,

the presence of palladium and its immobilization on the Fe3O4-
lignosulfonate@5-amino-1H-tetrazole was confirmed with the

Scheme 1. Schematic Representation of the Structure of Fe3O4@Lignosulfonate@5-Amino-1H-tetrazole@Pd(II) (FLA-Pd)

Scheme 2. Step-wise Synthesis of Fe3O4-Lignosulfonate@5-Amino-1H-tetrazole Monohydrate-Pd(II) (FLA-Pd)
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diffraction peaks at 2θ = 40.8°, 47.3°, 68.5° attributed to (1 1 1),
(2 0 0), and (2 2 0) crystal planes of face-centered Pd.
FT-IR spectroscopy was applied for the characterization

of the functionality of calcium lignosulfonate (A), Fe3O4-
lignosulfonate (B), Fe3O4-lignosulfonate@(CH2)3−Cl (C),
FLA (D), and FLA-Pd (E) (Figure 2). In Figure 2A−E, the

peak at 3000−3500 and 1000−1200 and 1050−1200 cm−1

is because of stretching vibrations of the O−H, C−O, and
OSO in calcium lignosulfonate, respectively. The peak
appeared at 1400 cm−1 is attributed to aromatic carbons that
exist in calcium lignosulfonate (Figure 2A). The formation of
Fe3O4-lignosulfonate and its sustainability until the last stage
was approved by the peak appeared at 585 cm−1, which
is ascribed to the vibration of Fe−O in the Fe3O4 MNPs
(Figure 2B−E). The peak at 1600 cm−1 is also linked to the
CO stretching mode in Fe3O4-lignosulfonate (Figure 2B).

The peaks at 2800−3000 and 1400−1500 cm−1 may be
assigned to C−H stretching and bending vibrations of CH2
groups (Figure 2C). Finally, the band around 1450 cm−1

indicated the NN stretching vibrations of the 5-amino-1
H-tetrazole (Figure 2D,E).
The chemical composition of calcium lignosulfonate, Fe3O4-

lignosulfonate, and the FLA-Pd was analyzed at each stage by
the EDS analysis (Figure 3), which confirms the existence of
the desired elements in their chemical structure; the EDS
spectrum of the lignosulfonate confirmed that it comprised
S, C, O, and Ca (Figure 3A). Figure 3 confirmed that C, O, S,
Fe, and Ca were main components present in both Fe3O4-
lignosulfonate and FLA-Pd along with N, Si, Pd, Cl, K, and I
elements, which were present only in the FLA-Pd (Figure 3C),
further reaffirming the formation of the final catalyst. Additionally,
the existence of C, N, O, Fe, and Pd was emphasized with
elemental mapping images (Figure 4); which showed that Pd is
dispersed uniformly on the FLA surface.
FESEM images of calcium lignosulfonate, Fe3O4-lignosulfo-

nate, and the FLA-Pd are presented in Figure 5. According to
the FESEM analysis results, the shapes of the calcium ligno-
sulfonate are irregular (Figure 5A), while Fe3O4-lignosulfonate
has a spherical morphology (Figure 5B). Also, the FLA-Pd
show an average particle size in the 20−27 nm range with a
spherical morphology. The morphology of the FLA-Pd was
also investigated using TEM images (Figure 6), which corrob-
orates FESEM findings.
The results of TG-DTA analysis of FLA-Pd are shown in

Figure 7. There are six clear weight loss peaks discernible in the
TG-DTA curves. The first weight loss, in the range 30−200 °C,
was caused by the elimination of physically absorbed H2O
within the Ca lignosulfonate and desorption of organic solvents.
The second loss occurred in range 200−290 °C, which is
attributed to the cleavage of C−O−C and C−C chemical bonds
and other organic moieties. The next weight loss in 300 is due
to the decomposition of the calcium lignosulfonate framework,
which was associated with the release of small molecules
including oxygen, calcium, carbon, sulfur, and hydrogen. The
fourth stage, in 400 °C range, corresponds to the disintegration
of 5-amino-1H-tetrazole monohydrate. Further, a weight loss
was detected in 600 °C, which is caused by the carbonization
and decomposition of calcium lignosulfonate and its aromatic
rings. The last stage was found in 800 °C, attributed to decom-
position of the nanocatalyst.
The magnetic hysteresis loop of the FLA-Pd is illustrated in

Figure 8; a magnetic behavior was investigated with the field
sweeping in the range of −15 000 to +15 000 Oe. The results
acknowledge that the FLA possessed sensitive magnetic respon-
siveness, which can be easily removed by deploying an external
magnet.

FLA-Pd-Catalyzed Suzuki−Miyaura Reaction. The
catalytic applicability of the FLA-Pd was examined for the
Suzuki−Miyaura reaction of iodobenzene with C6H5B(OH)2
as a model reaction. The reaction was carried out deploying
0.05 g of the FLA-Pd and 2.0 mmol of K2CO3 under reflux
conditions in H2O as a green solvent; the absence of the
FLA-Pd did not produce any coupling reaction, and no coupling
product could be observed.
To optimize the catalytic reaction conditions of the PhI

(1.0 mmol) with PhB(OH)2 (1.1 mmol) using FLA-Pd, various
bases such as K2CO3, NaOAc, NaHCO3, n-Pr3N, Et3N, and
solvents namely tetrahydrofuran (THF), toluene, H2O, and
EtOH were screened (Table 1); high yield of the favorable

Figure 2. FT-IR spectra of calcium lignosulfonate (A), Fe3O4-
lignosulfonate (B), Fe3O4@lignosulfonate−(CH2)3−Cl (C), FLA
(D), and FLA-Pd (E).

Figure 1. XRD patterns of the FLA-Pd.
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product was discerned when the reaction was performed in
water using FLA-Pd (0.05 g) and K2CO3 (2.0 mmol) at 100 °C
for 1 h (entry 1).
The reaction between PhB(OH)2 and aryl halides bearing

electron-donating and electron-withdrawing groups was
performed, and they all afforded biphenyl derivatives in 81−
93% yields within 1−2 h using 0.05 g of the FLA-Pd in H2O

(Table 2); chlorobenzene produced the corresponding product
in good yield as well (entry 13). The melting points of all of
biaryls were consistent with the recorded literature values.
Furthermore, we checked the catalytic superiority and remark-

able features of FLA-Pd in comparison to reported catalytic
systems in the literature for Suzuki−Miyaura reaction in H2O or
H2O/EtOH and H2O/DMF mixture (Table 3). Clearly, the

Figure 3. EDS images of lignosulfonate (A), Fe3O4-lignosulfonate (B), and FLA-Pd (C).

Figure 4. Elemental mapping of the FLA-Pd.
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FLA-Pd provided higher yields in a shorter reaction time and
higher catalytic activity in comparison to other catalysts.

Catalyst Recyclability. The recyclability of the catalyst
system is one of the prominent issues from the standpoint
of cost-effectiveness and environmental impact. The FLA-Pd
nanocatalyst could be collected via an external magnet because
of its magnetic properties. The recyclability of the as-prepared
FLA-Pd was next examined using the Suzuki coupling reaction
of PhB(OH)2 with PhI in the presence of K2CO3 under reflux
conditions in water. As shown in Figure 9, the FLA-Pd can be

Table 1. Preparation of Biphenyl under Different
Conditionsa

entry solvent
FLA-Pd
(g) base T (°C)

time
(min)

yield
(%)b

1 THF 0.05 K2CO3 reflux 120 65
2 toluene 0.05 K2CO3 reflux 120 42
3 H2O 0.05 − rt 240 0
4 H2O 0.05 − reflux 240 0
5 EtOH 0.05 K2CO3 reflux 60 70
6 H2O 0.05 K2CO3 reflux 60 93
7 H2O 0.05 NaOAc reflux 120 50
8 H2O 0.05 NaHCO3 reflux 120 76
9 H2O 0.05 Et3N reflux 120 61
10 H2O 0.05 n-Pr3N reflux 120 62
11 H2O 0.03 K2CO3 reflux 120 70
12 H2O 0.07 K2CO3 reflux 60 93

aReaction conditions: PhI (1.0 mmol); PhB(OH)2 (1.1 mmol);
base (2.0 mmol); solvent (10.0 mL). bIsolated yield of the pure
product.

Figure 6. TEM images of the FLA-Pd.

Figure 7. TG-DTA analysis of the FLA-Pd.

Figure 8. Magnetization curves of the FLA-Pd.

Figure 5. Surface morphology as apparent from FESEM images of
lignosulfonate (A), Fe3O4-lignosulfonate (B), and the FLA-Pd (C).
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reused at least seven times, with minor fluctuation in yields.
As shown in the TEM and FESEM images of the recycled FLA-Pd
(Figures S1 and S2), no clear variation in the morphology of the
FLA-Pd and its size was discerned.

■ CONCLUSIONS
This study introduces a new, efficient, and eco-friendly
approach for Suzuki−Miyaura coupling reaction through the
fabrication of a highly active and sustainable catalytic system
using a calcium lignosulfonate biopolymer as a renewable resource
and natural support for the immobilization of the 5-amino-1H-
tetrazole-Pd(II) complex. The Suzuki−Miyaura coupling reaction
was performed for an assorted array of aryl halides in H2O as a
greener solvent, and consistently high yields of the biaryls were
obtained. In addition, the synthesized catalyst could be reused
for successive seven cycles with high efficiency. The use of

renewable and abundant resource materials bodes well for its
application in other heterogeneous catalytic systems.

■ EXPERIMENTAL SECTION
Reagents and Methods. All chemicals were purchased

from Aldrich Chemical Co. and were directly used for the fabri-
cation of catalyst and biaryls. FT-IR spectra using a Thermo
Nicolet 370 FT-IR spectrometer were used to record the func-
tional groups in the 400−4000 cm−1 range. TEM and FESEM
analyses were used to determine the particle size and morphol-
ogy using Philips CM120 and Cam scan Mv2300, respectively.
The chemical composition analysis of the FLA-Pd was performed
using EDS in the FESEM system. XRD analysis was obtained by
using a Philips PW 1373 X-ray diffractometer (Cu Kα = 1.5406 Å)
in a 2θ range 10°−80° to evaluate the structure of the FLA-Pd.
TG-DTG and VSM measurements were performed by using
a STA 1500 Rheometric Scientific (England) and Quantum
Design MPMS 5XL SQUID magnetometer, respectively.

Preparation of Fe3O4-Lignosulfonate. For the synthesis
of Fe3O4-lignosulfonate, calcium lignosulfonate was activated
with potassium periodate (KIO4) as its functional groups
(CHO, OMe, PhOH, and OH) are occupied in interunit
linkages; functional group activation help assist its binding to

Table 3. Comparison of the FLA-Pd with Other Reported Catalysts in the Reaction of Bromobenzene with C6H5B(OH)2

entry catalyst solvent T (°C) time (h) yield (%)a ref

1 Pd@Nf-G EtOH/H2O 80 3 88 31
2 Pd@aminoclay H2O 100 4 87 32
3 Pd NPs/PS H2O/DMF 100 12 80 33
4 Pd NPs H2O 100 12 85 34
5 Fe3O4@RGO@Au@C H2O 100 18 88 35
6 Au NPs@HS-G-PMS hybrid H2O 110 6 86 36
7 Fe3O4@SiO2-4-AMTT-Pd(II) H2O 50 3.5 68 37
8 Pd(OAc)2/L1 H2O 90 2 86 38
10 Mag-IL-Pd H2O 60 7.5 82 39
11 Pd(OAc)2 H2O 100 12 42 40
12 Pd(0)-MCM-41 EtOH/H2O 80 12 90 41
13 CuO/Pd-3 DMF 110 10 80 42
14 Pd−CoFe2O4 MNP EtOH reflux 12 79 43
15 Pd2+-sepiolite DMF 100 1 81 44
16 Ni/Pd core/shell NPs/graphene DMF/H2O 110 30 min 78 45
17 Pd NPs/ionic polymer-doped graphene EtOH/H2O 60 24 24 46
18 Pd−Co (1:1)/graphene EtOH/H2O 80 4 76b 47
19 FLA-Pd H2O 100 1 90 this work

aIsolated yield of the pure product. bConversion.

Table 2. FLA-Pd-Catalyzed Suzuki−Miyaura Coupling
Reaction of C6H5B(OH)2 with Various Aryl Halidesa

entry R X time (min) yield (%)b

1 H I 60 93
2 4-OMe I 60 92
3 2-OMe I 60 90
4 4-Me I 60 91
5 4-CHO I 60 90
6 4-NO2 I 70 90
7 4-COOH I 60 89
8 H Br 90 90
9 4-OMe Br 90 89
10 4-Me Br 90 88
11 4-NO2 Br 100 88
12 4-COOH Br 90 87
13 H Cl 240 81

aReaction conditions: C6H5B(OH)2 (1.1 mmol), aryl halide
(1.0 mmol), FLA-Pd (0.05 g), K2CO3 (2.0 mmol), H2O (10.0 mL),
reflux. bIsolated yield.

Figure 9. Recycling experiments of the FLA-Pd for Suzuki coupling.
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the surface of Fe3O4. Calcium lignosulfonate was dissolved in
the dioxane/water (9:1, v/v) (solution 1) to which aqueous solu-
tion of potassium periodate (solution 2) was added in the dark;
solution 2 was added with a peristaltic pump into solution 1.
Then, Fe3O4 nanoparticles (NPs) were added to the preactivated
calcium lignosulfonate at pH = 6.4, in mass ratios 5:1 for 2 h. The
final solution was filtered, and the ensuing Fe3O4-lignosulfonate
was washed with EtOH and dried at 110 °C (Scheme 2A).
Preparation of Fe3O4@Lignosulfonate@5-Amino-1H-

tetrazole. Fe3O4@lignosulfonate@5-amino-1H-tetrazole (FLA)
was obtained by adding (3-chloropropyl)trimethoxysilane
(3.0 mL) to 1.0 g Fe3O4-lignosulfonate taken in dry toluene
(80.0 mL) under reflux conditions and a nitrogen atmosphere
for 12 h (Scheme 2B). The synthesized Fe3O4-lignosulfona-
te@(CH2)3−Cl was decanted via a magnet, washed with
diethyl ether, and then dried under vacuum at 70 °C for 5 h.
Next, 5.0 mmol of 5-amino-1H-tetrazole, 2.0 g of the Fe3O4-
lignosulfonate@(CH2)3−Cl, 5.0 mmol of K2CO3, and 50.0 mL
of DMF were admixed in a flask and refluxed for 24 h. The
ensuing Fe3O4-lignosulfonate@(CH2)3−Cl can be easily collected
and used for the next stage (Scheme 2C).
Preparation of the FLA-Pd Complex. Finally, the Fe3O4-

lignosulfonate@(CH2)3−Cl (1.0) and 0.5 g of PdCl2 were
mixed in EtOH (50.0 mL) and heated at 80 °C for 24 h. Then,
the obtained complex was collected with an external magnet,
washed with EtOH, dried, and then used as a new magnetic
catalyst in the next cycle (Scheme 2D).
Suzuki−Miyaura Coupling Reaction. A round-bottomed

flask was filled with 1.1 mmol of C6H5B(OH)2, 1.0 mmol of
aryl halide, 2.0 mmol of K2CO3, 0.05 g of FLA-Pd, and 10 mL
of water and stirred under reflux conditions for the adequate
time. The conversion of aryl halide was checked by thin-layer
chromatography. When the reaction was completed, the catalyst
was decanted using an external magnetic field, and the coupling
product was then purified by flash chromatography. The obtained
biaryls were characterized by melting point and confirmed by
NMR.
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