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Abstract

Recently, numerous organizations, including governmental regulatory agencies in the U.S. and 

abroad, have proposed using data from New Approach Methodologies (NAMs) for augmenting 

and increasing the pace of chemical assessments. NAMs are broadly defined as any technology, 

methodology, approach or combination thereof that can be used to provide information on 

chemical hazard and risk assessment that avoids the use of intact animals. High-throughput 

transcriptomics (HTTr) is a type of NAM that uses gene expression profiling as an endpoint for 

rapidly evaluating the effects of large numbers of chemicals on in vitro cell culture systems. As 

compared to targeted high-throughput screening (HTS) approaches that measure the effect of 

chemical X on target Y, HTTr is a non-targeted approach that allows researchers to more broadly 

characterize the integrated response of an intact biological system to chemicals that may affect a 

specific biological target or many biological targets under a defined set of treatment conditions 

(time, concentration, etc.). HTTr screening performed in concentration-response mode can provide 

potency estimates for the concentrations of chemicals that produce perturbations in cellular 

response pathways. Here, we discuss study design considerations for HTTr concentration-response 

screening and present a framework for the use of HTTr-based biological pathway-altering 

concentrations (BPACs) in a screening-level, risk-based chemical prioritization approach. The 

framework involves concentration-response modeling of HTTr data, mapping gene level responses 

to biological pathways, determination of BPACs, in vitro-to-in vivo extrapolation (IVIVE) and 

comparison to human exposure predictions.

Introduction

High-throughput screening (HTS) is a general term that refers to large-scale experiments 

where combinations of robotic automation, liquid handling devices, instruments for 

detecting assay-specific outputs and data processing and analysis pipelines are used to 

evaluate the biological effects of hundreds to thousands of chemicals tested in parallel, 

typically in in vitro test systems [1, 2]. HTS studies are a mainstay of the pharmaceutical 
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and agrochemical industries and are used extensively for screening of chemical libraries and 

identifying biologically active chemicals [3–5]. High-throughput transcriptomics (HTTr) is a 

type of HTS that uses gene expression profiling as a highly-multiplexed endpoint for rapidly 

evaluating the biological effects of large numbers of chemicals. A variety of high-throughput 

transcriptomic technologies can be categorized by the breadth of genes measured, ranging 

from dozens of genes using qRT-PCR arrays [6, 7], hundreds or thousands of genes using 

targeted transcriptomic panels (i.e. L1000, S1500+) [8, 9], or the whole transcriptome using 

microarrays, RNA-Seq or targeted RNA-Seq [10, 11]. The selection of a particular 

transcriptomics technology or gene panel will vary by use case. For instance, if a researcher 

is concerned with a specific type of toxicity (i.e. genotoxicity, phospholipidosis, etc.), then 

they may choose to develop a transcriptomic panel with genes of known relevance to the 

toxicological responses of interest [7, 12]. If less is known regarding the potential 

mechanism of chemical toxicity, or what targets or signaling pathways may be affected, a 

whole transcriptome approach may be more appropriate. Increasing efficiency and declining 

cost of generating transcriptomic profiles, including whole transcriptome profiles, has made 

HTTr a feasible approach for chemical screening and assessment.

Transcriptomic technologies have been used in toxicology, and other scientific fields, for 

many years. These technologies provide broad insight into the molecular signaling networks 

that are perturbed following chemical exposures and that underlie functional and 

pathological changes in tissues upon which traditional chemical risk assessments are based 

[13]. To date, data from transcriptomics studies have not been routinely used in chemical 

risk assessment dossiers submitted to regulatory agencies [14, 15]. However, transcriptomics 

data has been used to a limited extent in risk assessment approaches employed by private 

industry to support internal decision-making processes. These approaches have primarily 

focused on hazard identification, specifically elucidation, establishment and categorization 

of mode(s)-of-action in the context of a product development pipeline [15].

Depositing transcriptomics datasets in publicly-accessible databases is a near universal 

prerequisite for publication of such data in scientific journals. As a result, transcriptomics 

datasets from low-throughput in vivo and in vitro toxicology studies have been accumulating 

in public databases for many years [16, 17]. The combination of proprietary transcriptomics 

data available in some industry settings, as well as publicly-available transcriptomic 

databases represent a rich and largely-untapped resource for supporting chemical risk 

assessment. Further, in vitro chemical screening using HTTr has the potential to greatly 

increase the amount of transcriptomics data available for potential use in risk assessment 

applications. However, like low-throughout transcriptomics data, HTTr data will encounter 

similar hurdles to regulatory use until data analysis frameworks demonstrate technological 

reproducibility, data interpretability and concrete applications.

Recently, numerous organizations, including some with regulatory authority, have proposed 

the use of data from New Approach Methodologies (NAMs) to modernize and increase the 

pace of chemical assessments [18–20]. NAMs are defined as any technology, methodology, 

approach or combination thereof that can be used to provide information on chemical hazard 

and risk assessment that avoids the use of intact animals [18]. Therefore, HTTr assays 

performed in in vitro test systems can be considered NAMs. Specific use-cases for NAM 
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data in risk assessment include screening-level evaluations of “data-poor” chemicals (i.e. 

those lacking an in vivo toxicity knowledgebase) or use in filling mechanistic knowledge 

gaps for “data-rich” chemicals (i.e. those where some in vivo toxicity data are available).

Also in recent years, a variety of research groups have explored how low-throughput in vitro 
and in vivo transcriptomics data as well as HTS data, respectively, may be used in the 

context of chemical assessment [21–26]. The utility of transcriptomics for risk assessment 

has been evaluated in a number of areas including: computational approaches for 

concentration-response modeling of transcriptomics datasets (often containing information 

on the expression of thousands of genes) to identify transcriptional points-of-departure 

(PODT) [21, 27, 28], comparing the concordance between PODT and PODs derived from 

traditional toxicity testing [13, 22, 29], and comparisons of cross-species sensitivity to 

chemicals [30–32]. With respect to HTS and risk assessment, a general framework for in 
vitro-to-in vivo extrapolation (IVIVE) has emerged that involves concentration-response 

modeling of HTS data to identify biological pathway altering concentrations (BPAC), and 

conversion to administered dose equivalents (ADEs) using high-throughput toxicokinetic 

(HTTK) modeling and reverse dosimetry [23, 25]. The resulting ADEs can then be used 

with measured or predicted exposures to perform bioactivity to exposure ratio (BER) 

analyses as a means of prioritizing or deprioritizing chemicals for further scrutiny [24, 33, 

34]. The sections below examine these concepts in greater detail and proposes a framework 

where methodologies from the transcriptomics and HTS research fields are combined for 

analysis of HTTr data and potential application to chemical risk assessment.

Study Design Considerations for High Throughput Transcriptomics

The variety of in vitro models appropriate for use in HTTr screening is vast but could 

include cancer or immortalized cell lines, primary cell culture and/or mixed cell cultures 

grown in two- or three-dimensional formats. It is advisable that the domain of applicability 

(DOA) of an in vitro test system in terms of biological target expression and suitability for 

evaluating chemical collections of interest be characterized prior to undertaking large-scale 

HTTr screening studies. An in-depth discussion regarding the choice of appropriate cell 

models, media formulations, exposure conditions, test chemical compatibility, dose spacing, 

etc., is beyond the scope of this article. Instead the section below focuses on operational and 

quality control aspects commonly associated with HTS with regards to their application to 

HTTr screening.

The experimental design for a HTTr chemical screening assay should incorporate features 

commonly employed in HTS, such as the use of parallel cytotoxicity assays, reference 

chemicals, as well as unique types of quality control (QC) samples for assessing 

performance of a transcriptomic assay. Figure 1 illustrates a generic experimental design for 

an HTTr concentration-response screen involving hundreds of chemicals. This example 

assumes that cultures will be prepared in 384-well format, that test chemicals will be applied 

using some type of high-throughput microfluidics technology and that automated (or 

partially automated) workflows will be used to process the biological samples contained in 

each well to generate gene expression profiles. The term “dose plate” refers to a multi-well 

plate containing solubilized chemicals, at various concentrations, to be applied to an “assay 
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plate” that contains cells in culture. In this example, chemicals are tested in eight-point 

concentration-response with an n=1 technical replicate per plate and three culture (i.e. 

biological) replicates. A randomized dosing pattern is used. However, principles illustrated 

in this example would also be applicable to designs using a non-randomized (i.e. invariable) 

dose patterning with respect to treatment well positioning. In addition, while this example 

uses a 384-well format and single technical replicates, the principles illustrated in this 

example are also applicable to lower-density microtiter plate formats and designs that use 

multiple technical replicates within an assay plate.

Demonstration of assay reproducibility has been identified as a criterion for the 

incorporation of NAMs into risk-based decision-making processes [35]. Unlike HTS assays 

where one (or a few) reference chemicals are used to consistently evaluate reproducibility of 

a single endpoint or functional outcome (i.e. chemical X activating receptor Y), the 

multiplexed nature of HTTr data makes performance evaluation a more complex problem. In 

HTS, statistical indices of assay dynamic range and endpoint variability, such as Z-factors 

and/or signal windows, are used to judge assay performance [36, 37]. While these measures 

of assay performance may potentially be useful when measuring small numbers of genes, 

the breadth of biological responses covered using large panels of genes or the whole 

transcriptome limit its application. For example, the dynamic range of responses for one 

pathway or target (e.g., activating receptor Y) may be different than another (e.g., inhibiting 

enzyme Z). In addition, it is well known that identification of significantly-affected genes is 

bound to include some level of type I error, even when stringent false discovery rate (FDR) 

corrections are used [38–40]. The practical implication is that researchers should not expect 

the exact same set of transcripts to be identified as significant or responsive in repeated, 

independent comparisons of like samples or treatments using a simple statistical test. 

Therefore, Z-factor or signal window approaches using sentinel genes would likely not 

provide a comprehensive assessment of HTTr assay performance; nor should quantifying the 

number of differentially expressed genes (DEGs) from a pairwise statistical comparison, and 

comparing the percentage of overlapping genes (POG) between like comparisons, be 

considered a reliable metric of assay performance [40].

A more appropriate approach for evaluating performance includes multiple measures that 

capture the reproducibility and signal-to-noise characteristics of the HTTr assay using a 

combination of reference materials and reference chemicals. The term “reference materials” 

refers to standardized biological samples that are either manufactured commercially or 

generated in bulk at a research laboratory. Reference materials could be purified RNAs or a 

biological sample type (i.e. biological matrix) that contains RNA. Aliquots of reference 

materials are incorporated into each assay plate and processed in parallel with test samples.

In the Figure 1 example, two reference material pairs are incorporated into the experimental 

design. Reference material pair 1 (blue) represents a pair of commercially available purified-

RNA products with highly divergent gene expression patterns, such as purified human RNAs 

from visceral and nervous system tissues used in the Microarray Quality Control Consortium 

(MAQC) studies [39]. Reference material pair 2 (purple) represents a pair of bulk-generated 

reference materials with divergent gene expression patterns that are of the same biological 

matrix used in the HTTr study. For example, cell lysates from DMSO-treated cells and cells 
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treated with a reference chemical, such as a histone deacetylase (HDAC) inhibitor. In this 

example, reference materials are located in a static position across all assay plates, but could 

also be randomized across the plate. Paired reference materials with divergent gene 

expression patterns are compared to generate DEG profiles with a large range of fold-change 

(FC) values across genes. Since the same reference materials are evaluated on every plate, 

large plate-to-plate inconsistencies in the DEG profile, resulting pathway profile or 

similarity to a reference profile may be indicative of a poor performing HTTr assay. In 

contrast, instances where a reference material DEG profile, pathway profile or similarity 

score for a specific plate is inconsistent with other like comparisons within an HTTr screen 

(or historical data from past screens) may be indicative of a sporadic plate or sample failure. 

Use of matrix-specific bulk reference material provides an additional means to evaluate 

assay performance in terms of consistency of DEG profiles and provides information on 

whether the study-specific biological matrix influences HTTr assay performance using 

purified reference materials as the benchmark. In addition, “no template controls” (NTCs) 

are also included in the experimental design in Figure 1 (yellow wells). NTCs contain no 

RNA or other biological material and are used to identify potential contamination of assay 

reagents with exogenous genetic material that would interfere with the performance on an 

HTTr assay.

Reference chemicals are defined as treatments that produce a robust change in the gene 

expression profile of the cell type being studied. On a plate, the reference chemical 

treatments can then be paired with DMSO control wells to generate DEG profiles and 

evaluate reproducibility of an HTTr assay performance across plates, screening blocks and 

experiments; a similar approach to that described for reference materials. Unlike reference 

materials, reference chemical treatments can be used to identify potential malfunctions or 

poor performance related to automated chemical transfer from dose plates to assay plates 

(i.e. dosing). In analyzing the reference chemical treatments, a simple profile comparison 

approach involves mapping of DEGs to biological signaling pathways and determining the 

consistency in the identity of affected pathways from plate-to-plate. Previous studies have 

demonstrated that pathway-centric analyses are able to identify hallmark effects of model 

toxicants across different in vitro experiments even when the POG identified via statistical 

and fold-change cut-offs is low [27, 41, 42]. Alternatively, signature-based approaches, such 

as Connectivity Mapping [43], compares the pattern of gene expression from reference 

chemical treatment with a database of reference profiles enabling the evaluation of assay 

performance based on the strength of association. The Figure 1 example illustrates the use of 

three reference chemical treatments in triplicate (Figure 1, red wells of varying shades) for 

evaluating HTTr assay performance across plates and screening blocks or studies performed 

over many weeks/months/years of experimentation.

The use of commercially-available paired reference materials, assay matrix-specific paired 

bulk reference materials, reference chemical treatments and NTCs would allow a researcher 

to evaluate many different aspects of an HTTr experimental workflow. Results from these 

QC samples can be used in a combinatorial fashion for plate-based QC evaluations. For 

instance, failure of one of the QC comparisons to meet established performance criteria may 

trigger more in-depth evaluation of data from an assay plate, but may not necessarily 

indicate that all the samples on that plate performed poorly. However, failure of many of the 
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QC comparisons on a plate to meet established performance criteria would provide stronger 

evidence that data on that plate is of poor quality and may need to be repeated. Review of 

QC could be considered as part of the decision making process for inclusion of HTTr data in 

a chemical risk assessment. In addition, the use of reference materials and reference 

treatments also allows comparisons of results across technology platforms (e.g. microarrays, 

RNA-seq, qRT-PCR, etc.) for evaluating comparative performance of a particular HTTr 

assay or integrating results from multiple transcriptomic data types.

High-Throughput Transcriptomics and Potential Applications in Risk 

Assessment

Figure 2 illustrates a generalized workflow for a potential use of HTTr data in chemical risk 

assessment, namely screening-level bioactivity-to-exposure ratio (BER) analysis. 

Importantly, in addition to a database of transcriptomic profiles obtained from an HTTr 

screen (Figure 2, gray cylinder) downstream steps of this workflow require drawing 

information from other databases; namely those containing experimentally-derived or 

predicted human toxicokinetic data (Figure 2, green cylinder) and chemical exposure 

predictions for a population of interest (Figure 2, yellow cylinder).

Concentration-response modeling for BPAC determination

The first step in the proposed workflow is selection of a subset of data from the HTTr 

database corresponding to the chemical(s) of interest, along with corresponding controls 

(Figure 2A). The data is then normalized and transformed as appropriate for the 

transcriptomic assay used in the HTTr screen (Figure 2B). For HTTr studies that screen 

multiple concentrations of test chemicals (as illustrated in Figure 1), a combination of 

statistical tests (e.g. trend tests or ANOVA) and curve-fitting is used to identify 

concentration-responsive genes (CRGs); to determine concentration-response functions 

(curve shapes) that best describes the transcript-level data; and use those functions to 

calculate transcript or gene level potency estimates for a given level of biological response 

(Figure 2C). Potency estimates for CRGs are then mapped to a pre-defined gene set or 

pathway (Figure 2D) to calculate “pathway-level” potency estimates. Pathway-level potency 

estimates are then ranked to identify the most sensitive pathways or to determine at what 

concentration pathways known or suspected to be associated with the toxicity of a chemical 

are perturbed (Figure 2E). Either approach lends itself to the identification of a biological 

pathway altering concentration (BPAC) that can be used as an input for screening-level BER 

analysis.

A popular approach for concentration-response analysis of transcriptomics data that follows 

this scheme is benchmark dose modeling using the BMDExpress software package [44]. 

BMD modeling was originally developed by the USEPA as a data-driven approach for 

identifying PODs from in vivo toxicity studies for use in chemical risk assessment and is 

described in detail elsewhere [45, 46]. The concept of adapting BMD modeling for 

transcriptomics data originated as a proposed means of incorporating transcriptomics data 

into a chemical risk assessment framework [21]. Thomas et al. leveraged the statistical 

procedures contained in the USEPA Benchmark Dose Modeling Software (BMDS) package 
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[47], applied them to gene-level curve fitting of normalized, log2-transformed Affymetrix 

microarray data and introduced the innovative approach of aggregating gene-level BMDs 

into Gene Ontology (GO) or pathway-based potency estimates [21, 22, 29]. In brief, 

expression data is treated as a continuous variable and a benchmark response (BMR) 

corresponding to a quantitative change in expression (i.e. % change or number of standard 

deviations relative to the vehicle control) is selected. Then, concentration-response curves of 

various shapes (i.e. Hill, polynomials, exponentials, etc.) are fit to the data and the curve that 

best describes the data according to an objective criterion (i.e. Akaike’s Information Criteria, 

AIC) is selected as the best-fitting model. The BMD is defined as the point along the best-

fitting curve that intersects with the BMR. An upper and lower confidence limit on the BMD 

may also be calculated (known as the BMDU and BMDL, respectively). Dose-responsive 

transcripts are then categorized in terms of membership within a GO category or pathway 

and a composite BMD or BMDL (such as the mean or median BMD or BMDL across all 

affected transcripts within a category) is reported as an estimate of chemical potency for 

pathway perturbation. The BMD analysis approach has been used to analyze data from a 

variety of transcriptomic assay types including microarray, RNA-Seq and qPCR arrays [27, 

48]. A software application known as BMDExpress was developed to facilitate high-

throughput curve fitting of transcriptomics data and reporting of results [49]. The program 

has since been modified to facilitate different types of pre-filtering options based on analysis 

of variance (ANOVA) or trend testing, pathway enrichment tests and now includes a user-

friendly graphical user interface for interactive analysis and a command-line mode for batch 

execution suitable for large-scale studies (https://github.com/auerbachs/BMDExpress-2/

wiki) [44]. BMD modeling of transcriptomics data has seen a surge in popularity in recent 

years and has recently been adopted by the National Toxicology Program (NTP) as the 

preferred methods for dose-response modeling of transcriptomics data, with an emphasis on 

estimating the biological potency of test substances, promoting consistency in reporting of 

transcriptomic dose-response data and facilitating uptake by the regulatory community [50]. 

In addition, other concentration-response modeling approaches and/or packages such as 

PROAST [51], tcpl [52] and non-parametric methods have been either suggested or 

implemented for analyzing transcriptomics data [50, 53].

Transcriptomic dose-response information from in vivo studies modeled and aggregated as 

described above has shown excellent correlation between the composite BMD for the most 

sensitive pathway and the BMDs for apical cancer and non-cancer effects [13, 22, 27, 29, 

54]. Importantly, for the chemicals studied, the ratio of apical and transcriptional BMDs for 

a target tissue was small, indicating that transcriptional effects were not occurring at doses 

that were substantially lower than those associated with the most sensitive apical endpoints 

[13, 22, 27, 29, 54, 55]. Therefore, transcriptomic BMDs were either slightly more 

conservative or approximately equal to BMDs derived from traditional toxicity endpoints. 

Furthermore, transcriptional BMD values from in vivo studies were generally concordant 

across exposure durations indicating that shorter duration studies could provide comparable 

potency values than longer duration (sub-chronic or chronic) studies [13]. A previous study 

has also explored the impact of data pre-filtering and different methods for pathway-based 

and non-pathway-based aggregation of gene level BMD results. Overall, pre-filtering of 

transcriptomics data to remove probes with no evidence of dose-responsiveness prior to 
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BMD modeling tended to produce more conservative (i.e. lower) pathway-level BMD 

estimates [27]. Different approaches for aggregating gene level BMDs to produce an overall 

POD tended to vary no more than one order of magnitude [28], demonstrating that different 

ways of summarizing BMD modeling results has comparatively small impact with regards to 

determining the threshold where significant perturbations in biology occur. In addition to 

POD determination, transcriptomic BMD modeling and pathway aggregation has been 

applied to more complex research questions that are applicable to chemical risk assessment 

such as investigating cross-species sensitivities to toxicants [30, 31, 54], characterizing the 

relative potency of structurally-related chemicals [32] and exploring dose-dependent 

transitions in toxicological responses [56, 57].

In in vivo transcriptomics studies, biological pathways relevant to the apical tissue-level 

effects of a chemical can often be identified within the list of pathways affected using the 

BMD modeling approach [13, 21, 55, 58, 59]. However, in vivo transcriptomic BMD 

modeling studies have also demonstrated that while the quantitative relationship between the 

most sensitive pathway and most sensitive apical adverse response is strong, the most 

sensitive pathway does not always have a clearly discernable mechanistic linkage with the 

most sensitive apical effect. Likewise, in in vitro transcriptomics studies, the list of perturbed 

pathways often contains pathways with known or strongly suspected mechanistic linkage 

with the chemical or agent under study [31, 56, 60]. Like the in vivo situation, the most 

sensitive pathway does not always have a clearly discernable mechanistic linkage to an 

apical cellular or tissue level effect or a chemical. In terms of HTTr screening studies, it is 

anticipated that most of the chemicals being studied will fall into the “data-poor” category, 

meaning that often mechanistic linkage between perturbed pathways and an apical biological 

effect cannot be inferred, chiefly due to lack of existing toxicity data. These observations 

have led to two potential routes for incorporation of HTTr data into a risk assessment 

framework. In instances where there is evidence for a causal relationship between an 

affected pathway and an apical effect, the BMD of the putative causal pathway could be 

used as a candidate BPAC. In instances involving “data poor” chemicals, the BMD of the 

most sensitive pathway could serve as a protective, if not predictive, BPAC until gaps in the 

existing mechanistic knowledge-base are filled [22, 61]. BPACs derived using the latter 

approach may have limited predictive value for specific toxicities, but are hypothesized to 

provide a reliable potency estimate for the threshold concentration where biological 

signaling is perturbed by a chemical in an in vitro system.

In vitro-to-in vivo extrapolation (IVIVE) and bioactivity to exposure ratio 

(BER) analysis

A BPAC is a concentration of a chemical, expressed as a nominal media concentration, that 

produces a significant perturbation of a cellular process in an in vitro test system. To 

perform a human-relevant, bioactivity-to-exposure ratio (BER) analysis based on in vitro 
data, three steps are required: 1) conversion of the BPAC to an administered dose equivalent 

(ADE) that human populations may encounter (Figure 2F) using experimentally-derived 

human plasma binding and hepatic clearance data (Figure 2, green cylinder) and reverse 

dosimetry, 2) obtaining an estimate of exposure in the human populations of interest (Figure 
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2, yellow cylinder) and 3) comparison of ADEs and exposure predictions to determine if an 

overlap exists between the dose of a chemical expected to produce perturbations in human 

biology and the dose of a chemical that humans may receive from the environment (Figure 

2G). In the case of HTTr data, the transcriptomic BPAC is assumed to be equivalent to the 

concentration in the blood that would produce perturbation of a biological pathway in vivo. 

The process of converting in vitro potency estimates, such as BPACs, to human-relevant 

ADEs with accompanying estimates of human population variability has been described 

extensively elsewhere [23–26, 33]. In addition, the processes and challenges associated with 

generating high-throughput human exposure predictions with uncertainty bounds have also 

been described elsewhere [25, 26, 33, 62, 63] and will not be discussed further here.

In the final step of an IVIVE-based BER analysis, the distribution of ADEs corresponding to 

the transcriptional BPAC are compared to the distribution of the high-throughput exposure 

predictions. A chemical for which the predicted exposure does not overlap with the 

predicted ADE would be of less concern than a chemical where there is an overlap. To 

prioritize chemicals in this manner, they are ranked by the separation between the lower 

bound of the ADE distribution and the upper-bound of the exposure prediction. Previous 

analyses of HTS data in this manner have demonstrated that a substantial gap exists between 

ADEs calculated from in vitro BPACs and the corresponding high-throughput human 

exposure prediction for most environmental chemicals [24, 26, 33]. Likewise, occasions 

where the BPAC-derived ADEs overlap with the high-throughput human exposure 

predictions are rare [24, 33]. It is yet to be determined whether results from HTTr screening 

of environmental chemical libraries, such as the ToxCast and Tox21 libraries used in the 

aforementioned studies, will yield similar results.

Putative mechanism of action prediction using HTTr data

In addition to providing quantitative estimates for potential threshold(s) for chemical 

bioactivity, HTTr data also has potential use for predicting putative mechanisms of action for 

chemical toxicity [20]. There are many approaches that may be used for putative mechanism 

of action prediction, including (but not limited to): 1) pathway mapping of CRGs to 

collections of gene sets (as described in Figure 2), 2) DEG signature querying with 

transcriptional biomarkers and 3) connectivity mapping [43] of transcriptomic signatures to 

databases of annotated transcriptomic reference profiles. Each of these can be considered 

hypothesis-generating approaches for identification of putative molecular mechanisms of 

action that may be confirmed through testing in orthogonal functional assays or compared to 

supporting information from the scientific literature in a weight-of-evidence framework. In 

depth discussion of each of these approaches is beyond the scope of this article; however a 

general, conceptual overview of potential applications for mechanism of action prediction is 

presented below.

Pathway mapping of CRGs to collections of gene sets is a straightforward approach for 

discerning putative mechanisms of action from concentration-response modeling data. For 

example, if an estrogenic chemical is tested in an estrogen-responsive cell line and the CRGs 

then mapped to a gene set collection containing an estrogen signaling pathway, one would 

expect that this pathway would be included in the list of perturbed pathways and reasonably 
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hypothesize that the chemical in question targets the estrogen receptor. As detailed above, 

there are numerous examples where mapping CRGs to gene set collections yielded 

biological pathways with plausible mechanistic linkage to the chemical of interest [21, 30, 

31, 55–57]. Approaches such as Gene Set Enrichment Analysis (GSEA) and Gene Set 

Variation Analysis (GSVA) are designed to assess the coordinated responses of functionally 

related genes contained within a defined pathway/gene set/ontology structure using rank 

order statistical methods [64, 65]. These types of approaches are sensitive to small 

magnitude changes in coordinated sets of genes, a phenomenon that may be expected to 

occur near the threshold for chemical bioactivity in the context of a tested concentration 

range. Gene set enrichment approaches have typically been used in “case-control” (i.e. two 

sample) comparison but have potential utility for concentration-response modeling of 

enrichment scores for identification of BPACs. As with the CRG mapping approach, a set of 

pathways enriched in response to chemical treatment could be used to generate hypotheses 

regarding the putative mechanisms of action of a chemical of interest.

Transcriptional biomarker-based approaches have also been proposed as a means for 

identification of putative mechanisms of action for chemicals using HTTr data. “Toxicity-

centric” approaches use gene expression patterns produced by model toxicants with well-

characterized mechanisms to identify panels of genes whose expression levels change with 

the onset of cellular stress or injury. The toxicity-centric approach has been used to develop 

a robust transcriptional biomarker for distinguishing genotoxic from non-genotoxic 

chemicals (i.e. the TGx-DDI biomarker) [66–68]. This biomarker was developed to augment 

and increase the classification accuracy of existing in vitro test batteries for genotoxicity that 

often produce “positive” results for non-genotoxic chemicals [66]. “Target-centric” 

approaches use gene expression patterns produced by pharmacological modulation or 

genetic knockdown of a discrete molecular target to identify panels of genes whose 

expression levels are affected by the functional status of the target under study. Examples of 

target-centric transcriptional biomarkers include those developed for estrogen receptor alpha 

[69], androgen receptor [70], constitutive androstane receptor [71, 72], aryl hydrocarbon 

receptor [73] and peroxisome proliferator-activated receptor alpha [74]. In both approaches 

transcriptional biomarkers are constructed by comparing the transcriptomic response profiles 

of multiple perturbagens that affect the same molecular target, act through the same 

mechanism or produce the same apical cellular effect. Genes that are consistently upor 

down-regulated across the profiles are identified and incorporated in a transcriptional 

biomarker profile. The biomarker profiles can then be queried against the transcriptomic 

profiles of unknown chemicals to determine whether there is evidence for a particular 

molecular target/mechanism of action being affected or activated. Clustering-based 

approaches have been used to demonstrate similarity in transcriptional biomarker response 

profiles across a chemical set and illustrate predictive value [66, 67]. In addition, rank-order 

statistical tests have been used to quantify the strength of association between transcriptional 

biomarkers and transcriptomic profiles of chemicals under investigation [69, 70]. Overall, 

cross-validation testing using chemical training sets has demonstrated that transcriptional 

biomarker-based approaches like those described above have high balanced accuracy for 

classification of chemicals as “positive” or “negative” for affecting a particular molecular 

target or acting through a particular mechanism of action. However, it is worth noting that 
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development of transcriptional biomarkers with high predictive value depends upon the 

availability of transcriptomic data from multiple reference treatments that is not confounded 

by off-target effects that may arise with accumulating tissue doses above those needed to 

activate the target/toxicity of interest or as a result of off-target effects of genetic 

manipulations (i.e. promiscuous knockdown). Incorporation of treatments that produce off-

target effects in the input set used to construct a transcriptional biomarker will likely have a 

negative impact on the predictive value of said biomarker. Likewise, the predictive value of a 

transcriptional biomarker may be limited to a particular domain of applicability such as cell 

types that express a particular functional target or the cellular machinery necessary for 

manifestation of a particular toxicity. For example, using a biomarker approach to identify 

PPAR active chemicals in an HTTr data set derived from a cell type that does not express 

PPAR may lead to spurious or inaccurate mechanistic predictions.

Connectivity mapping is yet another approach that can be used to identify putative 

mechanisms of action for a chemical using HTTr data [43]. In this approach, a gene 

expression profile for a treatment of interest is compared to a matching control and all genes 

are rank-ordered according to their differential expression (i.e. up- or down-regulated). The 

differential expression signature is then queried against a large reference database containing 

rank-ordered differential expression signatures from a large variety of treatments. If up- and 

down-regulated genes in the query signature appear at the upper or lower extremes, 

respectively, of a reference signature, then the two conditions have strong positive 

connectivity (i.e. are correlated). Conversely, if up- and down-regulated genes in the query 

signature appear at the opposite extremes, respectively, of a reference signature, then the two 

conditions have strong negative connectivity (i.e. are anti-correlated). The connectivity 

scores across the entire reference database can then be ranked to identify treatments that are 

the most similar (or opposite) to said query. Strong positive connectivity may indicate that 

the query and reference treatment affect a molecular target or biological pathway in the same 

manner. Strong negative connectivity may indicate that the query and reference treatment 

have opposite effects on a biological process, such as agonism or antagonism of a receptor. 

The Connectivity Mapping approach has been used for putative identification of novel 

therapeutics and drug repurposing based on similarity in gene expression signatures [75–77] 

and has also shown promise for predictive toxicology [78, 79]. In order for Connectivity 

Mapping to be useful for putative mechanism of action prediction in an assessment context, 

the reference profile database must be populated with data from treatments (pharmacological 

or genetic) that are unequivocally associated with a specific effect on a molecular target. A 

putative mechanism of action for a treatment of interest could then be inferred via strong 

negative or positive connectivity with target-annotated reference profile(s). Similar to 

transcriptional biomarker-based approaches, Connectivity Mapping for mechanism of action 

identification should be used cautiously, taking into consideration the applicability domains 

of the in vitro model used to generate the HTTr data and the model used to generate the 

reference profiles. For example, it is anticipated that the predictive power of a Connectivity 

Mapping approach for a particular target would be negatively affected if either the cell type 

used to generate the query signature, or the cell type used to generate the reference 

signature, lacked functional expression of the target of interest.
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Recently, machine learning approaches have been applied to transcriptomics data for 

prediction of drug-target interactions, grouping of chemicals into mechanistic and 

therapeutic classes and deriving transcriptional biomarkers for various chemical classes [80–

82]. These studies primarily used drugs and well-studied, well-annotated model toxicants to 

train prediction models. Machine learning approaches have potential application for HTTr-

based MOA prediction for environmental chemicals, including data poor chemicals, but has 

yet to be widely applied for this purpose. Development of large datasets of transcriptomic 

reference profiles specific to the environmental chemical space would aid in evaluating the 

utility of machine learning approaches for mechanism of action prediction and chemical 

grouping.

Summary and Conclusions

Technological advancements in transcriptomics assays, as well as increasing efficiency and 

declining cost, has made HTTr feasible for chemical hazard screening. In addition, there is 

an interest in many governmental and non-governmental organizations for incorporation of 

data from NAMs, such as HTTr, into chemical assessment practices. Demonstrating HTTr 

assay performance and reproducibility is a key prerequisite for including such data in an 

assessment context. Incorporating standardized reference materials and reference chemical 

treatments can demonstrate the performance and reproducibility of HTTr assay technology 

and laboratory workflows to support their utilization in a chemical assessment dossier. 

Furthermore, the BER analysis framework presented here is one of the ways HTTr data may 

be used in regulatory decisions, particularly in the context of prioritization and screening 

level chemical assessments. Additional work is required to establish HTTr performance and 

reporting standards that would support use of HTTr data in regulatory decision making and 

for development of chemical of chemical case studies that illustrate application of HTTr data 

in a variety of regulatory decision contexts.
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Figure 1. Generic experimental design for HTTr chemical-concentration response screening.
A) Example of a configuration for a series of assay plates in an HTTr screen. Columns 2–24 

contain cells in culture. Column 1 is empty. B) Example of a configuration for a series of 

dose plates in an HTTr screen. A total of 44 DMSO-solubilized chemicals in eight-point 

dilution series are arranged from high to low concentration (varying shades of green), 

vertically in a column, in the top and bottom halves of the dose plate, respectively. In 

Column 24, vehicle wells (i.e. DMSO only) are shown in brown and triplicate wells of three 

different reference compounds are shown in various shades of red. Wells A24, B24 and C24 

are empty and are used as placeholders for untreated culture wells. C) Test chemicals housed 

on the dose plates are applied to the assay plates in a randomized pattern using 

microfluidics. The first column of the plates is empty of cultures and test substances to 

facilitate dispensing of QC samples as illustrated in panel D. In this design each test 

chemical x dose combination has a single technical replicate per plate while DMSO 

controls, untreated controls and reference chemicals have 3–4 technical replicates per plate 

D) Shades of blue in the first column represents triplicates of two commercially-available 

reference materials (e.g. purified RNAs). Shades of purple in the first column represents 

triplicates of two reference materials derived from the matrix under study. For example, bulk 

lysates or purified RNAs of DMSO-treated cells and cell treated with a pharmacological 

agent, such as an HDAC inhibitor. The purpose of paired reference materials (A & B; C & 

D) to ensure that the same biological samples, from the same lot or stock, are tested on every 

assay plate and for derivation of plate-level DEG profiles for evaluating reproducibility of 

assay performance. E) Chemicals in the dose plate series are tested in three replicate 

cultures.

Harrill et al. Page 18

Curr Opin Toxicol. Author manuscript; available in PMC 2020 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 2. Framework for the use of HTTr data in screening level risk assessment.
HTTr screening data is generated and housed in a database (gray cylinder). For analysis, 

data are subset by chemical of interest and corresponding vehicle controls (A) and the data is 

normalized and transformed (B) in a manner appropriate for the HTTr assay being used. The 

normalized and transformed data is then used for gene-level concentration response (CR) 

modeling, identification of concentration-responsive genes (CRGs) and calculation of 

potency estimates for biological effects (C). Typically, a pre-filter (i.e. Trend test or 

ANOVA) is applied to filter out probes that do not show any indication of concentration-

dependent changes in expression prior to modeling. CRGs are then mapped to pathways 

using existing knowledgebases (D). Pathway-level aggregate potency values are calculated 

and a biological pathway altering concentration (BPAC) is identified corresponding to the 

most sensitive mechanistically-relevant pathway (star) or the most sensitive overall pathway 

(E). BPACs are converted to ADE using experimentally-derived or predicted estimates of 

hepatic clearance and plasma protein binding (green cylinder) and reverse dosimetry using 

high-throughput toxicokinetic (httk) modeling of a heterogeneous human population (F). 

The ADEs are then compared to known or predicted human exposure levels (yellow 
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cylinder), including estimates of uncertainty, to determine if an overlap dose of a chemical 

expected to produce perturbations in human biology and the dose of a chemical that may 

result from human exposure in the environment (G). Chemicals with a BPAC ADE that 

overlaps with predicted exposure estimates may be of more concern than those that do not.
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