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Abstract

Microbiomes impact nearly every environment on Earth by modulating the molecular composition 

of the environment. Temporally changing environmental stimuli and spatial organization are major 

variables shaping the structure and function of microbiomes. The web of interactions among 

members of these communities and between the organisms and the environment dictates 

microbiome functions. Microbial interactions are major drivers of microbiomes and are modulated 

by spatiotemporal parameters. A mechanistic and quantitative understanding of ecological, 

molecular, and environmental forces shaping microbiomes could inform strategies to control 

microbiome dynamics and functions. Major challenges for harnessing the potential of 

microbiomes for diverse applications include the development of predictive modeling frameworks 

and tools for precise manipulation of microbiome behaviors.
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1. MICROBIOMES ARE DYNAMIC NETWORKS

Microbiomes are collections of microorganisms (bacteria, archaea, eukaryotic microbes, and 

viruses) that occupy and critically impact all environments on Earth by performing diverse 

biochemical transformations. Microbiomes have been shown to drive biogeochemical 

cycles;1 enhance agricultural productivity;2,3 remediate environmental pollution;4,5 and 

impact human health,6 nutrition,7 behavior,8 and development.9 Microbiomes can also 

perform metabolic activities that cannot be performed by a single monospecies population. 

In syntrophic communities, microbes cooperate to perform degradation reactions that would 

be thermodynamically unfavorable for a single organism.10 Microbial diversity is a critical 

variable shaping environmental states. Indeed, a reduction in the taxonomic diversity of 

microbiomes is associated with human gut microbiome dysbiosis,11–13 loss of resistance to 

invasion by pathogens,14,15 and a decreased level of organic matter deposition and nutrient 

cycling in soil and oceans.16,17

Microbiomes are highly complex and can contain hundreds to thousands of distinct species. 

These dense and inter-connected networks change as a function of time and spatial 

organization18,19 (Figure 1a,b). Environmental factors (physical and chemical parameters) 

and microbe—microbe interactions combine to shape the properties of microbiomes. In 

lakes and oceans, microbial community composition is driven by both seasonal and longer-

term climate patterns.20 In the human gut, dietary substrates and drugs modify the growth 

and biochemical activities of human gut microbiome species.21–24 In both soils and oceans, 

climate change has affected microbe—microbe and plant–microbe interactions, contributing 

to major shifts in the patterns of organism abundance and diversity.25,26

Interactions among organisms in microbiomes influence cell growth and biochemical 

activities, manifesting as positive and negative ecological relationships. Microbial 

interactions can originate from uptake or secretion of molecules27,28 or physical contact.
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29–32 The biochemical transformations performed by microbial communities are realized by 

biomolecular networks distributed among constituent members of the community. For 

example, the human gut microbiome operates as an anaerobic trophic web wherein 

metabolic activities are divided among distinct microbial guilds (groups of organisms that 

exploit the same or related resources). In this system, some organisms degrade complex 

carbohydrates to simpler sugars, which are fermented by other members of the ecosystem to 

form short-chain fatty acids.33 The fermentation products are utilized as substrates by 

acetogens, methanogens, and sulfate-reducing bacteria.33,34 Distributed metabolism is a 

feature of engineered microbiomes as well. In engineered wastewater treatment systems, 

well-defined guilds are responsible for each step of the nitrogen removal process.35

Microbiomes hold significant promise as systems that can be manipulated or designed to 

address global challenges in medicine, bioenergy, and agriculture.5 Humans have long used 

ecological36,37 and evolutionary38,39 processes to manipulate microbiomes. However, we 

currently lack the mechanistic understanding, engineering tools, and predictive modeling 

approaches necessary to rationally modify the properties of microbial communities and 

microbiomes. To harness the potential of microbiomes, a major challenge is elucidating the 

organizational principles of ecological networks that underlie microbiome behaviors. 

Computational models at different resolutions could enable prediction of microbiome 

dynamics and functions and inform control strategies. Tools from synthetic biology hold 

promise to control microbiome activities or design synthetic communities from the bottom 

up.40,41

2. MICROBIAL INTERACTIONS SHAPE MICROBIOME BEHAVIORS AND 

ARE MODULATED BY SPATIOTEMPORAL PARAMETERS

2.1. Defining Microbial Interactions.

An ecological interaction is defined as the net impact of an organism on the fitness and/or 

functional activities of a different organism over a given time period. Interactions can be 

positive (+), negative (−), or negligible (0) and emerge from the cumulative effect of 

molecules released into the environment and/or physical contact with other microbes as they 

vary through space and time. For a pair of organisms, there are six types of bidirectional 

interaction networks: commensalism (0/+), competition (−/−), predation or parasitism (−/+), 

cooperation (+/+), amensalism (0/−), or no interaction (0/0).42 The distribution of these 

pairwise motifs within an interaction network have been shown to influence microbiome 

stability.43,44

Positive interactions can arise when one organism secretes metabolites that can be utilized as 

a substrate by another45 or removes molecules that inhibit another’s growth (such as through 

degradation of antibiotics46). Negative interactions can arise because of resource 

competition,47 production of antimicrobial substrates,48 or toxic metabolic byproducts.49 In 

multispecies communities, pairwise interactions can be altered by other members of the 

community, representing a pairwise interaction that changes as a function of community 

context.50 For example, a negative pairwise interaction mediated by antibiotic production 

can be weakened by a third organism that exhibits antibiotic-degrading activity.51 
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Nevertheless, pairwise interactions are major parameters shaping the dynamics of 

multispecies consortia. For example, a recent study demonstrated that time-resolved 

measurements of single-organism growth and all pairwise communities could be used to 

train a dynamic model that accurately predicted the assembly of a 12-member human gut 

microbiome community and all single-species dropouts (all 11-member consortia) in vitro.44

2.2. Changes in Microbial Interactions Across Physiological or Evolutionary Time Scales.

Microbial interactions are context-dependent and can change as a function of environmental 

inputs and spatial positioning52,53 (Figure 1). On shorter time scales, microbes respond to 

the environment by sensing specific environmental signals and adjusting intracellular 

network activities accordingly. A microbe’s internal state can be altered in response to 

abiotic or biotic (biomolecules produced by living organisms) parameters. Organisms grown 

in coculture have been shown to activate biosynthetic gene clusters for secondary metabolite 

production that are otherwise silent in monoculture.54,55 The response of an organism to 

coculture growth can be quite specific: one study showed that Streptomyces coelicolor 
produced a unique set of molecules in coculture with each of five different actinomycetes, as 

revealed by mass spectrometry imaging of S. coelicolor colonies growing near each 

actinomycete species.56 Changes in internal network activities can also alter microbial 

interactions and community-level functions. For example, S. cerevisiae was shown to secrete 

amino acids in a nitrogen-rich environment, allowing Lactobacillus plantarum and 

Lactococcus lactis to grow by utilizing these subtrates.57 While these studies have 

illuminated changes in intracellular network activities in simple microbial communities, the 

network-level mechanisms through which biotic and abiotic factors combine to alter 

community-level functions in more complex microbiomes remain less understood.

On longer time scales, microbes can acquire and lose functional activities via horizontal 

gene transfer (HGT) and/or random (vertical) mutations. Evolutionary adaptations to grow 

and survive in microbial communities have impacted the acquisition and loss of microbial 

traits, including secondary metabolites such as antibiotics and signaling molecules.58,59 In 

particular, the evolution of antibiotic production has been shown to occur via both horizontal 

and vertical mutation. In an instance of horizontal gene transfer, genomic analysis showed 

that, when evolved in coculture with Streptomyces padanus, Rhodococcus fascians acquired 

a large pathway from S. padanus for the production of rhodostreptomycins,60 a class of 

antibiotics targeting a set of Gram-positive and Gram-negative bacteria. In an instance of 

vertical mutation, Streptomyces clavuligerus evolved to produce an antibiotic compound 

holomycin in the presence of Staphylococcus aureus61 because of several mutations 

affecting secondary metabolite biosynthesis.

Living in microbial communities also enables evolutionary adaptations that are not possible 

for organisms that live in isolation. These adaptations include (i) cross-feeding, where one 

species provides a molecule such as nutrient or cofactor that enables a second species to 

grow or survive;62,63 (ii) syntrophy, or obligate mutualism, wherein each organism performs 

a biochemical function essential for survival of a partner or community;64 (iii) division of 

labor, where different organisms specialize in specific tasks that are integrated at the 

community-level such as secreting virulence factors for elimination of competitive 
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organisms,65 metabolizing available substrates,66 or biofilm formation;67 and (iv) Black 

Queen evolution (also called genome streamlining) where mutants lose “leaky” nonrequired 

functions (e.g., those that produce public goods or compounds that can benefit the 

community, such as extracellular cellulase) and rely on other community members to 

perform those functions.68

In turn, these adaptations can significantly change community-level functions, stability, 

diversity, and response to disturbances. For example, loss-of-function mutations have been 

shown to promote diversity in iron-limited communities.69 In iron-limiting conditions, some 

organisms produce energetically costly siderophores to scavenge iron from their 

environment. In these conditions, the siderophore-producer Pseudomonas aeruginosa 
outcompetes Burkholderia cenocepacia.69 However, when P. aeruginosa cheaters (those 

which do not produce siderophores but can scavenge them) are introduced into the 

population, competition between P. aeruginosa cheaters and noncheaters reduces the fitness 

advantage of noncheating P. aeruginosa, enabling coexistence with B. cenocepacia.69 A 

second study revealed the coexistence of cheater and noncheater P. aeruginosa populations in 

natural communities, suggesting cheating shapes the diversity of natural communities as 

well.70 In addition, community complexity can greatly alter adaptive evolution in ways that 

cannot be predicted from single-species evolution. For example, species in a synthetic 

community evolved to use waste products generated by other species, an evolutionary 

adaptation that may be less accessible for the same organisms grown in isolation.71

2.3. Spatial Organization Impacts Microbial Community Properties.

The spatial distance separating microbial populations is a major variable shaping the 

biochemical transformations that can be realized by microbiomes, as well as the metabolic 

efficiency of these processes (for example, in biofilms72). Spatial structuring at multiple 

scales influences the functions and stability of microbiomes. For example, in a mouse 

gastrointestinal tract, the spatial distribution of organisms in a synthetic human gut 

microbiome community exhibited distinct patterns at different length scales.73 On 

micrometer scales, species were intermixed, whereas spatial positioning was heterogeneous 

over longer length scales. These spatial distributions can significantly influence the 

functional capabilities of the gut microbiota.73 The density of cells and the level of mixing 

of different organisms in the environment can alter the frequency and strength of interspecies 

interactions (Figure 1b),53,74 and interspecies interactions may alter the spatial organization 

of microbiomes.75

Spatial organization can also be used to alter the outcome of long-term community 

dynamics. For example, spatial organization and low resource availability can prevent 

cheaters from dominating in the community.76,77 The precise mapping between the degree 

of spatial organization and community-level properties such as stability, diversity, and 

resilience depends on specific molecular and ecological mechanisms. For example, 

community stability was maximized in a synthetic consortium of soil isolates when the 

constituent community members were spatially separated by intermediate distances.53 Such 

optimal distance responses can arise because of trade-offs between positive or negative 

interactions that vary as a function of spatial separation.53 Exploiting this principle, bacterial 
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signaling circuits programmed to activate only at intermediate distances from a signal sender 

population can generate spatial patterns.78 The quantitative contributions of spatial 

parameters and temporally changing inputs to microbial community behaviors can be 

studied using microfabrication techniques.79

3. COMPUTATIONAL MODELING OF MICROBIAL COMMUNITIES

Developing the capability to predict the response of micro-biomes to environmental inputs 

will allow rational control and bottom-up design of microbial communities. This section will 

describe modeling approaches for prediction of microbiome behaviors at different temporal 

scales and levels of biological organization (Figure 2).

3.1. Genome-Scale Metabolic Modeling.

Genome-scale models (GEMs) can be used to predict mechanisms of metabolic interaction 

(Figure 2, red box).80 From a mathematical representation of an organism’s metabolic 

reactions, these models predict the rates and yields of metabolites consumed and secreted by 

each monospecies, as well as between the community and the environment.81,82 GEMs are 

analyzed using techniques from mathematical optimization, in which physiochemical 

constraints and optimality principles (i.e., maximization of an objective function, such as 

total community biomass) are applied to predict rates and yields.82 Although GEMs assume 

an intracellular steady state, they can still be used for predicting temporal dynamics, 

provided the steady-state assumption holds.83 These dynamic models predict metabolite and 

biomass concentrations, commonly by embedding steady-state models inside kinetic models 

of cellular growth and uptake.83 Steady-state models have been extensively used to simulate 

microbe—microbe and host-microbe interactions.82,84–90 Dynamic methods have been used 

to study interactions in the subsurface,91,92 as well as to predict emergent biosynthetic 

capacity,93 defined here as community production of a metabolite not produced by any of its 

constituent organisms growing alone.93 For example, a model of competition between the 

acetate-oxidizing metal reducers Rhodoferax and Geobacter correctly predicted the relative 

abundance of these two species under different geochemical conditions and forecasted that 

Geobacter is responsible for enhanced uranium reduction under conditions of low organic 

nitrogen.91

Despite their widespread adoption and accessibility,94,95 GEMs have a number of 

limitations. First, GEMs do not include regulatory information, and predicted metabolic 

states may not be achievable because of cellular regulation. Nonetheless, methods for 

incorporating regulatory networks into GEMs are emerging.96 Second, methods to analyze 

GEMs have an implicit requirement of evolutionary optimality.97 Optimal strategies may be 

unknown, change through time, or trade off with one another.98 In some cases, evolutionary 

optimality may not hold at all, such as in synthetic consortia composed of organisms that 

have not evolved in the same environment and thus have not encountered one another. Third, 

GEMs have many degrees of freedom and may require knowledge of the microbiome 

interaction network for accurate predictions.88,99 For dynamic GEMs, knowledge of growth-

limiting substrates and their kinetic parameters may also be required for accurate 

predictions.100
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3.2. Differential Equation Modeling.

Differential equation models are a broad class of models that can be applied to predict 

population dynamics, multisubstrate utilization, and/or intracellular network activities in 

microbial communities. Generalized Lotka–Volterra (gLV) models are commonly used to 

capture community dynamics (Figure 2, blue box). In gLV models, the abundance of an 

organism is a function of its intrinsic growth rate plus a term accounting for the sum of 

pairwise interactions with all members of the community, including self-interactions.101,102 

Using techniques from dynamical systems theory, gLV models can also be used to evaluate 

community properties such as stability (the rate at which a community returns to an 

equilibrium point following a disturbance).103 Apart from interspecies interactions, gLV 

models have been used to simulate diverse aspects of microbial community behaviors, 

including assembly,104 stability,105 coexistence,44 and history-dependent dynamics.44 gLV 

equations have also been extended to include environmental inputs, including antibiotic 

administration105 and temperature and nutrient concentration.106

Despite their utility, gLV models have several limitations. First, microbes can interact both 

positively and negatively, and these interactions can change through both space and time. In 

a gLV model, the single, fixed interaction term represents the inferred cumulative impact 

across all of these mechanisms over a period of time. Second, some studies have shown that 

pairwise interactions are insufficient to fully explain community dynamics,107 meaning that 

gLV models may need to be extended to include higher-order interactions. Furthermore, 

standard gLV models may require a mechanistic representation of metabolite exchange to 

capture some types of pairwise interactions.107,108

Mechanistic differential equation models provide an alternative approach to overcoming 

some of the limitations of gLV models (Figure 2, purple box). In a mechanistic model, 

molecular-level details of the interaction are explicitly represented, and such models have 

been used to model 3-and 4-member communities with known mechanisms of molecular 

interaction.107,109,110 However, because of a need to characterize the mechanisms of 

interspecies interaction, determine the appropriate model structure, and identify model 

parameters, mechanistic models are significantly more difficult to develop than gLV models. 

As a result, mechanistic models typically describe only a few metabolic reactions performed 

by a small number of organisms, although some genome-scale mechanistic models have 

been developed.111–113

3.3. Modeling Cellular Heterogeneity Using Individual-Based Models.

Heterogeneity within microbial communities can arise from variation in microenvironments 

and/or variation within individuals. To capture spatial heterogeneity, partial differential 

equation models (PDEs) are used to model the underlying processes, such as heat and mass 

transfer.114 Heterogeneity within populations can be modeled using individual-based models 

(iBMs), which represent the activities of individual cells (or populations of cells) (Figure 2, 

green box). In these frameworks, system-level properties emerge from the combined 

activities of individuals.115,116 In many environments (such as biofilms117), microbial 

communities exhibit both spatial and individual heterogeneity, and PDEs and IBMs must be 

combined to model community behaviors.116
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Recently, GEMs have been combined with IBMs. Using this approach, GEMs are used to 

simulate cells or populations on a lattice (a structured arrangement of points representing a 

surface),118–120 with differential equations describing molecular diffusion on the lattice. 

These models have been used to study the emergence of competition and cooperation in 2-or 

3-member consortia,118 niche formation in the human microbiome,119 and spatial variation 

in colony size.121 A mechanistic, individual-based model of the cyanobacteria Anabaena has 

also been developed, wherein nitrogen metabolism within each cell was mechanistically 

modeled via differential equations.122

As with other modeling approaches, both PDEs and IBMs have limitations.115,116 PDE 

models typically do not account for phenotypic heterogeneity within members of a 

population.115,116 For example, the nonlinear Droop equation describes the growth rate of 

phytoplankton as a function of their intracellular phosphorus (P) content. Because of this 

nonlinearity, the growth rate of a population with average P content is greater than the 

average growth rate of the individual cells with a distribution of P contents.123 In addition, 

differential equation models assume that populations of discrete individuals can be 

approximated using continuous functions.115,116 In contrast, IBMs explicitly model 

individual organisms, enabling them to capture population heterogeneity as well as 

interactions between individual cells and between individual cells and their local 

environment.115,116 However, IBMs may result in complex and nonlinear dynamics that 

make parameter estimation difficult.116 Finally, integration of PDE models and IBMs poses 

its own challenges, such as representing processes occurring on different spatial or temporal 

scales.

3.4. Game-Theoretical Evolutionary Models.

The long-term outcome of changing interactions in microbial communities can be analyzed 

via evolutionary game theory (Figure 2, orange box).124 In this modeling framework, 

evolving entities (players) alter their reproductive fitness by adopting life-style strategies, or 

adaptations (such as cheating).124 These adaptations alter the fitness of the players, in a 

manner that depends on the behavior of other players in the game, as well as their relative 

abundance in the population.124 Apart from simulating evolutionary dynamics, evolutionary 

game theory can also be used to identify evolutionarily stable strategies, defined as 

combinations of strategies that are resistant to invasion (that is, there are no other strategies 

that would provide increased fitness if adopted). Additionally, evolutionary games can be 

transformed into gLV models,124 enabling techniques from dynamical systems theory to be 

applied to microbial communities on evolutionary time scales.

Evolutionary game theory was able to explain snowdrift dynamics, defined as the stable 

coexistence of cheaters and cooperators in a population.125 In a second example, game 

theory was combined with GEMs to predict evolutionarily stable interactions mediated by 

the exchange of specific amino acids.126 Finally, IBMs have been combined with trait-based 

models, in which fitness emerges from trade-offs among traits (measurable aspects of an 

organism’s phenotype, such as cell size or temperature sensitivity).127 Such models have 

been used to study the factors shaping cell size in oceanic phytoplankton128 and to highlight 

the importance of interspecies interactions in evolutionary outcomes.129
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Despite these successes, evolutionary game theoretical models have a number of significant 

limitations. Using these models requires a priori knowledge of potential evolutionary 

strategies and their context-dependent effects on fitness.124 Furthermore, because ecological 

strategies and their effects on fitness are determined in advance, evolutionary game theory 

cannot predict the adoption of novel strategies or predict how their fitness changes in the 

face of a dynamic environment. Additionally, the probability that a particular strategy arises 

depends on the mechanism of adaptation, suggesting that evolutionary models will benefit 

from incorporating mechanistic information.130 Finally, evolutionary games with two 

players and two strategies have been studied in great detail,131 whereas microbial 

communities contain numerous organisms and strategies. This additional complexity can 

result in a breakdown of classical results from two-player games.131

4. MANIPULATING THE FUNCTIONS OF NATURAL AND SYNTHETIC 

COMMUNITIES

Traditional approaches for modifying the properties of microbial communities involve 

iterative evolution by selecting for specific phenotypes.132 Microbial communities used for 

wastewater treatment are a classical example: starting with a sample containing the 

organisms of interest, reactor engineering and environmental selection are used to enrich for 

strains with the desired traits,39 and metagenomic assembly/binning and metatranscriptomic 

profiling can be used to identify organisms potentially responsible for a function.133 

However, selection-based approaches have notable limitations, including challenges in 

reverse engineering the mechanisms underlying changes in target function activity.134,135 In 

addition, because evolutionary optimization requires selection on existing traits, selection-

based approaches cannot install novel capabilities. Here, we discuss how tools from 

synthetic biology hold promise to manipulate microbial communities or design microbial 

communities from the bottom up.

4.1. Harnessing Synthetic Biology to Manipulate Microbial Communities.

A core challenge in microbiome engineering is precisely altering the abundance of specific 

microbial populations to steer communities to desired states. Methods based on RNA-guided 

nucleases have been used to target specific organisms in multispecies communities. For 

example, CRISPR-Cas circuits delivered by bacteriophage or conjugation were used to 

target DNA sequences associated with antibiotic resistance or virulence, leading to selective 

killing of strains harboring these sequences.136,137 The host range of bacteriophage has also 

been modified for population editing using a modular tail fiber swapping method138 (Figure 

3a). A third approach involves engineering controller organisms to selectively sense a 

pathogen and produce and deliver antimicrobials that inhibit the growth of the pathogen. 

This strategy has been used to sense and target pathogens including Salmonella, 

Pseudomonas aeruginosa, and Vibrio cholerae. 139–142 In CRISPR-Cas-based methods, 

efficient delivery and expression of the circuit components in target organisms can present 

challenges. Challenges in phage engineering include high mutation rates and programming 

phage host range to target specific populations.143 Finally, engineering a controller strain to 

sense and target specific organisms has a number of challenges, including ensuring the 

ecological and functional stability of the organism in the community for a period of time, 
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developing tools for selective sensing, and targeting of specific organisms in the community.
144,145

The introduction of non-native strains (such as probiotics) to microbiomes also presents 

several challenges. The ecological and functional stability of a non-native strain is dependent 

on regulatory adaptation to the target environment, ability to secure a niche, and could 

potentially destabilize the resident community.146 For example, a recent human trial showed 

a strong negative association between colonization ability of Bifidobacterium longum 
AH1206 and the abundance of other B. longum strains and specific carbohydrate utilization 

genes that contribute to the ability of B. longum AH1206 to secure a niche in this 

environment.147

An engineered organism could be introduced into a microbial community to alter 

community-level outputs (Figure 3b). The abundance of the engineered organism could be 

modulated by an external parameter, such as nutrient availability. Engineering unique niches 

could allow stable integration of non-native organisms in microbiomes. For example, 

porphyran-degrading Bacteroides species were able to colonize mice fed a diet containing 

porphryan,148,149 and the abundance of these organisms was altered by administering 

different concentrations of porphyran or a pulsed diet. These studies also show that 

abundance of porphyran-degrading Bacteroides could be more precisely controlled in mice 

with fewer species in their microbiota, suggesting that community context can affect the 

controllability of species.148,149

An alternative to niche engineering involves genetic manipulation of the biochemical 

activities of resident organisms of microbiomes. For example, the microbiome-produced 

metabolite indolepropionic acid (IPA) is present in human serum and is associated with 

reduction of intestinal permeability, radical-scavenging, and neuroprotective functions.150 

When a mutant symbiont Clostridium sporogenes deficient in IPA production was 

introduced into mice colonized with a defined, IPA-deficient microbial community, IPA 

levels in serum were not detected and intestinal permeability was increased compared to 

control mice harboring wild-type C. sporogenes.150

Finally, tools from synthetic biology can be used to engineer microbiomes by introducing 

novel functions. When engineering principles are applied, organisms can be designed to 

sense specific environmental signals (e.g., pH, temperature, and light), perform computation 

on these signals, and produce specific output responses151,152 (Figure 3c). Harnessing 

synthetic biology approaches to manipulate microbiomes presents several challenges. First, 

synthetic circuits must be designed to operate robustly in the presence of environmental 

variability and selectively respond to specific environmental inputs.153 A recent study 

demonstrated that a genetic circuit encoding memory of the transient inflammation signal 

tetrathionate in a murine Escherichia coli strain retained memory for long periods of time, as 

evidenced by detection of activated circuits in fecal samples six months after inflammation 

was induced in mice.154 A second challenge in engineering genetic circuits is minimizing 

fitness burden to the host cell due to competition for limited intracellular resources between 

the host cell and the synthetic circuit.155,156 If the metabolic costs are significant, 

nonfunctional mutants could rapidly outcompete the functional subpopulation.157,158 
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Although many advances have been made to design circuits to minimize metabolic burden,
159 it is still difficult to predict the interactions between the host cell and the synthetic circuit 

and use this information to inform circuit design.160,161 Finally, biocontainment strategies 

must be developed to prevent engineered organisms from escaping into other environments.
162 To implement biocontainment, toxic genes have been used to induce cell death in 

response to specific signals processed by multilayered logic gates. 163 However, the killing 

efficiency of the circuits declined over time and these circuits have not been characterized in 

complex environments.163

4.2. Design of Synthetic Communities from the Bottom Up.

In natural microbial communities, biochemical transformations are partitioned among 

diverse organisms, a phenomenon known as division of labor (DOL)164 (Figure 3d). DOL is 

thought to increase productivity by enabling community members to specialize at certain 

subtasks.165 In fact, several studies have demonstrated that synthetic consortia engineered 

for DOL have potential advantages compared to engineering a single strain, including 

modularity, the ability to exploit the unique capabilities of different strains,166 and the ability 

to control product rates and yields by altering community composition.167 Nevertheless, 

engineering DOL also has potential disadvantages, such as competition for shared resources 

and challenges maintaining stable coexistence of community members over time.168,169 The 

trade-offs between advantages and disadvantages of DOL have been recently explored using 

a theoretical framework.170 By analyzing 24 common architectures of metabolic pathways 

in which DOL can be implemented, a recent study concluded that DOL is advantageous 

when the increase in productivity due to DOL (as measured by product titer) is larger than 

the decrease in productivity arising from resource competition and limitations in cellular 

transport rates. The shape of the trade-off among these factors varies with metabolic 

pathway architecture.170 Furthermore, the authors suggest that DOL increases productivity 

when it reduces metabolic burden or toxicity. Metabolic burden and toxicity could be caused 

by expression of multiple genes in a pathway or the production of toxic intermediates.171 

However, methods to predict the metabolic burden or toxicity of engineered pathways are 

lacking.

A core challenge for microbiome engineering is achieving stability as a function of time in 

response to perturbations. Equilibrium stability is a concept from dynamical systems and is 

defined as the rate at which a system returns to its original state (equilibrium point) 

following a perturbation. However, this definition does not apply to systems operating away 

from equilibrium. Microbial communities are highly dynamic and may not be operating at 

equilibrium because of temporally changing environmental stimuli. In fact, fluctuations in 

population sizes driven by external inputs to the system can promote species diversity over 

time.172 In microbial community engineering, rewiring of interactions among constituent 

community members may be required to achieve stability. Currently, the types (positive/

negative/negligible), molecular mechanisms, and distributions of required interactions to 

realize stability and resilience to perturbations remain unresolved. A theoretical study 

showed that stability is enhanced by limiting positive interactions or globally weakening 

interactions.43 Bidirectional positive interactions can be destabilizing because of positive 

feedback loops, which renders the network sensitive to fluctuations in the abundance of 
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organisms that are positively coupled in the network. Globally weakening interactions in the 

ecological network will result in a smaller change in organism abundance in response to 

variations in the abundances of other community members. A balance between negative and 

positive interactions in an ecological network can promote system stability: network 

topologies consisting of positive/negative (+/−) interactions can exhibit robust species 

coexistence by establishing a negative feedback loop.44 A different theoretical study showed 

that competitive interactions are stabilizing only when species exclusively consume but do 

not produce resources.173 The same study predicted that positive interactions are stabilizing 

when all pairwise interactions are reciprocated, or when production rates are sufficiently 

small.173

These predictions could be tested using engineered microbial communities. In addition to 

exploiting well-characterized mechanisms including bacterial signaling systems, cross-

feeding of amino acids and metabolic byproduct utilization, microbial interactions can also 

be constructed by rewiring biosynthetic pathways.110,174–176 In one study, the authors used 

modular genetic pathway reconfiguration to design pairwise consortia with distinct 

interaction topologies.110 Experimental results from these pairwise consortia were used in 

model-guided design of three-and four-strain communities with predictable behaviors.110 In 

addition, spatial organization can augment community stability by excluding cheaters and 

invaders76,177 (Figure 2b) and could thus be harnessed as a design parameter for achieving 

desired community-level functions.

5. PERSPECTIVES

5.1. Challenges in Identifying Mechanisms of Ecological Interaction over Short and Long 
Time Scales.

Experimental approaches to determine ecological relationships and molecular mechanisms 

in microbial communities have largely focused on simple communities under well-defined 

conditions. Fabricated ecosystems that mimic the physical and chemical structure of natural 

environments (such as the gut-on-a-chip) can be used to determine environmental effects on 

interaction networks by providing investigators precise control over environmental variables.
178,179 Once interactions have been identified, high-throughput genetic approaches such as 

Tn-Seq180 or genome-scale CRISPRi libraries181 could identity genes that enhance or 

weaken an interaction. Furthermore, metabolomic techniques such as mass spectrometry 

imaging could be used to identify molecules that may underlie the interaction.182 Isotope-

labeling techniques such as 13C-metabolic flux analysis could be used to quantify 

intracellular fluxes,183,184 thereby linking intracellular metabolic states to interaction 

networks.

Long-term dynamics of microbial communities are ultimately determined by evolution. We 

currently have a limited understanding of ecological and evolutionary time scales of 

microbial communities and lack an effective strategy to predict or control the long-term 

evolution of microbiomes. One experimental evolution study showed that replicate 

communities followed a cluster of evolutionary trajectories measured by community 

structure, suggesting that community evolution may be partially determinstic.185 A second 

study showed that evolutionary outcomes of pairwise growth experiments followed simple 
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qualitative rules, although the predictions were limited to a small set of closely related 

species with competitive interactions.186 In sum, these studies suggest that replication of 

laboratory evolution experiments is a useful tool for quantifying the forces shaping 

microbiome evolutionary dynamics. However, a core challenge is extracting evolutionary 

design principles that can be generalized across different systems. Similar experiments 

should be undertaken to predict community evolution patterns in more complex 

communities, in the presence and absence of spatial structure, and over evolutionary time 

scales.

5.2. Challenges in Computational Modeling of Microbiomes.

Computational models of microbes and microbial communities are often optimized for 

processes occurring at distinct spatial or temporal scales. However, developing a quantitative 

and mechanistic understanding of how molecular-level changes alter long-term evolutionary 

outcomes will require multiscale frameworks that can link processes occurring at different 

temporal or spatial scales. Some efforts are already underway, such as frameworks that 

embed constraint-based models of metabolism inside spatial118 or evolutionary models187 

(Figure 2). Model-reduction techniques could be used to simplify mechanistic multiscale 

models. In addition, combining time-resolved measurements of community structure and/or 

function (e.g., metabolomics) with machine learning could be used to identify model 

structures underlying community dynamic behaviors. Such an approach has recently been 

used to predict metabolic pathway dynamics in engineered E. coli.188 Regardless of the 

modeling approach used, computational models must be rigorously validated with properly 

collected data in order to be useful. Validation may require new tools for spatial and 

temporal monitoring of metabolites, environmental parameters, and absolute abundance 

quantification of species abundance. Furthermore, the number of system parameters that 

could be modeled far exceeds the number that may be practical to infer from data. Combined 

experimental and computational studies could elucidate the types and frequency of data to 

collect, as well as the most informative way to use these data to accelerate predictive 

modeling.

5.3. Engineering Microbiomes or Designing Microbial Communities.

When introducing novel functions into natural microbiomes, model organisms such as E. 
coli may be preferred because of the availability of genetic tools. However, to persist stably 

in a new environment, laboratory strains must first be adapted to the abiotic and biotic 

properties of the target environment. If the key parameters of the target environment are 

known, microbes could be adaptively evolved in the lab for increased fitness before 

introduction to the new environment. Additionally, engineered organisms can be rapidly 

adapted to new environments using functional metagenomic libraries containing the genetic 

sequences from the resident bacterial community.189 Alternatively, microbes native to the 

target environment may be more suitable as an engineering chassis because of pre-existing 

adaptations. Thus, further development of genetic tools and parts libraries for nonmodel 

microbes should be encouraged, such as the promoter and ribosome-binding site libraries 

that have been developed for the human gut commensal Bacteroides thetaiotaomicron.190
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When constructing synthetic microbial communities, a major challenge is optimizing 

division of labor (DOL) for community-level functions. DOL is determined in part by the 

metabolic burden an engineered pathway imposes on a cell across different environments. 

Indeed, the trade-off between engineered circuit activity and host-cell fitness depends on a 

changeable and uncertain environment. Coarse-grained kinetic models or genome-scale 

metabolic models could be used to simulate the fitness costs associated with different DOL 

schemes and predict functional activities associated with different configurations. 

Communities could be constructed and characterized, and the results used to identify new 

constraints and trade-offs that impact DOL.

Finally, control of microbiome structure and function requires advances in our understanding 

of how to manipulate complex networks of microorganisms that consist of numerous 

interconnected feedback loops. A control-theoretical frame-work should be developed for 

microbial communities to determine a minimum set of influential organisms and/or 

environmental inputs that need to be manipulated to steer the system to specific states. To 

implement such control architectures, we need modular platforms for rapidly designing 

microbiome editing tools to control system behaviors.
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Figure 1. 
Interactions among organisms within microbiomes change through time and space. (a) 

Changes in intracellular network activities or changes in genotype via random mutation 

and/or horizontal gene transfer (HGT) can lead to changes in microbial interactions in 

microbiomes. Left: On short time scales, regulatory networks govern how microbes respond 

to their environment. In one environment, one microbe may produce molecules that lead to a 

net positive impact on a second microbe (green circles and green arrow), while in a second 

environment the same microbe may produce molecules that lead to a net negative impact on 

a second microbe (purple triangles and purple arrow) due to changes in transcriptional 

activity. Right: On longer time scales, genetic changes due to HGT can alter microbial 

intracellular networks and contribute to changes in ecological relationships. In natural 

competence (one mechanism of HGT), extracellular DNA can be taken up by a recipient 

organism and integrated into the chromosome via homologous recombination. When this 

occurs, the functional activities of a microbe can change, manifesting as a change in the 

ecological network from a net positive (green arrow) to a net negative interaction (purple 
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arrow). (b) Schematic highlighting a hypothesis about how spatial mixing (x-axis) and 

population density (y-axis) can alter the frequency of cheating (wherein the benefit from 

cooperating is disproportional to the contribution toward cooperation) and the distributions 

of positive/negative interactions in a microbial community. Downward arrows indicate a low 

frequency, and upward arrows indicate a high frequency. When population densities and 

spatial mixing are low, microbes are less likely to encounter one another, leading to 

infrequent interactions and a low frequency of cheating due to low concentrations of public 

goods (“low density, low mixing” box). As population densities and/or spatial mixing 

increase, both the frequency of interactions and frequency of cheating increase (“low 

density, high mixing” and “high density, low mixing” boxes). In well-mixed, dense 

communities, negative interactions will be especially frequent because of resource 

competition (“high density, high mixing” box).
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Figure 2. 
Schematic representation of modeling frameworks for processes occurring at different 

temporal (x-axis) and spatial (y-axis) scales. Metabolic, population-dynamic, individual-

based, mechanistic, and evolutionary models are represented by the red, blue, green, purple, 

and orange boxes, respectively. Dashed gray boxes indicate temporal/spatial scales where 

modeling frameworks are currently missing. Black arrows between boxes indicate existence 

of publications that link modeling frameworks. Gray arrows between boxes indicate 

opportunities to link modeling frameworks. Metabolic models: Steady-state flux of 

metabolites (black circles) in and out (green arrows and red arrows, respectively) of two cell 

populations (blue and purple boxes) as predicted by a genome-scale metabolic network 

(black circles and arrows). Population-dynamic models: Change in abundance of two 

populations (green and purple) over time. Individual-based models: Emergence of spatial 

partitioning of two populations of cells (red and blue circles) on a discrete lattice, a 

structured arrangement of points representing a surface (black gridlines). Mechanistic 

models: Dynamic flux of metabolites (black circles) in and out (green arrows and red 

arrows, respectively) of two cell populations (blue and orange boxes) as predicted by a 

model of a biochemical pathway (black circles and arrows). Evolutionary models: Change in 

community population structure through evolutionary time. Initially, the population is 

homogeneous (blue circles, left-most rectangle). One cell acquires a mutation that provides a 

fitness advantage (green circle, middle rectangle). As a result, the community population 

structure changes over time (green and blue circles, right-most rectangle).
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Figure 3. 
Strategies for engineering natural and synthetic communities. (a) Precise inhibition of 

specific organisms in natural communities via (i) CRISPR-guided nucleases that target 

specific DNA sequences, (ii) engineered bacteriophages, and (iii) microbes designed for 

production of antimicrobial compounds. (b) Introduction of an engineered organism (cyan) 

into a microbial community. The engineered organism can stably integrate into the 

community and alters community-level outputs (represented by yellow stars and blue 

teardrops). The abundance of the new species could be controlled through niche engineering, 

wherein a non-native organism is engineered to utilize a unique substrate (pink triangles) 

that cannot be utilized by other members of the community. (c) Design of cellular control 

organisms using engineered biomolecular networks to perform novel functions in complex 

environments. Functional modules include environmental sensors, information processing 

(e.g., memory and logic circuits), actuators (e.g., antimicrobial compounds), and growth 

control circuits for biocontainment. (d) Construction of synthetic communities from the 

bottom up to perform desired functions through division of labor (DOL). Top: A single 

biochemical pathway can be conceptually decomposed into three subpathways (red, blue, 

and green). Left arrow: The biochemical pathway for synthesizing a target molecule can be 
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introduced into a single cell population. Right arrow: The biochemical pathway is 

partitioned among different organisms, reducing the metabolic burden on individual 

populations but requiring stable coexistence as a function of time. S, substrate; P, product; I, 

intermediate; E, enzyme.

Cao et al. Page 28

Biochemistry. Author manuscript; available in PMC 2019 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical abstract
	MICROBIOMES ARE DYNAMIC NETWORKS
	MICROBIAL INTERACTIONS SHAPE MICROBIOME BEHAVIORS AND ARE MODULATED BY SPATIOTEMPORAL PARAMETERS
	Defining Microbial Interactions.
	Changes in Microbial Interactions Across Physiological or Evolutionary Time Scales.
	Spatial Organization Impacts Microbial Community Properties.

	COMPUTATIONAL MODELING OF MICROBIAL COMMUNITIES
	Genome-Scale Metabolic Modeling.
	Differential Equation Modeling.
	Modeling Cellular Heterogeneity Using Individual-Based Models.
	Game-Theoretical Evolutionary Models.

	MANIPULATING THE FUNCTIONS OF NATURAL AND SYNTHETIC COMMUNITIES
	Harnessing Synthetic Biology to Manipulate Microbial Communities.
	Design of Synthetic Communities from the Bottom Up.

	PERSPECTIVES
	Challenges in Identifying Mechanisms of Ecological Interaction over Short and Long Time Scales.
	Challenges in Computational Modeling of Microbiomes.
	Engineering Microbiomes or Designing Microbial Communities.

	References
	Figure 1.
	Figure 2.
	Figure 3.

