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Abstract

There are numerous challenges to identifying, developing and implementing quantitative techniques for use in clin-
ical radiology, suggesting the need for a common translational pathway. We developed the quantitative neuroradi-
ology initiative (QNI), as a model framework for the technical and clinical validation necessary to embed automated 
segmentation and other image quantification software into the clinical neuroradiology workflow. We hypothesize that 
quantification will support reporters with clinically relevant measures contextualized with normative data, increase 
the precision of longitudinal comparisons, and generate more consistent reporting across levels of radiologists’ expe-
rience. The QNI framework comprises the following steps: (1) establishing an area of clinical need and identifying the 
appropriate proven imaging biomarker(s) for the disease in question; (2) developing a method for automated anal-
ysis of these biomarkers, by designing an algorithm and compiling reference data; (3) communicating the results via 
an intuitive and accessible quantitative report; (4) technically and clinically validating the proposed tool pre-use; (5) 
integrating the developed analysis pipeline into the clinical reporting workflow; and (6) performing in-use evaluation. 
We will use current radiology practice in dementia as an example, where radiologists have established visual rating 
scales to describe the degree and pattern of atrophy they detect. These can be helpful, but are somewhat subjective 
and coarse classifiers, suffering from floor and ceiling limitations. Meanwhile, several imaging biomarkers relevant to 
dementia diagnosis and management have been proposed in the literature; some clinically approved radiology soft-
ware tools exist but in general, these have not undergone rigorous clinical validation in high volume or in tertiary 
dementia centres. The QNI framework aims to address this need. Quantitative image analysis is developing apace 
within the research domain. Translating quantitative techniques into the clinical setting presents significant challenges, 
which must be addressed to meet the increasing demand for accurate, timely and impactful clinical imaging services.
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THE QUANTITATIVE NEURORADIOLOGY 
INITIATIVE FRAMEWORK
Current clinical radiology practice provides an assessment or 
interpretation of usually qualitatively described facts. These facts 
are often difficult to accurately define, thereby increasing the 
potential variability of their interpretation. Establishing agreed 
facts within a robust reference framework would address this 
problem and consequentially reduce disagreement in reporting. 
Quantitative imaging biomarkers (QIBs), defined as objectively 
measured characteristics derived from in vivo images as indi-
cators of normal biological processes, pathogenic processes, 
or response to a therapeutic intervention,1 offer considerable 
potential in this context. QIBs are generally first developed in the 
context of group-level research studies which may fail to translate 
to individual patient inference. Research software tools may lack 
the level of quality management and clinical validation required 
for routine radiology practice and may not be readily deployed 
within hospital information systems. We therefore propose a 
translational pipeline for the clinical adoption of neuroradio-
logical QIBs in the context of the UK health service, taking 
current neuroradiology practice in dementia as an example. 
We will review the evidence supporting the potential benefit of 
quantitative neuroradiology in the diagnosis and management 
of dementia and present our approach to overcoming practical 
barriers to clinical adoption.

Quantitative neuroradiology aims to automatically derive from 
clinical neuroimages robust, objective and validated measures 
related to disease state, recording these in the form of a visu-
ally accessible report to be presented within the routine work-
flow of the reporting neuroradiologist. We hypothesize that 
this facility will increase diagnostic confidence by providing 
objective comparison with normative population data and elim-
inating inter-rater variation for certain assessments, enabling 
earlier unequivocal detection of pathological changes, as well as 
reducing reporting times.

The aims of this approach include increased measurement repro-
ducibility vs visual assessment, reduction of intra- and inter-rater 
variability, increased confidence in achieving a correct diag-
nosis,2 increased workflow and patient management efficiency, 
and detection of features and changes with sensitivity and repro-
ducibility not attainable by qualitative observations. It is also 
possible in principle to provide estimates of measurement uncer-
tainty, providing enhanced assessment of the QIB reliability.

We have developed the quantitative neuroradiology initiative 
(QNI) framework to expedite the implementation and adoption 
of automated image quantification into clinical neuroradiology 
practice. Our focus is on the design and delivery of clinically 
relevant, user-friendly, quality-assured reports of regional and 
global brain characteristics at the individual patient level that 
are fully integrated into the clinical workflow. We envisage 
that this will support neuroradiologists with clinically useful 
measures in the context of normative data, increase sensitivity 
for detecting longitudinal change, and generate more consis-
tent and confident reporting across levels of radiologists’ 
experience.

We propose the following steps as essential for eventual adoption 
into routine practice of specific quantitative neuroradiological 
tools: (1) establishing an area of clinical need and identifying the 
appropriate proven imaging biomarker(s) for the disease in ques-
tion; (2) developing a method for automated analysis of these 
biomarkers, by designing an algorithm and compiling reference 
data; (3) communicating the results via an intuitive and acces-
sible quantitative report; (4) technically and clinically validating 
the proposed tool pre-use; (5) integrating the developed analysis 
pipeline into the clinical reporting workflow; and (6) performing 
in-use evaluation. These steps are now described in further detail.

The first two steps consist of identifying an area of clinical 
need, and its corresponding imaging biomarkers, and an effec-
tive quantification algorithm and reference data. This involves 
demonstrating the basis for accepting the identified imaging 
parameter as a correlate of a pathological process of interest and 
considering the potential contribution it could make to patient 
management. The success of a quantitative tool relies on the use 
of disease-specific algorithm training datasets and disease-spe-
cific normative data to contextualize the individual patient's 
findings. Each disease or biomarker of interest may require a 
different normative dataset to accurately contextualise the indi-
vidual results. A source of high-volume, age-matched, general-
izable normative data is needed to allow referenced comparison 
of the subject's biomarker measurements to a range of normal 
values. Generalizability can be limited by a multitude of factors, 
including scanner and scanning parameter differences, patient 
gender and brain volume, and overlap with normal ageing.

The third phase relates to production of a quantitative report. 
Data should be presented in a clinically and visually meaningful 
way, providing the radiologist with clinically useful information 
that can be integrated into the radiology report. This may facil-
itate the move towards standardized, structured reporting to 
minimize variability between reporters.

The fourth phase is technical and clinical validation prior to the 
pipeline being introduced into clinical use. Technical validation 
at this stage includes consideration of image acquisition quality 
with attention to reproducibility, error and artefact which may 
affect the algorithm's performance. Pre-use clinical validation 
must also be obtained. We propose that this should consist of a 
proof of concept "credibility" study and a clinical impact "accu-
racy" study, which we will expand on in more detail under the 
wider clinical validation process.

The fifth stage in the proposed framework is pipeline integra-
tion into the clinical workflow. Smooth integration will increase 
acceptance of the technique by radiologists and referring physi-
cians. Some basic requirements for this are compatibility with the 
data format and transfer, i.e. the Digital Imaging and Commu-
nications in Medicine (DICOM) standard, and integration into 
the hospital Picture Archiving and Communication Systems 
(PACS). Automated outputs, ideally, should be viewed within the 
same workstation environment as an additional DICOM series 
alongside the source images, allowing for rapid and efficient 
integration of the information into the radiologist’s workflow. 

http://birpublications.org/bjr
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Software must be developed under a quality management frame-
work for medical devices, along with consideration to patient 
data protection and other institutional information governance 
requirements. Key features of the regulatory framework appli-
cable in Europe are summarised in Box 1.

The National Institutes of Standards and Technology (NIST, 
https://www.​nist.​gov/), when considering the role of QIBs in 
clinical practice, raised the concern that a robust QIB must be 
immune to variability of clinical interpretation as well as physical 
measurement variability across imaging platforms.5 There are 
several common challenges to the practical adoption of QIBS, 
and in particular methods for automated brain volume quantifi-
cation, in the clinical setting, including but not limited to those 
outlined in Table 1.

Issues regarding technical variation and barriers to general-
isability are being tackled in part by the international study 
Alzheimer's disease neuroimaging initiative (ADNI), which has 
collected a large dataset from multiple institutions and at several 
time points, as part of the ADNI research into AD pathophys-
iology and biomarker development. This ambitious project has 
made progress in the standardisation of MRI scanning proto-
cols in the research context. Their data are publicly accessible, 

providing a rich source of normative data (http://​adni.​loni.​usc.​
edu/). Whilst adoption of uniform imaging protocols across clin-
ical centres is not currently seen as attainable, due to service-pred-
icated differences, and differing scanner platforms, many centres 
across Europe have now adopted a consistent three-dimensional 
T1 weighted volume sequence within their dementia imaging 
protocol6 reflecting increasing interest in acquisition homoge-
neity within a healthcare provider across clinical timepoints. If 
there is adequate imaging protocol uniformity within a clinical 
service, an added software tool should perform reliably within 
that setting. This reliability should be established on a site-by-site 
basis, as addressed by step six of our framework.

The final stage of the six-step QNI framework specifies an in-use 
evaluation of the pipeline with respect to the key areas of patient 
management and socioeconomic impact, which we will also expand 
on below. Validation of automated MRI techniques has tended 
to occur in the research setting largely referenced to the results 
of other available methods, using well-curated data sets. Studies 
exploring the validation of these techniques in clinical practice 
are still sparse and adopt disparate methods. Clinical validation 
involves both testing the technical performance of the algorithm 
with clinical quality data, possibly generated using disparate 
scanner platforms and protocols and, importantly, capturing the 

Box 1. Summary of the medical device regulatory framework applicable to software medical devices in the European Union.3,4

http://birpublications.org/bjr
https://www.nist.gov/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/


4 of 9 birpublications.org/bjr Br J Radiol;92:20190365

BJR  Goodkin et al

outcomes and experience of the radiologist end-users. The latter 
is necessary to demonstrate that the tool is beneficial in terms 
of one or more of efficiency; accuracy; inter- and intrareader 
agreement and diagnostic confidence.7,8 Importantly, interpre-
tation of QIB reports alongside laboratory biomarkers and clin-
ical examination in the MDT setting would establish the added 
value of this quantitative information in reaching a diagnosis or 
monitoring and prognostication. This would also allow assess-
ment of the views of neuroradiologists and MDT members on 
the usability of the quantitative information in clinical practice, 
and identify and address potential practical barriers hampering 
the adoption of the biomarker pipeline. Generalized deploy-
ment across centres will require further work towards achieving 
standardized imaging protocols, or adaptation to the analysis 
methods to account for protocol variation. Eventually a system-
wide assessment of the impact of methods integrated via the QNI 
framework on radiologists, referring physicians, patients, and 
the hospital will be needed. This ultimate clinical and healthcare 
economic validation will likely require long-term multi centre 
assessment.

Within our proposed framework, clinical validation (steps 4 and 
6) has thus far received the least attention in QIB development, 
but it remains a crucial step for adoption into clinical radiolog-
ical practice. Since attention given to technical development and 
establishing reference data far outweighs that given to clinical 
validation and integration into hospital IT environment, we will 
now discuss in more detail our proposals for these important 
challenges. In steps 4 and 6 of our QNI framework we suggest 
four stages of clinical validation: credibility, accuracy, patient 
management, and socioeconomic impact, which we will expand 
below.

Clinical validation pathway (QNI framework steps 4 and 6)

(a)	 Credibility: validation of the proof of concept or biological 
validation in real-world data should be conducted. This 
could involve a pilot study in which the chosen quantitative 

biomarker tool is applied to clinical MRI scans of known 
cases of the disease of interest and quality checked. This 
would be followed by technical validation, checks on image 
acquisition, post-processing, analysis and report generation. 
At this stage, a limited clinical validation should be performed 
by experienced blinded expert radiologists who have not 
seen the cases, and who should rate them first according to 
their routine practice, blinded to the QIB report and again 
taking the report into account. Classical evaluation would 
be compared to the produced report and their consistency 
evaluated.

(b)	 Accuracy: once the credibility of the automated technique has 
been established, its impact on the clinical reporting process 
should be examined. The setting for this evaluation should 
reproduce the radiologist’s normal reporting environment 
as closely as possible, with the automated report displayed 
alongside the imaging series. Assessment of radiologists’ 
accuracy, confidence, and reporting efficiency may all be 
measured, both with and without the quantitative report 
being present. The images should be presented in a random 
unpredictable order and should include a spectrum of pre-
selected clinical cases, from clearly pathological to more subtle 
changes, as well as normal-appearing control scans—where 
available. The pathology of each case should be established to 
the best available gold-standard, depending on the condition 
in question (e.g. cerebrospinal fluid (CSF) analysis and 
neuropsychiatric profile in the case of Alzheimer’s disease, 
AD, and frontotemporal dementia, FTD). Including a range 
of severity in the case mix is valuable in discerning whether 
the added quantitative information is most impactful where 
the pathology is subtle or unclear, where for instance fine-
grained analysis may perform better than coarse visual rating 
scales. In the evaluation it may also be useful to include 
radiologists with a range of expertise, representing the wide 
range of training and experience levels present in a working 
radiology department. It is then possible to establish whether 
the quantitative report increased inter-rater agreement 

Table 1. Common technical challenges for QIB deployment in the clinical setting

Suboptimal acquisition 
protocols in the clinical 

setting

Routine clinical MRI protocols may be less sophisticated than those specified for research studies, e.g. in many centres 
clinical T1 weighted scans may be performed with two-dimensional acquisitions. Isotropic 3D data, which is more suitable 
for quantitative analysis, may not be available in routine clinical practice. Inconsistencies in scanning parameters can also 
cause significant variation in tissue contrast, making, for instance, automated GM/WM delineation for a subregion of 
interest challenging.

Interscanner variability Image geometric accuracy varies between scanners and vendors, resulting in varying spatial distortions which, if 
uncorrected, may impact upon regional tissue-volume estimates. Quantification accuracy is predicated on high 
reproducibility between MRI instruments; this however is not generally a primary design concern in clinical systems, 
since this rarely affects routine clinical practice based on radiologists’ qualitative visual evaluation.

Image artefacts Robust screening of incoming data to detect artefacts, such as those arising from patient motion and other errors must 
be established, as these may impede the automated algorithm in performing accurate quantification. Adaptive correction 
schemes prior to analysis, such as bias field or motion artefact correction, may minimize the number of data sets failing to 
yield reliable volume estimates for a given measurement strategy. Many software packages are automated, meaning they 
will produce a numerical result whatever the input data and often do not allow intermediate (e.g. segmentation) steps to 
be scrutinized.

Need for full automation To move away from time-consuming manual or semi-automated techniques requiring frequent intervention and 
monitoring, often by highly expert practitioners, methods for clinical application must be fully automated. This also 
protects the process from inter operator variability. Such automated techniques must be generalizable across the range of 
MRI services in the health system, including both scanner type and acquisition protocol variations.

3D, three-dimensional.

http://birpublications.org/bjr
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between these groups, in addition to increased accuracy 
when compared with the gold-standard. Additionally, it may 
be of secondary interest to include a group of non-clinical 
image analysts in the assessment, e.g. if the tool is being 
considered for education and training.

(c)	 Patient management: based on the experience gathered from 
the accuracy study, the quantitative tool should be integrated 
within the hospital’s radiology department and the tool 
rolled out to specific reporting radiologists. Whether this 
full integration can be achieved or not will depend on the 
tool design details achieving compliance with the relevant 
medical device regulations. This is also an important stage 
for assessing how easily the tool can be integrated into the 
reporting workflow, and regular structured feedback from 
the users should be documented. To determine the impact 
on patient management, a prospective assessment of patients’ 
clinical pathways, including speed of diagnosis, need for 
repeat investigations, and therapeutic decisions if available, 
can be compared with cases for which quantitative analysis 
was not available.

(d)	 Socio-economic impact: definitive socioeconomic validation 
requires a larger scale, multicentre study investigating 
resource utilisation, productivity, clinical and population 
perception, and economic impact over time. This phase 
of clinical validation is especially challenging due to the 
a priori requirement to invest in these tools and their 
supporting infrastructure before an economic impact can 
be demonstrated. Ultimately,, this is the type of business 
intelligence required to convince purchasers (hospitals and 
insurance companies) to bear the costs of the additional 
software tools and processing hardware.

QNI framework applied to dementia 
imaging
Dementia is a class of conditions which cause an irreversible 
progressive decline in cognitive function, affecting an increasing 
number of people worldwide and presenting a significant chal-
lenge for health and social care. It is estimated that dementia 
will affect more than 115 million people worldwide by 2050.9 
Conditions causing dementia are varied, and imaging can help 
to identify the differences between the commonest: AD (50–75% 
of cases), vascular dementia, (20%), and FTD (5%).10 AD is 
characterized by histopathological findings of neurofibrillary 
tangles and amyloid plaques that cause synaptic and axonal loss 
and subsequent atrophy in a progressive regional pattern.11 This 
pattern of atrophy is seen on structural imaging in several recog-
nized patterns or subtypes.12,13

We will now use dementia as an exemplar application to discuss 
the development of QIBs for clinical neuroradiology, referring 
directly to each step of our QNI framework.

QNI dementia framework, Steps 1 to 6

Step 1: establishing a clinical need
Structural MRI is the mainstay of conventional neuroradiology 
in current dementia practice.14 It meets clinical needs in the diag-
nostic setting to exclude alternative pathologies, and to attempt 

to differentiate between the dementia pathologies by establishing 
a specific pattern of atrophy.15

Validated and clinically adopted dementia QIBs could facilitate 
diagnosis in the early or even prodromal disease phases; provide 
objective measures of difference from the normal ageing spec-
trum; exclude differential diagnoses; and support powerful 
preclinical drug trials.16,17 There is also a potential role for QIBs 
as prognostic measures, since the relationship between progres-
sive biomarker change and clinical disease trajectory can be 
investigated.18

Classical AD is typified by early medial temporal lobe atrophy 
(MTA), followed by lateral temporal, medial and lateral parietal, 
and frontal involvement, with relative sparing of the occipital 
lobe and sensory-motor cortex. This pattern on MRI is discrim-
inating, as it is not commonly seen in normal ageing, and ante-
mortem MRI findings in AD patients correlate with pathological 
severity post-mortem.19

Mild cognitive impairment (MCI) is identified as a prodromal 
stage of AD, with a 10–15% annual conversion rate to AD, espe-
cially within the subset with an amnestic presentation.20 Longi-
tudinal MRI has demonstrated that MCI subjects initially have 
focal, limited areas of cerebral atrophy, mainly in the medial 
temporal lobes, and this increases in increments to the estab-
lished AD pattern.21 Recent dementia research has prioritised 
the identification of potential clinical and imaging biomarkers 
early in the disease course, as it has been shown that AD signs 
and symptoms can emerge years if not decades before a clear 
pathological imaging pattern is established.12 Quantification of 
atrophy rates, brain volume and morphometry have been useful 
in prediction of which MCI subjects will progress to AD, with 
differences from stable MCI subjects detectable well before clin-
ical AD diagnosis.20,22,23

With imaging identified as a potentially powerful diagnostic tool, 
the introduction of objective methods for quantifying demen-
tia-related changes on MRI, especially MTA assessment in AD, 
has become a priority for clinicians and researchers. Indeed, the 
National Institute of Neurological and Communicative Disor-
ders and Stroke and the Alzheimer’s Disease and Related Disor-
ders Association, NINCDS-ADRDA, issued updated guidelines 
which incorporated structural MRI of the medial temporal lobe 
in the assessment of AD; however, no specific method for objec-
tive measurement was defined.24

Current practice: visual rating scores
Visual rating scores, with "cut-offs" defining degrees of abnor-
mality, are a semi-quantitative means aimed to facilitate commu-
nication among practitioners. MTA grading was established by 
Scheltens et al.25 using a discrete 5-point scale for the size of the 
hippocampal formation as well as the prominence of adjacent 
CSF spaces.

Visual rating scores are useful, rapid and accessible tools in clin-
ical practice. Their limitations include insensitivity to subtle or 
early changes, ambiguity in distinguishing pathological change 

http://birpublications.org/bjr
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from normal ageing, ceiling and/or flooring effects, and being 
only coarsely discriminating due to their discrete categoriza-
tions 26 . They are used to varying degrees by radiologists across 
Europe, depending on levels of training and with unknown 
reproducibility both within and across imaging departments.6 
Fully quantitative imaging biomarkers may largely address these 
issues providing practitioner-independent objectivity at least 
across a single radiology service.

Step 2: developing a method for automated 
analysis
Many biomarkers show promise in early research phases but 
face bottlenecks when it comes to validation and clinical 
implementation. Frisoni et al proposed a 5-phase framework 
for development of specific QIBs for prodromal AD, adapted 
from a framework implemented in oncology screening.27 
Despite being one of the most established imaging biomarkers 
in AD, MTA is still in the early stages of this 5-step pathway.28 
Standardized validation procedures for automated segmenta-
tion algorithms based on a harmonized manual segmentation 
protocol is identified as an imminent priority, which will allow 
for meaningful assessment of algorithm reproducibility. Only 
then can their clinical validity and utility be evaluated in the 
memory clinic. The Frisoni framework integrates well with 
the QNI framework in that it focuses on QIB development 

and clinical validation, which are key parts of the broader, 
end-to-end translational implementation pathway detailed by 
the QNI.

In the research context, numerous studies have compared cere-
bral atrophy between AD, MCI and healthy control groups 
using MRI-based regional volume measurement (“volumetric”) 
approaches rather than visual rating scores. Measurement 
methods have included manual delineation of anatomical regions 
of interest, as well as automated or semi-automated volumetry, 
although with varying protocols for anatomical delineation for 
segmentation.18 More recent methods allow for the parcella-
tion of brain components into grey matter (GM) white matter 
(WM) and CSF and for automated voxel level quantification.29,30 
Methods for detecting and quantifying white matter vascular 
disease burden and mitigating the effects of severe WM damage 
on the success of the volume quantification algorithm, will be 
particularly important in the dementia and ageing populations.31

Several commercial software solutions for clinically applied 
global and regional brain volume analysis are already available 
and in use, not only for dementia imaging but also for other 
neurological conditions such as stroke and multiple sclerosis. 
There is growing clinical interest in these tools. It is however 
important to recognise that regulatory marking (e.g. CE in the 
European Economic Area, or United States Food and Drug 
Administration) does not necessarily mean that a solution has 
been fully validated. Regulatory priorities are to demonstrate 
that the solution reliably produces reproducible results and is 
therefore no direct risk of harm to patients, so the process largely 
prioritises documentation and framework implementation for 
device deployment. Clinical import or efficacy, which are key 
parts of the QNI framework, are not the focus of regulatory 
approval and therefore in isolation CE marking may provide 
false reassurance regarding the appropriateness of introducing a 
product into clinical use.32,33

Step 3: communicating QIB results
Presenting the quantitative outputs of these tools in a clinically 
meaningful way is key to their translational success, and to this 
end we have developed our own solution, one of many possi-
bilities, for graphical representations of brain volumetry for use 
in dementia reporting. We provide our own example of a data 
presentation option in Figures 1 and 2, which is currently under-
going QNI framework validation. The graph in Figure 1 displays 
single-subject brain parenchymal fraction (BPF) values, visual-
ized against an age-dependent normative dataset of 468 radio-
logically normal control subjects (age 30–90, median 69). BPF 
was derived for all using Geodesic Information Flows, GIF.34 The 
subject’s BPF is superimposed along the normative curve for easy 
comparison with the predicted normative range for individuals 
of the same age. In Figure 2, we provide an example of how indi-
vidual subject’s volumetric data can be represented in an easily 
accessible way by lobe and pre-defined anatomic sub region, 
in an adaptation of a "bullseye" graphical display previously 
published,35 modified to display lobar and sublobar regions as 
a percentile of the GM volume normative value in each labelled 
region (Figure 2).

Figure 1. A normative data set of BPF has been generated 
from 468 normal control subjects aged 30–90 years. Mean 
and standard deviation BPF are shown with the solid and 
dotted blue lines. The subject’s BPF (large red dot) is placed 
along the normative curve for easy comparison with normal 
control subjects. Examples shown are of (a) normal control; 
(b) a subject with FTD. BPF, brain parenchymal fraction; FTD, 
frontotemporal dementia.

http://birpublications.org/bjr
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Step 4: validation
The validation of brain segmentation methods is challenging, 
due to the absence in general of ground truth data: most vali-
dation studies have been based on cross-validation with the 
performance of alternative automated techniques, using data 
from the same source and with the same restrictions (e.g. single-
site and vendor, precise scanning parameters). For repurposing 
research-developed QIBs into robust neuroradiological tools, it is 
important to note that most QIB research has focussed on group-
level discrimination, which does not necessarily mean that the 
technique under consideration will offer sufficient sensitivity to 
support single-subject classification inference.36,37 Another chal-
lenge is that much of the available data used for the development 
and validation of QIBs in controlled research studies may poorly 
represent relevant clinical populations by neglecting comorbid-
ities, socioeconomic status and education,38 i.e. the real-world 
scenario of patients with neurological comorbidities and other 
structural brain abnormalities.

Step 5: workflow integration
A software platform including image data identification and 
routing functionality is required to support integration of the 
QIB analysis and report generation into the hospital electronic 
information systems, including the PACS. A means of identifying 
examination images series appropriate for analysis is required, 
in our case implanted using customized DICOM series labels. 
Careful consideration should be given to the problem of clin-
ical case stratification, so that reports are generated and inter-
preted in the appropriate context of conventional imaging and 
clinical history, and unwarranted quantitative reports are not 
generated. Introduction of QIBs into clinical dementia reporting 
may require modifications to the referral process. DICOM image 
tags could be queried by the quantification module to ensure 
that the report is generated for the correct compliant (in our case 
three-dimensional T1 weighted volume) series. In our design, 
the quantitative report will appear as an additional series within 
PACS to preserve its place in the patient’s record.

Step 6: in-use evaluation
This should initially occur at a departmental level, ideally with 
engagement overseen by a key senior neuroradiologist. Initial 
training and technical systematic evaluation should be followed 
by a small pilot evaluation involving experienced radiologists 
who are familiar with dementia imaging reporting. They should 
report as per their normal routine, and by comparison corrob-
orate the consistency and reliability of the quantitative report. 
Feedback should be gathered on any discrepancy or technical 
difficulty encountered. Following this pilot, all reporting radiol-
ogists in the department would be expected to adopt the report 
as part of their dementia imaging assessment. This prerequisites 
training and engagement not only of the radiologist team but also 
of the referring clinical teams. Audit of reporting efficiency and 
patient management pathway timelines would provide measures 
of service impact in comparison to previous practice. Ultimately, 
higher-level in-use evaluation of the outcome benefits of quan-
titative reporting will require larger-scale, multicentre studies 
once adoption by single centres has become well established.

Outlook
The QNI framework seeks to address the many and varied chal-
lenges that exist to translation of QIB reporting to the clinical 
setting. There remain some fundamental obstacles to translating 
these promising imaging biomarkers into clinical practice, and 
the QNI framework provides a structured technical and clin-
ical validation process to address these. Lack of large-scale and 
rigorous technical and clinical validation, and over reliance 
on CE marking for quick commercial deployment, are major 
potential pitfalls in the field. The greatest challenge may be the 
circular problem of establishing clear evidence of clinical and 
socioeconomic benefit, without prior wide-scale adoption. This 
is especially challenging for quantification of conditions that do 
not currently have disease-modifying treatments available, as 
ground truth is not known, and other indicators must be relied 
on when assessing the added value of a diagnostic aid.

Imaging and clinical biomarkers are adapting our perception 
of dementia from a largely clinical and post-mortem diagnosis 

Figure 2. Patient-specific anatomical volumes and respective 
normative data can also be generated by brain region and 
presented as an easily interpreted and clinically useful graphic 
report. Examples from patients with (a) established bilateral 
medial temporal atrophy, (b) posterior cortical atrophy, and 
(c) healthy appearing brain.
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of exclusion to a more systematic biological paradigm. It is 
important to balance the potential that these imaging biomarkers 
hold with the realisation that, within the dementia field, they are 
still in the early stages of validation. We anticipate that the QNI 
framework will expedite this validation and facilitate incorpo-
ration of QIBs for dementia into clinical reporting workflows, 
to support radiological assessment and positively impact on 
patient management. There is growing potential for QIBs to find 
application across many of the spectrum of indications within 
neuroradiological practice, providing objective quantification of 
for example tumour volumes, lesion load in multiple sclerosis, 
and signal hyperintensity in hippocampal sclerosis. Looking 
ahead, potential developments include clinical introduction of 
multimodal imaging QIBs, radiomic modelling and big data 
mining, which, when combined with other types of patient data, 
may allow for predictive modelling of clinical progression39 and 
even delivery of individualized precision healthcare across many 

disease areas.40 The QNI framework could provide the common 
basis for the clinical translation of these developing methods in a 
similar way to current volumetric segmentation techniques.

Expediting these promising developments will require consensus 
upon and adoption of a robust translational pathway, exemplified 
in our QNI framework. Collaborative approaches to the tech-
nical challenges of protocol harmonization, data sharing, and 
algorithm development will underpin these developments, and 
there remains the need to afford substantially higher priority to 
thorough pre- and in-use clinical evaluation of quantitative tech-
niques in the hands of practising neuroradiologists.
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