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Mental illness affects more than 450 million people world-
wide1 and nearly one in five adults in the United States.2 
With neuropsychiatric disorders now among the leading 
causes of worldwide disability,1 there is renewed interest 
and urgency towards understanding how and why these 
diseases occur. Advances in neuroimaging, translational 
neuroscience, and emerging genetic, genomic, and molecu-
lar techniques have opened new avenues towards a greater 
understanding of the biological underpinnings of neuropsy-
chiatric illness and new opportunities for improved diag-
nosis, therapeutics, and treatment monitoring. While still 
poorly understood, the neuropathogenesis of psychiatric 
disorders is thought to arise from the complex interplay of 
genotype and environment3,4 that ultimately leads to chang-
es in brain function.5 The intricate relationship between 
genotype and environmental factors is thought to contrib-
ute to the marked heterogeneity and wide-spectrum of psy-
chiatric disease presentation and treatment response that is 
observed clinically.6 Dissecting the underlying biology and 

the genetic, environmental, and gene–environment contri-
butions to psychiatric illness are challenging in human-on-
ly studies. Leveraging state-of-the-art genetic, genomic, 
and translational preclinical models of psychiatric illness 
affords unique opportunities to explore the neurobiology 
of mental illness, and to discover and test new hypotheses 
and treatment paradigms as we translate these discoveries 
and innovations at the bench to the bedside. Despite a wide 
array of available preclinical models, there is a conspicuous 
absence in the use of neuroimaging in these models to link 
findings across animals and subjects, thereby limiting the 
potential for translation of preclinical data. In this review, 
we aim to provide an overview of the existing genetic and 
environmental preclinical models of psychiatric illness (Ta-
ble 1), discuss gene–environment interactions revealed by 
studies in these models, and finally stress the importance 
of utilizing neuroimaging in synthesizing the genetic, envi-
ronmental, and gene-environmental contributions in neu-
ropsychiatric disease.
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ABstrAct:

Psychiatric disease is one of the leading causes of disability worldwide. Despite the global burden and need for accu-
rate diagnosis and treatment of mental illness, psychiatric diagnosis remains largely based on patient-reported symp-
toms, allowing for immense symptomatic heterogeneity within a single disease. In renewed efforts towards improved 
diagnostic specificity and subsequent evaluation of treatment response, a greater understanding of the underlying of 
the neuropathology and neurobiology of neuropsychiatric disease is needed. However, dissecting these mechanisms 
of neuropsychiatric illness in clinical populations are problematic with numerous experimental hurdles limiting hypoth-
esis-driven studies including genetic confounds, variable life experiences, different environmental exposures, thera-
peutic histories, as well as the inability to investigate deeper molecular changes in vivo . Preclinical models, where many 
of these confounding factors can be controlled, can serve as a crucial experimental bridge for studying the neurobio-
logical origins of mental illness. Furthermore, although behavioral studies and molecular studies are relatively common 
in these model systems, focused neuroimaging studies are very rare and represent an opportunity to link the molecular 
changes in psychiatric illness with advanced quantitative neuroimaging studies. In this review, we present an overview 
of well-validated genetic and environmental models of psychiatric illness, discuss gene–environment interactions, and 
examine the potential role of neuroimaging towards understanding genetic, environmental, and gene-environmental 
contributions to psychiatric illness.
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genetic models of neurodevelopmentAl 
And psychiAtric illness
Genetic animal models of neuropsychiatric disorders harbor 
great potential for elucidating the pathophysiology and neuro-
biological basis of disease and for developing more efficacious 
pharmacologic interventions. With the introduction of numerous 
gene-editing technologies now allowing for the facile manip-
ulation of genomes of not only mice but those of the rat, swine, 
and non-human primates, the generation and subsequent evalu-
ation of genetic models of psychiatric and neurodevelopmental 
illness has never been more accessible. Researchers are now able 
to rapidly dissect and evaluate the role of genes on neurodevel-
opmental trajectories, brain microstructure, and brain function. 
The generation of these genetic models are largely informed by 
genomewide association studies (GWAS) completed in disorders 
such as autism spectrum disorder (ASD), which have identified 
numerous candidate gene-susceptibility factors as contributors 

to the overall disease state.19 These include epigenetic and tran-
scriptional regulators such as Mecp2 (methyl CpG binding protein 
2),20 post-transcriptional protein modifiers and regulators such 
as Fmr1 (Fragile X Syndrome),7,8,21 Tsc1/Tsc2 (tuberous sclerosis 
complex),22 Ube3a (Angelman syndrome and non-syndromic 
ASDs),23,24 Pten (Phosphatase and tensin homolog hamartoma 
tumor syndromes and non-syndromic ASDs),25,26 synaptic orga-
nizing and scaffolding proteins such as Shanks, neurexins (Nrxn), 
and neuroligins (Nlgn3, Nlgn4).27–29 While these analyses have not 
established any definitive causal genetic sequence variant for ASD, 
these mutations, which result in partial or total loss of function, 
have been consistently reported in individuals with ASD and serve 
as an experimental platform to investigate the neuropathogenesis 
of ASD. The generation of these preclinical models complement 
ongoing clinical research studies. Especially within neuroimaging, 
these models allow researchers to investigate the specific impact 
these genes can impart on morphometry, quantitative neural 

Table 1. Summary of genetic, environmental, combined models, and other studies presented within.

Disease Gene/ Paradigm
Behavioral 
symptoms

Neuroimaging 
phenotypes

Genetic models Autism spectrum 
disorder

FMR1 Impaired cognition
Locomotor hyperactivity
Stereotypy
Decreased anxiety
Seizures

↑ Relative WM volume7

↑ Anatomic connectivity in 
V18

↓ Anatomic connectivity of 
V1 with other neocortical 
regions8

↓ FA in corpus callosum8

Functional decoupling8

Changes in median effect size9

Schizophrenia DISC1 Hyperactivity
Impaired pre-pulse 
inhibition

↑ Lateral ventricle volume10

Environmental models Depression Forced swim test
Tail suspension test

Decreased latency to 
immobility

Learned helplessness Anhedonia
Weight loss
Altered sleep pattern

Chronic mild stress Anhedonia
Decreased motivation, 
Decreased grooming
Altered sleep pattern

Left-right asymmetrical and 
lateralized changes in glucose 
metabolism11

↓ MK and RK12

↑ metabolite:total creatine12

↑MD ↓FA ↑RD13

Early-life stress Impaired memory
Increased anxiety
Anhedonia
Impaired social behaviors 
Learning deficits

↑ CBV, dmPFC, dACC 
volume14

↓ vmPFC, OFC WM 
volume15

↑AMYG-PFC and AMYG-
HPC connectivity16

PTSD Single prolonged stress Abnormal fear learning
Hyperarousal
Cognitive dysfunction

↓AMYG-mPFC 
connectivity17

Gene + environment models Schizophrenia DISC1 +lead exposure Changes in activity levels 
(sex-dependent)
Impaired pre-pulse 
inhibition

↑ Lateral ventricle volume18

AMYG, amygdala; CBV, cerebellar vermis; FA, fractional anisotropy; HPC, hippocampus; MD, mean diffusivity; MK, mean kurtosis; OFC, orbitofrontal 
cortex; PTSD, post-traumatic stress disorder; RD, radial diffusivity; RK, radial kurtosis; V1, primary visual cortex; WM, white matter; dACC, dorsal 
santerior cingulate cortex; dmPFC, dorsomedial prefrontal cortex; vmPFC, ventromedial prefrontal cortex.
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microstructure, and brain function, absent potential confounding 
environmental factors. Though rare, these efforts critically comple-
ment and dovetail with clinical studies comparing functional and 
structural imaging data from patients with mental disorders and 
can pioneer and lead the validation of imaging biomarkers for 
diagnosis and evaluation of subsequent treatment response.30,31

ASD is one area of research where imaging studies in both clinical 
patients and preclinical genetic models of disease have revealed 
neural correlates that result from heritable disease factors. Disor-
ders such as Fragile X Syndrome (FXS), which lie on the autism 
spectrum, is the most common form of inherited intellectual 
disability and results from a triple nucleotide CGG repeat expan-
sion located in the 5’-UTR (untranslated region) of the FMR1 
gene with subsequent gene silencing.32 Post-mortem stereology 
in male, adult patients with FXS have found that these males have 
a significantly increased volume in the caudate nucleus, parietal 
lobes and right brainstem, but decreased volume in the left frontal 
lobe compared to controls. Voxel-based morphometry analysis 
in the same study demonstrated specific regional differences in 
gray and white matter volumes when compared to neurotypical 
controls.33 Furthermore, structural and functional MRI (fMRI) 
techniques have also identified changes in the brains of fragile 
X permutation carriers, who are at risk for fragile X-associated 
tremor/ataxia syndrome with these imaging findings now being 
used to non-invasively diagnose this disease.34 Recent work by 
Lai et al has also shown that FMR1 knockout mice bred in the 
FVB strain of mice show structural and volumetric changes in 
areas associated with frontostriatal circuitry that correlates to the 
human neuroimaging phenotype.7 Another study that combined 
in-vivo ultra-high field diffusion tensor MRI, fMRI and viral 
tracing demonstrated a local over connectivity for the primary 
visual cortex, but low connectivity of other regions, along with 
defects in the structural integrity of the subcortical white matter 
in the forebrain. These defects could contribute to the functional 
decoupling across neocortical regions and more research in these 
mice may promote more understanding of sensory processing 
deficiencies and reduced functional connectivity in neocortical 
areas in FXS and ASD.8

Many other preclinical models of ASD exist and an MRI study 
that evaluated the neuroanatomical differences of mice across 
26 different genetic and behavioral models of ASD found heter-
ogenous, but distinct volumetric changes in the parietotem-
poral lobe, cerebellar cortex, frontal lobe, hypothalamus and the 
striatum. Clustering these 26 different mouse lines by median 
effect size difference in each anatomic structure between the 
different mouse models and their specific controls identified 
three large clusters, which differed in both volume difference 
as well as localization. Two of these circuits were linked to the 
under- and overconnectivity seen in ASD. While they were not 
able to show a single neuroanatomical pattern of autism, there 
was also no distinct pattern in any of the 26 models studied, 
which is reflected in the phenotypic heterogeneity of the human 
autism population. This study suggested that clustering may be 
important to increase diagnostic specificity and eventually help 
predict in treatment responses that can both guide and inform 
large cohort imaging studies of ASD.9

Another neuropsychiatric illness where neuroimaging and 
preclinical genetic models of disease may complement each 
other is schizophrenia. Schizophrenia is also recognized as a 
highly heritable illness with several scaffolding genes such as 
disrupted in schizophrenia 1 (DISC1)35,36 and microtubule-as-
sociated protein 6 (MAP6)37 implicated in the neuropathogen-
esis of disease. Researchers have found that patients diagnosed 
with schizophrenia have significantly reduced cortical thickness 
in comparison to age and sex-matched controls, which coin-
cide with the reduction in cortical thickness seen in individuals 
who were carriers for the DISC1 translocation.38 These results 
suggest that the DISC1 translocation may increase the risk of 
psychiatric disorders by affecting neurostructural phenotypes, 
such as cortical thickness. Another MRI study has demon-
strated that patients who are DISC1/TRAX (translin-associated 
factor X) haplotypes are significantly over-represented among 
schizophrenic patients and have reduced gray matter density in 
the prefrontal cortex and display an association with reduced 
hippocampal volumes.39 Several diffusion MRI studies have also 
shown a significant decrease in fractional anisotropy in multiple 
white matter fiber bundles relative to healthy controls, indicating 
abnormal white matter microstructural organization.40–42 Recent 
longitudinal studies have uncovered the temporal changes 
in white matter microstructure that occur in schizophrenia, 
demonstrating that individuals experiencing their first psychotic 
episode harbor normal white matter microstructure in the 
corpus callosum relative to healthy controls,43 but later demon-
strate significantly reduced fractional anisotropy compared to 
controls.44,45 Additionally, fMRI studies have been instrumental 
in elucidating what we currently know about neural bases of 
dysfunction in schizophrenia. Working memory impairment 
has been linked to disturbances in the dorsolateral prefrontal 
cortex46 and facial emotion processing deficits have been asso-
ciated with limbic abnormalities.47 However, it is hypothesized 
that cognitive deficits result from diminished integration of local 
and global neural circuits, rather than singular deficits in specific 
areas.48–50

While neuroimaging studies in human patients have increased 
our understanding of the structural and functional consequences 
of schizophrenia, evaluating the role of these genes in preclin-
ical models would provide new insights to explore the genetic 
contribution to the overall disease process in a more direct and 
controlled manner absent the numerous confounding factors that 
mitigate clinical neuroimaging trials.51 To date, there is a paucity 
of neuroimaging studies conducted on existing genetic models 
of schizophrenia. In one of the only preclinical imaging studies 
conducted in relation to schizophrenia, Hikida et al conducted 
an MRI study on dominant-negative DISC1 transgenic mice and 
showed that they displayed schizophrenia-associated pheno-
types, including asymmetrically enlarged lateral ventricles and 
interneuron deficits that may contribute to cortical asynchrony, 
which translated to structural changes seen in human patients.10 
Although numerous other genetic models of schizophrenia exist, 
a detailed morphometric and microstructural evaluation of brain 
structure have not been undertaken in these models, greatly 
limiting the potential of these animal studies to serve as better 
tools for understanding the biological underpinnings of human 
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disease. The absence of data and active investigation in this realm 
presents a unique opportunity to explore the role of salient genes 
implicated in schizophrenia, their impact of neural structure and 
organization, and preclinical opportunities to assess and eval-
uate pharmacologic and environmental interventions and their 
commensurate impact on neural structure.

Environmental models of psychiatric illness
In addition to genetic factors, many studies have shown how 
environmental influences play an important role in the develop-
ment of psychopathology in humans.52–58 However, these studies 
are limited by the presence of confounding factors, including 
different genetics, treatment, upbringing, socioeconomic status, 
difference in nature of stress experienced, geographic location, 
and culture, as well as the inability to further manipulate the 
experiment or dissect the results. Thus, studies using environ-
mental models are important because they can control for the 
many confounds inherent in human studies and allow deeper 
probing of the intrinsic molecular mechanisms at play. A wide 
array of preclinical environmental models for psychiatric disor-
ders exist and have been crucial in gaining more understanding 
about the molecular changes and processes that underlie atypical 
behavior, as well as serving as a platform for testing the efficacy 
of potential therapeutics. Despite the large amount of research 
conducted in these preclinical environmental models, neuro-
imaging studies in these animals are very rare. Neuroimaging 
studies in preclinical models can provide valuable information 
that helps pinpoint mechanisms of disease by shedding light 
on changes in neural circuitry and connectivity associated with 
atypical behavior, as well as potentially identify neuroimaging 
biomarkers that aid in early detection of at-risk individuals. In 
this section, we discuss key studies conducted in environmental 
models of depression, at-risk populations, and post-traumatic 
stress disorder (PTSD) and relay the current research on how 
certain environmental factors can influence psychiatric illness 
as well as highlight potential opportunities for neuroimaging 
research within this field.

Depression is a mental illness that can be reliably modeled with 
environmental simulations. There are a number of different 
experimental paradigms that have been shown to induce 
depression-like symptoms in animals including models of acute 
stress,59–61 and chronic stress.14,62–64 In acute stress models, tests 
such as the forced swim test or the tail suspension test cause 
animals to struggle as they are placed in a situation or position 
that they perceive as threatening.60 These animals eventually 
cease struggling and the immobility displayed is interpreted as an 
expression of behavioral despair or entrapment65 with decreased 
latency to immobility as a proxy of increased depressive behavior. 
Learned helplessness models apply a chronic, uncontrollable, and 
inescapable stress, such as electric foot shock, until even when 
provided with an easy escape route, animals will be slow or fail 
to escape altogether.59 Other sequelae of these inescapable shock 
sessions include weight loss, altered sleep patterns and hypo-
thalamic–pituitary–adrenal axis activity, and loss of dendritic 
spine synapses in the hippocampal regions.61,66 Although these 
models have been key in evaluating phenotypes of transgenic 
models of psychiatric disease, as well as the efficacy of potential 

pharmacologic interventions, there are very few neuroimaging 
studies conducted on models of acute stress.

Imaging studies in models of chronic stress are more readily 
available but remain relatively rare. In contrast to models of acute 
stress, chronic stress models are more nuanced and thought to 
better recapitulate stressors that are more translatable to clin-
ical populations. A well-established model of chronic stress is 
chronic mild stress (CMS) in which animals are continuously 
exposed to a variety of mild stressors, such as periods of food or 
water deprivation, small changes in temperature, changing cage 
mates, etc. over a prolonged period of time, ranging from 1 to 
7 weeks.62 These animals display a variety of anhedonic behav-
iors, including decreased sucrose intake,67 food intake68 and 
decreased male sexual behavior.69 Other tests also reported other 
depression-related behaviors such as decreased motivation, 
reduced self-care and changes in sleep patterns via increased 
immobility in the forced swim test,70 decreased grooming71 and 
decrease in REM sleep latency.72,73 A study using positron emis-
sion tomography has shown that CMS activated the left auditory 
cortex, while deactivating the left piriform cortex, left inferior 
colliculus, septal nuclei and periaqueductal gray, while no signif-
icant changes in the glucose metabolism of the hippocampi or 
amygdala were seen.11 However, a 2011 study using diffusion 
kurtosis imaging was able to detect substructural changes in the 
hippocampi of both anhedonic and resilient animals following 
exposure to CMS with MRI, with resilient animals showing 
significant inward or outward displacement of the hippocampal 
tips compared to anhedonic and control animals. Furthermore, 
MR spectroscopy was able to differentiate between the anhe-
donic and resilient animals via significantly increased glutamate 
to total creatine ratios.12 Finally, a diffusion tensor imaging study 
showed signs of demyelination in various brain regions like the 
frontal cortex, hippocampus, hypothalamus, thalamus, corpus 
callosum and sensory motor cortex, suggesting that disrupted 
connectivity between the prefrontal cortex and the limbic 
area plays an important role in the development of anhedonic 
behaviors.13

Another important model of chronic stress is early-life stress 
(ELS). In contrast to other chronic stress models, ELS models 
focus less on immediate disease generation and instead focus 
on recapitulating early life experiences that have been impli-
cated in mental health outcomes later in life. It is well established 
that consistent maternal care contributes to normal develop-
ment of the stress response whereas deficient or abnormal care 
has been linked to human affective disorders.74–77 There are 
multiple ELS models that aim to recapitulate the hallmarks of 
abnormal maternal care or fragmented or erratic behavior.78 
ELS has most commonly been modeled by maternal separation 
with numerous examples demonstrating subsequent behavioral, 
molecular, and microstructural changes in the brain with ELS. 
These include studies of rhesus monkeys that were raised with 
their mothers with another group of age-matched monkeys who 
were raised only with their peers. Anatomical images acquired 
from the juvenile monkeys showed an enlarged vermis, dorso-
medial prefrontal, and dorsal anterior cingulate cortex in peer-
raised monkeys when compared to maternal-rated monkeys. 
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These findings suggest that peer-raising during infancy can 
induce hypertrophy of stress-sensitive regions in the brain, 
which may be a structural phenotype for humans at increased 
risk of neuropsychiatric disorders.14 A study examining a rodent 
model of parental separation reflected similar neural changes in 
the amygdala and behavioral patterns of children adopted from 
orphanages abroad. The neural changes persisted until adult-
hood, highlighting how early-life stress can lead to altered brain 
circuitry and increase risk for psychopathology down the line.64 
Recent work has also found that maternal separation is associated 
with volumetric reduction of the prefrontal cortex and the orbi-
tofrontal cortex, with decreases in white matter volume within 
these regions. Interestingly, treatment with mifepristone, a gluco-
corticoid receptor blocker known to mitigate behavioral changes 
found with the model, did not alter the lasting volumetric and 
structural changes within the brain further suggesting that these 
are durable imprinted changes in brain structure.15

A more sophisticated model of ELS is limited bedding (LB), 
where dams and her pups are housed with minimal bedding for 
a short period of time following birth.63,79 The key finding in the 
work done by Ivy et al is that limited access to nesting materials 
chronically stressed rat dams and resulted in them leaving their 
pups alone more frequently and decreased nurturing behav-
iors like grooming. The LB dams showed more anxiety-like 
behavior in certain behavioral tests and had elevated morning 
plasma corticosterone accompanied with a reduction in corti-
cotropin releasing hormone mRNAs. This fragmented maternal 
care is transmitted onto her pups with a study demonstrating 
that these pups later developed severely impaired memory 
with compromised long-term potentiation, which is critical for 
encoding memory. These defects were selective to the CA1 and 
CA3 regions of the hippocampus and were also accompanied 
by abnormal dendritic morphology.80 Subsequent work was 
able to demonstrate rescue of memory impairment and long-
term potentiation effects with corticotropin releasing hormone 
receptor antagonists if they were administered following the 
stress period.81 Additional work has also demonstrated a 
wide range of longlasting emotional and cognitive outcomes, 
including increased anxiety, anhedonia, impaired social behav-
iors, and learning deficits82 including recent work comparing 
behavior and neural connectivity between an unpredictable 
maternal separation stress paradigm with the LB paradigm. 
In this study, researchers found that only maternal separation 
created an increase in anxiety-like behavior in juvenile and adult 
mice. Resting state fMRI was then used to compare frontolimbic 
connectivity in the maternal separation mice versus controls, and 
the ELS mice were found to have amygdala hyperconnectivity 
to the prefrontal cortex and hippocampus, which was highly 
correlated with anxiety-like behavior.16 Altogether, these studies 
show that “acquired” contributing factors in life can fundamen-
tally alter neuronal circuits within the brain that can result in 
higher susceptibility to psychiatric illness.

Other environmental paradigms of stress include models of PTSD 
that are commonly modeled with single-prolonged stress (SPS). 
SPS introduces a single type of stress or sequential stress events 
in one long session.83–85 This produces a wide array of abnormal 

behaviors that reflect behavior patterns in human PTSD patients, 
including abnormal fear learning, as demonstrated with defen-
sive reactions and avoidance of trauma cues including restraint 
apparatuses, swim tanks, holding chambers, as well as any tones 
or scents related to the SPS,84,86 hyperarousal,86 and cognitive 
dysfunction.87–89 Only one imaging study has been reported on 
this preclinical model, but they found that intrinsic functional 
connectivity within the amygdala–prefrontal cortex circuit 
was compromised 7 days following the traumatic event, which 
correlates with the usual timing of abnormal behavior onset.17 A 
particularly interesting aspect of this study was the usage of rest-
ing-state fMRI in awake rats, which allows long-term ongoing 
evaluation of these animals and a new opportunity in examining 
stress-related mental disorders beyond static structural neuro-
anatomy. Furthermore, as only a subset of individuals exposed 
to trauma develops PTSD, SPS models can be used to model 
pre-existing or post-trauma factors to identify protective and 
deleterious contributors, as well as predict enduring behavioral 
effects of traumatic stress.

Gene–environment interactions of neuropsychiatric 
illness
Despite a wide array of reports available describing both genetic 
and environmental influences in the development of neuro-
psychiatric illness, we remain far removed from a fundamental 
understanding of how genetic background and subsequent 
environmental exposures ultimately influence neuropsychiatric 
illness through effects on brain structure and function. While we 
have begun to tentatively explore this topic in clinical populations 
with a number of studies finding certain genotypes more suscep-
tible to psychiatric illness following environmental changes,90–93 
there remain too many confounding factors to truly ascertain 
the connections and mechanisms underlying the mechanism 
of these presumed gene–environment interactions. Therefore, 
a closer examination marrying genetic models of psychiatric 
disease with environmental paradigms must be conducted, espe-
cially using neuroimaging techniques, as clinical studies have 
shown that development of psychiatric disease is accompanied 
by concomitant changes in neural structure.

With many preclinical models of schizophrenia now available94,95 
and with many well-described environmental paradigms of CMS 
and ELS that share face validity with clinical exposures known 
to be associated with schizophrenia, the field is primed for a 
detailed examination and exploration of how gene–environ-
ment interactions impact measures of neural morphometry and 
microstructure and later, how interventions (both behavioral and 
pharmacologic) an blunt and/or rescue these interactions. Other 
clinical studies have suggested an association between environ-
mental toxins such as air pollution96,97 and lead exposure,98 and 
the increased likelihood of schizophrenia later in life and preclin-
ical models would represent a natural opportunity to more closely 
explore these described associations. In particular, as lead is a 
known potent N-methyl-D-aspartate receptor (NMDAR) antag-
onist, and hypoactivity of the NMDAR is currently though to 
play an important role in the pathophysiology of schizophrenia, 
preclinical studies examining how environmental exposures, 
such as those to lead, and how lead can impact differentially 
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impact animals with different genetic backgrounds and genetic 
susceptibilities would also represent another novel avenue of 
investigation. These lines of inquiry are already underway with 
groups examining the interaction between lead exposure and a 
DISC1 mutation by feeding DISC1 mutant mice and controls 
lead-laced diets. Although there were no gross developmental 
abnormalities, chronic lead exposure produced gene and sex-de-
pendent hyperactivity, where lead exposure caused decreased 
activity in male controls, but increased activity in male DISC1 
animals, and increased activity in female controls, but no signif-
icant change in female DISC1 animals. Other behaviors found 
included exaggerated responses to the NMDAR antagonist 
MK-801, and mildly impaired pre-pulse inhibition. MRI find-
ings also included enlarged lateral ventricles.18 New investigative 
opportunities such as this—systematically coupling gene–envi-
ronment interactions with molecular and behavioral neurosci-
ence with advanced neuroimaging represents the vanguard of 
translating bench findings to the patient and the clinic.

In addition to various susceptibility genes and environmental 
effects, there is increasing evidence that epigenetic signaling 
plays a significant role in the development of psychiatric disease 
via influences on neuronal growth, communication, differentia-
tion and synaptic plasticity.99 Histone acetylation has been shown 
to be important for long-term memory as well as contextual fear 
memory,100 and is therefore implicated in PTSD101 and substance 
use disorders.102 Both histone acetylation and methylation has 
been shown to influence symptoms of depression and response 
to antidepressants in various animal models.103 Furthermore, 
the fragmented maternal care caused by the limited bedding 
paradigm leads to lasting epigenetic changes in offspring that 
alters glucocorticoid receptor expression and stress responses.104 
Epigenetic modifications have also been shown to affect patients 
with psychosis and autism. However, neuroimaging studies have 
not been well integrated with epigenetic studies in either human 
patients or preclinical models, which represents another oppor-
tunity for future research to explore.

conclusion
Psychiatric illness exerts a tremendous burden worldwide and 
currently stands as the leading disability in the USA. Despite 
this broad recognition, mental illness is still stigmatized, poorly 
understood, and remains as one of the most neglected areas of 
modern medicine. New research tools spanning the entirety of 
the multiomics spectrum as well as advanced gene editing tech-
nologies now allow for an unprecedented opportunity to dissect 
and examine the molecular underpinnings of psychiatric illness 

and in efforts to destigmatize mental illness, have begun to help 
us understand and cast neuropsychiatric disorders first and fore-
most as a biological disorder. These biological investigations are 
largely centered on preclinical models of disease, both genetic, 
epigenetic, and environmental, and are crucial facets of research 
aimed towards understanding the molecular mechanisms of 
disease pathogenesis.

Before considering the translational efficacy of a treatment first 
utilized in an animal model, it is important to highlight that 
psychiatric illness will never be fully recapitulated in animal 
models. The core symptoms of these illnesses involve complex 
mental states, percepts, and motivations that cannot be inter-
rogated in an animal model. As such, animal models’ primary 
utility is to provide insight into the dimensions of neural circuits 
and mechanisms driving disease phenotypes. These preclinical 
research models require the use of proper sample size calcula-
tion, well-reasoned inclusion and exclusion criteria, random-
ization methods, experimenter blinding, and validated outcome 
measures. In addition to these steps towards improving exper-
imental rigor and reproducibility, a technique that is gaining 
traction in the psychology field among others is preregistration, 
which requires specifying the experimenter’s research plan and 
hypothesis in public form prior to gathering data. The litera-
ture for animal models in psychiatric research also puts forward 
recommendations to focus on experimental paradigms which 
interrogate the same endophenotypes in both animals and 
humans, validate the meaningfulness of a given behavioral trait, 
and place value on differences in species-specific social and envi-
ronmental cues. Even as these recommendations are applied to 
ongoing research efforts, there is still a significant gap in trans-
lating preclinical data to human disease, and concurrent neuro-
imaging is an underutilized tool that could help remove these 
limitations by increasing early recognition of phenotypic risk, 
accelerating the development of new and improved therapeutics, 
and understanding the origins of psychiatric disorders.
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