
Acquired Resistance to Poly  
(ADP-ribose) Polymerase Inhibitor 
Olaparib in BRCA2-Associated 
Prostate Cancer Resulting From 
Biallelic BRCA2 Reversion Mutations 
Restores Both Germline and Somatic 
Loss-of-Function Mutations

INTRODUCTION

Mutations of the BRCA1 or BRCA2 gene 
(BRCA1/2) confer an increased lifetime risk of 
developing breast, ovarian, pancreatic, and pros-
tate cancers, among others.1,2 BRCA1/2-deficient  
cancer cells from germline BRCA1/2 mutation 
carriers often lose the second BRCA1/2 allele 
through deletion of all or part of chromosome 
17q or 13q, respectively, or inactivating point mu-
tations or small insertions or deletions.3-6 Loss 
of both alleles leads to impaired homologous 
recombination of double-strand DNA breaks 
and increased sensitivity to radiation, platinum- 
based chemotherapy, and poly (ADP-ribose) 
polymerase (PARP) inhibitors.7,8

PARP inhibitors target PARP1 and PARP2 en-
zymes that bind single-strand DNA breaks and 
catalyze post-translational modification of DNA 
repair proteins.9 In the absence of functional 
BRCA1 or BRCA2 protein, PARP1/2 inhibi-
tion compromises DNA repair and leads to cell- 
cycle arrest and apoptosis.10 PARP inhibitors are 
US Food and Drug Administration approved for 
the treatment of ovarian and breast cancers with 
germline BRCA1 and BRCA2 mutations, but  
they also have antitumor activity in castration- 
resistant prostate cancer (CRPC) carrying ger-
mline or somatic mutations in genes involved 
with DNA repair, such as BRCA1, BRCA2, 
ATM, PALB2, FANCA, CHEK2, and CDK12.11 
In a cohort of 16 patients with metastatic CRPC 

(mCRPC) carrying mutations in DNA repair 
genes, PARP inhibitor olaparib achieved re-
sponse rates as high as 88%.11 These results 
fostered ongoing clinical trials of PARP inhib-
itors in mCRPC and supported breakthrough 
therapy designation of olaparib by the US Food 
and Drug Administration for the treatment of 
BRCA1/2- and ATM-mutated mCRPC in Jan-
uary 2016.

In germline BRCA1/2 mutation carriers treated 
with platinum-based chemotherapy or PARP in-
hibitors, resistance eventually develops through 
several mechanisms, including acquisition of  
somatic BRCA1/2 mutations that restore the open 
reading frame (ie, BRCA reversion mutations) 
of the germline allele, which in turn restores 
production of functional BRCA1/2 protein.12-18 
BRCA reversion mutations have been reported 
in BRCA-mutated ovarian, breast, and pancre-
atic cancer cell lines with acquired resistance to 
platinum compounds or PARP inhibitors.13,15-18

Here we report a case of acquired resistance 
to PARP inhibitor olaparib in BRCA2-mutant 
mCRPC resulting from multiple acquired re-
version mutations detected by circulating tu-
mor DNA (ctDNA) analysis that restored both 
the BRCA2 germline mutation and the somatic  
second-hit loss-of-function mutation on the 
second allele. We also report the prevalence of 
BRCA2 reversion mutations among a large co-
hort of 1,534 patients with mCRPC who under-
went ctDNA testing.
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METHODS

Blood for cell-free DNA (cfDNA) analysis was 
drawn during the patient’s regularly sched-
ule clinic visit. The cfDNA next-generation 
sequencing (NGS) analysis was performed at 
Guardant Health (Guardant360; Redwood 
City, CA), a Clinical Laboratory Improvement 
Amendments–certified, College of American  
Pathologists–accredited, New York State Depart-
ment of Health–approved laboratory. Barcoded 
sequencing libraries were generated from 5 to  
30 ng of plasma cfDNA. The exons of 73 cancer 
genes were captured using biotinylated custom 
bait oligonucleotides (Agilent, Santa Clara, CA), 
resulting in a capture footprint of 148,000 base 
pairs (78 kb). The mean cfDNA loaded into each  
sequencing reaction was 22 ng (range, 5 to 30 ng).  
Samples were paired-end sequenced on an  
Illumina HiSeq 2500 (San Diego, CA), followed 
by algorithmic reconstruction of the digitized 
sequencing signals. The coverage depth across 
all coding sequences in all samples averaged ap-
proximately 15,000×. Illumina sequencing reads 
were mapped to the hg19/GRCh37 human ref-
erence sequence, and genomic alterations in  
cfDNA were identified from Illumina sequenc-
ing data by proprietary bioinformatic algorithms. 
These algorithms quantify the absolute number 
of unique DNA fragments at a given nucleotide 
position, thereby enabling ctDNA to be quanti-
tatively measured as a fraction of total cfDNA. 
The Guardant360 assay detects single-nucleotide  
variants, indels, fusions, and copy-number al-
terations in cfDNA with a reportable range of 
≥ 0.04%, ≥ 0.02%, ≥ 0.04%, and ≥ 2.12 copies, 
respectively.19,20 This research was approved by 
the Quorum institutional review board for the 
generation of deidentified data sets for research 
purposes (Guardant protocol) and the North-
western University institutional review board 
(protocol STU00205723).

CASE REPORT

The patient was a 63-year-old white male of 
Ashkenazi Jewish ancestry who underwent a 
radical prostatectomy revealing Gleason 5 + 
4 = 9 adenocarcinoma,21 with involvement of 
seminal vesicles, perineural invasion, and neg-
ative margins. He received adjuvant androgen- 
deprivation therapy and radiation therapy (70 Gy  
in 35 fractions) and developed biochemical re-
currence 1 year later, when he was treated with 

bicalutamide. Two years later, prostate-specific 
antigen (PSA) rose to 218 ng/mL. Computed 
tomography scan showed retroperitoneal and 
pelvic lymphadenopathy and a vertebral body 
metastasis. He received seven cycles of docetaxel 
followed by prolonged control of disease with 13 
cycles of cabazitaxel before a new liver metastasis 
was identified on scans. Liver biopsy confirmed 
prostate adenocarcinoma, and NGS (Foundation 
Medicine, Cambridge, MA) of the liver biopsy 
identified two mutations in BRCA2: c.5946delT 
(p.Ser1982fs*, also known as 6174delT) and 
c.5754_5755delTA (p.His1918fs*5). BRCA2 
allelic loss was not reported. Tissue NGS also 
revealed CDKN2a (p16INK4a H83Y; p14ARF 
A97V), as well as losses of PTEN and FAS and 
12 variants of unknown significance. Germ-
line testing confirmed a heterozygous BRCA2 
c.5946delT mutation in the patient, which was 
inherited from his father, who had died as a re-
sult of colon cancer at age 81 years.

After liver biopsy, the patient was treated with 
olaparib (400 mg twice per day), resulting in rap-
id reduction of PSA from 821 to 300 ng/mL and 
improvement of lymphadenopathy and liver le-
sions. One year after starting olaparib, PSA rose 
to 779 ng/mL. Computed tomography scans 
showed stable adenopathy and liver lesions, but 
bone scan demonstrated marked progression 
of disease. ctDNA analysis was performed at 
the time of disease progression during olaparib 
treatment. The patient died 3 months later.

RESULTS

Analysis of ctDNA identified the BRCA2 
c.5946delT (p.Ser1982fs*) mutation at a mu-
tant allele fraction (MAF) of 42.4%, consistent 
with germline origin, and the c.5982_5983delTA 
(p.His1918fs) mutation at 23.6%, consistent 
with secondary somatic mutation. ctDNA also 
detected 11 additional somatic BRCA2 muta-
tions not identified in the pre-PARP liver bi-
opsy specimen (Table 1), all of which occurred 
at low MAFs (range, 0.1% to 1.0%), consistent 
with subclonal somatic origin. Nine of these 11 
somatic BRCA2 mutations occurred in cis with 
the germline mutation, and three overlapped 
with the original germline mutation (Fig 1). All 
occurred within zero to 52 nucleotides of the 
c.5946delT germline mutation and restored 
the BRCA2 open reading frame. Interestingly, 
the two remaining somatic BRCA2 mutations 
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(c.5736delA and c.5749_5754delTCACAT) 
occurred in close proximity to the putative so-
matic second hit: c.5754_5755delTA. Both were 
in cis to the c.5754_5755delTA mutation, and 
both were predicted to restore the open read-
ing frame, suggesting that these acquired somat-
ic variants occur on the alternate allele relative 
to the germline BRCA2 c.5946delT mutation. 
In addition to multiple BRCA2 mutations,  
ctDNA analyses revealed the following alter-
ations: TP53 F113fs; GATA3 D336D; ARID1A 
S1755T; MYC P72A; and amplification of MYC, 
KRAS, CCND2, and BRAF.

Because the biallelic reversion of both germline 
and truncal somatic BRCA1/2 alterations con-
trasted the generally accepted model of monoal-
lelic reversion of germline BRCA1/2 mutations, 
we attempted to estimate the relative prevalence 
of germline versus somatic BRCA1/2 reversion 
events in patients with mCRPC using a large 
genomic database including comprehensive 
ctDNA results from more than 40,000 patients 
with a variety of solid tumors. Between October 
5, 2015, and April 25, 2017, 1,765 samples from 
1,534 unique patients with mCRPC underwent 
ctDNA testing (Guardant Health), which included 
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Table 1. Summary and Description of BRCA2 Mutations Identified by ctDNA Analysis

Mutation  
(HGVS designation)

Protein  
(HGVS  

designation) Indel Type
Functional  

Consequence

Indel 
Length 

(nt)

Net Loss  
Resulting From 
Reversion (nt)

MAF in 
ctDNA (%)

Location 
Regarding 
Germline 
Mutation

Allele 1

c.5946delT* p.Ser1982fs Deletion Germline loss  
of function

−1 NA 42.4 NA

c.5946_5990delTG-
GAAAATCTGTC-
CAGGTATCAGAT-
GCTTCATTA-
CAAAACGCAAG

p.Ser1982_ 
Ala1996del

Deletion Somatic reversion −45 −46 1.0 Cis

c.5949_5952dupAAAA p.Ser1985fs Duplication Somatic reversion +4 −3 0.5 Cis

c.5964_5998delAT-
CAGATGCTTCAT-
TACAAAACGCAAGA-
CAAGTGT

p.Ser1989fs Deletion Somatic reversion −35 −36 0.4 Cis

c.5959_5966delCAGG-
TATC

p.Gln1987fs Deletion Somatic reversion −8 −9 0.3 Cis

c.5992_6005delCAAGT-
GTTTTCTGA

p.Gln1998fs Deletion Somatic reversion −14 −15 0.3 Cis

c.5941_5956delGCAAGT-
GGAAAATCTGinsA

p.Ala1981_
Val1986delinsIle

Insertion-deletion Somatic reversion −15 −15 0.3 Cis

c.5994_5999delAGTGT-
TinsTATC

p.Gln1998fs Insertion-deletion Somatic reversion −3 −3 0.2 Cis

c.5998_6008delTTTTCT-
GAAATinsCAA

p.Phe2000fs Insertion-deletion Somatic reversion −8 −9 0.2 Cis

c.5944_5952delAGTG-
GAAAA

p.Ser1982_ 
Lys1984del

Deletion Somatic reversion −9 −9 0.1 Cis

Allele 2

c.5754_5755delAT p.His1918fs Deletion Somatic secondary 
mutation

−2 NA 23.6 Trans

c.5736delA p.Glu1912fs Deletion Somatic reversion −1 −3 0.2 Trans*

c.5748_5754delTTCA-
CATinsC

p.Ser1917_ 
His1918del

Insertion-deletion Somatic reversion −6 −6 0.1 Trans*

NOTE. The c.5946delT mutation corresponds to the 6174delT mutation in BRCA2; c.5946delT uses the HGVS nomenclature, and 6174delT uses the Breast Cancer 
International Consortium nomenclature. 
Abbreviations: ctDNA, circulating tumor DNA; HGVS, Human Genomic Variation Society; indel, insertion or deletion or compound insertion/deletion; MAF, mutant 
allele fraction; NA, not applicable; nt, nucleotide.
*Somatic BRCA2 mutations causing reversion of the secondary loss of function mutation.
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^TATC

MAF (%) Mutation

42.4 c.5946deIT

1.0 c.5946_5990deITGG....AAG

0.5 c.5949_5952dupAAAA

0.4 c.5964_5998delATC....TGT

0.3 c.5992_6005delCAAGTGTTTTCTGA

0.3 c.5959_5966delCAGGTATC

0.2 c.5998_6008deITTTTCTGAAATinsCAA

0.2 c.5994_5999deIAGTGTTinsTATC

0.1 c.5944_5952deIAGTGGAAAA

23.6 c.5754_5755delTA

0.20 c.5736delA

0.10 c.5748_5754delTTCACATinsC

0.3 c.5941_5956delGCAAGTGGAAAATCTGinsA

A
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BRCA2 exon 11

c.5754_5755delTA

c.5946delT

BRCA2 exon 11

^AAAA

^ C

^CAA

^A

Fig 1. Schematic 
representation of the 
germline c.5946delT 
and secondary 
c.5754_5755delTA loss-of-
function mutations (black 
bars; top row and third row 
from bottom) in relation 
to the acquired somatic 
reversion mutations (dark 
gray bars). Black lines 
between bars represent 
the nucleotides deleted. 
^ indicates an insertion. 
Letters across the bottom 
two rows represent the 
nucleotide (A, C, G, T) 
and amino acid (dark and 
light blue bars) sequences of 
wild-type BRCA2 exon 11.

complete sequencing of all BRCA1 and BRCA2 
exons and exon-intron borders. Of these, 24 pa-
tients (1.6%) had a deleterious BRCA2 mutation 
falling within the germline MAF (40% to 80%). 
There were no putative germline mutations in 
the BRCA1 gene in this mCRPC cohort. Five of 
these 24 patients were receiving either a PARP 
inhibitor or platinum-based chemotherapy at 
the time of the blood draw. Two of the five pa-
tients, one receiving olaparib and one carbopla-
tin, had BRCA2 reversion mutations detected by 
the ctDNA analysis. Therefore, in this germline 
mutation–positive, platinum- or PARP-exposed 
cohort, the frequency of BRCA2 reversion was 
40% (n = 2 of 5). A third case of reversion was 
identified, but the patient had no previous expo-
sure to platinum-based chemotherapy or PARP 
inhibitors.

DISCUSSION

We report a case of acquired resistance to olapa-
rib in BRCA2 germline–positive mCRPC result-
ing from multiple acquired BRCA2 reversion 
mutations of both the germline mutation and 
a second-hit somatic mutation on the opposite 
allele. This case is similar to one recently report-
ed by Goodall et al,22 in which acquired rever-
sion mutations restored the open reading frame 
of not only the primary germline mutation but 
also the secondary loss-of-function mutation. 
Although previous studies in ovarian cancer 
have established that reversion of the germline 
allele is necessary and sufficient to restore nor-
mal BRCA protein function, this case suggests 
functional comparability of the variants despite 
their origin (ie, somatic or germline). This ob-
servation challenges the established model of 
BRCA1/2 reversion as restricted to germline 

mutations and suggests that the germline or so-
matic origin of the allele may not play a critical 
biologic role in this mechanism of resistance.

Furthermore, this case is a powerful illustration 
of convergent evolution of multiple BRCA2 re-
version mutations arising in different clones of 
the metastatic lesion or within multiple me-
tastases (Fig 2), as has been described.23 Other 
studies of acquired resistance have compared  
ctDNA with tissue-based testing on biopsies 
from multiple metastatic lesions in the same  
patient. These studies have shown that a single 
tissue biopsy often does not capture the full spec-
trum of acquired resistance mutations, whereas 
ctDNA may provide a more global summary 
of tumor heterogeneity, as seen in this case.24,25 
ctDNA analyses also enable monitoring and 
early detection of mutations driving treatment 
resistance to PARP inhibitors, with meaningful 
clinical implications.

Once a BRCA1/2 mutation is detected, longitu-
dinal monitoring with ctDNA can be relevant 
for early detection of reversion BRCA1/2 muta-
tions to predict resistance to PARP inhibitors, as 
illustrated by the case presented here. In women 
with platinum-resistant ovarian cancer, pres-
ence of BRCA reversion mutations was a more 
accurate predictor of response to subsequent 
platinum or PARP inhibitor therapy than dura-
tion of response to previous lines of platinum 
therapy.26 Another study identified reversion of  
germline BRCA1/2 mutations in high-grade 
serous ovarian carcinoma using ctDNA and was 
able to predict treatment responses.27 There 
are limited data on the prevalence of BRCA  
reversion mutations and rates of resistance to 
platinum or PARP inhibitors in mCRPC. Esti-
mates of BRCA1/2 reversion rates in women with 
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platinum-resistant ovarian cancer range from 25% 
to 70%, but these are based on small series.18,26 
Analysis of genomic data from large databases 
may be one way to overcome this limitation. 
Our ctDNA NGS study estimates a frequency 
of 40% among patients with mCRPC carrying 
BRCA2 germline mutations exposed to platinum 
or PARP therapy. However, caution should be 
used when interpreting the reversion frequency 
reported here, because it is based on a small se-
ries of platinum- or PARP inhibitor–exposed pa-
tients. Larger prospective studies are needed to 
determine the true frequency of reversion mu-
tations in a platinum- or PARP-exposed cohort.

There are several limitations to our study. Al-
though genomic testing on tissue before PARP 
inhibitor therapy was performed for the index 
case, this information was not available for the 
additional patient cases showing evidence of re-
version mutation. All patients underwent cfDNA  
analysis at the time of clinical progression, sug-
gesting that they had developed platinum or 
PARP inhibitor resistance, but the duration of 
their response during therapy or presence of re-
version mutations before exposure is unknown. 
With regard to the retrospective cohort analysis, 
our BRCA2 germline mutation rate was lower 
than that previously described in the literature.28 
Possible explanations for this include exclusion 
of putative germline missense and nonsense 
mutations in the analysis and overly restrictive 
germline MAF thresholds resulting in exclusion 

of putative germline mutations in patients with 
more severe allele imbalance. Lastly, one patient 
case with evidence of a reversion mutation had 
no prior exposure to PARP inhibitors or plati-
num. Review of the patient’s treatment history 
revealed treatment with taxane-based chemo-
therapy, radium-223, and mitoxantrone. The 
latter is a DNA intercalating agent used in the 
treatment of breast cancer, prostate cancer, and 
acute myeloid leukemia. Interestingly, Ikeda et al29  
reported a patient with Fanconi anemia with 
biallelic BRCA2 mutations and previous expo-
sure to mitoxantrone for acute myeloid leuke-
mia. At the time of relapse, a bone marrow biopsy  
was performed, and a patient-derived cell line 
showed loss of the Fanconi anemia phenotype 
because of monoallelic reversion of the BRCA2 
mutation and restoration of wild-type BRCA2 
function. The authors suggest that DNA inter-
calating agents such as mitoxantrone may have 
the ability to induce reversion mutations and 
lead to resistance.

Compared with biopsy, cfDNA analyses allow 
easier monitoring and potentially earlier detec-
tion of mutations that result in treatment resis-
tance. cfDNA analysis, which allows detection of 
both somatic and germline mutations in a single 
test, is well suited to distinguish whether a so-
matic BRCA mutation represents a second-hit 
loss of function or a reversion of the germline 
BRCA mutation. To make the distinction, the ex-
act location of the mutations must be known,  

ascopubs.org/journal/po JCO™ Precision Oncology 5

Germline mutation 

Germline mutation 
plus secondary loss-of-function
mutation 

Reversion mutations restoring
ORF of germline mutant allele 

Reversion mutations restoring
ORF of secondary mutation 

p. Ser1982fs

p. His1918fs

p. Glu1912fs

p. Ser1917_His1918del

p. Ser1982-Ala1996del

p. Ser1982-Lys1984del

p. Gly1983fs

p. Ser1985fs

p. Gln1987fs

p. Ser1989fs

Time

p. Gln1998fs

p. Gln1998fs

p. Phe2000fs

Fig 2. Circulating 
tumor DNA profiling of 
a patient experiencing 
disease progression during 
treatment with a poly 
(ADP-ribose) polymerase 
inhibitor, showing a 
known germline frameshift 
mutation and somatic 
second-hit frameshift 
mutation, as well as 11 
additional frameshift 
mutations. Phasing the 
mutation using a Dollo 
parsimony model allows a 
presumptive evolutionary 
history of the tumor 
population to be inferred. 
Both somatic and germline 
lineages contain multiple 
independent revertant 
subclones. ORF, open 
reading frame.
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because to restore the reading frame, a revert 
must be located near the inactivating mutation 
(ie, before the end of the same exon).27 Fur-
thermore, cfDNA may provide a more global 
summary of tumor heterogeneity and the full 
spectrum of acquired resistance mutations than 
a single tissue biopsy.24,25 The case presented 
here illustrates convergent evolution of multiple 
BRCA2 reversion mutations arising in different 
clones of the metastatic lesion or within mul-
tiple metastases (Fig 2), as has been described 
elsewhere.23 Incorporation of routine cfDNA 

analyses into standard of care of BRCA1/2- 
mutated cancers treated with PARP inhibitors or 
platinum-based chemotherapy requires valida-
tion of the germline calls from cfDNA but may 
allow early detection of treatment resistance and 
subsequent change in therapy before significant 
disease progression.
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