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Abstract

Aim: To evaluate the Inadequate oxygen delivery (IDO2) index dose as a predictor of cardiac 

arrest (CA) in neonates following congenital heart surgery.

Methods: Retrospective cohort study in 3 US pediatric cardiac intensive units (1/2011-8/2016). 

Calculated IDO2 index values were blinded to bedside clinicians and generated from data 

collected up to 30 days postoperatively, or until death or ECMO initiation. Control event data was 

collected from patients who did not experience CA or require ECMO. IDO2 dose was computed 

over a 120-minute window up to 30 minutes prior to the CA and control events. A multivariate 

logistic regression prediction model including the IDO2 dose and presence or absence of a single 

ventricle (SV) was used. Model performance metrics were the odds ratio for each regression 

coefficient and receiver operating characteristic area under the curve (ROC AUC).

Results: Of 897 patients monitored during the study period, 601 met inclusion criteria: 29 

patients had CA (33 events) and 572 patients were used for control events. Seventeen (59%) CA 

and 125 (26%) control events occurred in SV patients. Median age/weight at surgery and level of 

monitoring were similar in both groups. Median postoperative event time was 0.73 days 

[0.05-22.39] in CA patients and 0.82 days [0.08 25.11] in control patients. Odds ratio of the IDO2 

dose coefficient was 1.008 (95% CI: 1.006 - 1.012, p=0.0445), and 2.952 (95% CI: 2.952 - 3.258, 

p=0.0079) in SV. The ROC AUC using both coefficients was 0.74 (95% CI: 0.73 - 0.75). These 

associations of IDO2 dose with CA risk remained robust, even when censored periods prior to 

arrest were 10 and 20 minutes.

Conclusion: In neonates post-CPB surgery, higher IDO2 index dose over a 120-minute 

monitoring period is associated with increased risk of cardiac arrest, even when censoring data 10, 

20 or 30 minutes prior to the CA event.

INTRODUCTION

Postoperative care of neonates undergoing repair of congenital heart disease (CHD) 

demands integration and constant interpretation by multiple interdisciplinary bedside 
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healthcare providers of high volume physiologic, laboratory, and diagnostic data. In busy 

intensive care units, caregivers are challenged by high acuity and low provider-to-patient 

ratio, information and interpretation overload, subtle vital sign trends, and distractions. 

These factors may contribute to late recognition of inadequate oxygen delivery to critical 

tissues, progressive shock and escalating risk for cardiac arrest (CA).

CA occurs more frequently in hospitalized children with acquired and congenital cardiac 

disease compared to children without cardiac disease [1,2]. From the Pediatric Cardiac 

Critical Care Consortium (PC4) database [3], neonates (< 28 days of age) have double the 

prevalence of CA compared to infants (28 days to 1 year of age), and 70% of postoperative 

CA events occur between admission from the operating room and postoperative day 7. 

Although not currently captured in the PC4 database, there may be circumstances in which 

there is evolving inadequate oxygen delivery leading to clinical deterioration and CA that is 

not appreciated by conventional monitoring and caregivers at the bedside. The capture of 

time-series physiologic data at the bedside for real-time analysis and predictive modelling 

may be one way to integrate diverse physiologic signals and provide an early warning 

related to the trajectory of a patient in response to their clinical state or to specific 

treatments. One such algorithm that has recently been FDA 510(k) cleared and has the 

potential to be displayed at bedside by the T3 Visualization Platform (Etiometry, Inc., 

Boston, MA) is the probability of Inadequate oxygen delivery (IDO2) index.

The IDO2 algorithm utilizes ten physiologic values in the full dataset captured from the 

bedside monitor and laboratory values streaming into the T3 platform from the local 

laboratory system to compute the IDO2 index in real time. The index is calculated at 5 

second intervals, and provides a probability between 0 and 100 of the measured mixed 
systemic venous saturation being lower than 40% [Appendix]. IDO2 has been previously 

validated by positive correlation with other indices of oxygen perfusion (serum lactate) and 

longer length of stay [Appendix,4]. We hypothesized the cumulative IDO2 (“IDO2 dose”) 

during a 120-minute monitoring interval would identify the potential risk for CA, and 

evaluated whether dose of IDO2 between 150 minutes and 30 minutes prior to cardiac arrest 

were associated with progression to full CA in full-term neonates who had undergone 

cardiac surgery with cardiopulmonary bypass (CPB).

METHODS

Design, setting and patients

This is a retrospective cohort study of post-CPB full-term neonates (0-28 days of age) with 

CHD admitted to three tertiary care pediatric cardiac intensive care units (CICUs) in the 

United States. The study protocol was approved by the institutional review board at all three 

institutions. Patients were enrolled prior to FDA 510(k) clearance of the IDO2 algorithm and 

thus IDO2 was retrospectively calculated using de-identified data. Clinicians therefore did 

not have real-time or bedside access to displayed IDO2 values during the study period.

Two of the institutions used the T3 platform (Etiometry Inc, Boston, MA) for data capture 

and one institution used the BedMaster platform (Excel Medical electronics Inc, Jupiter, 

Florida). Review and analysis of de-identified data including demographics, physiologic 
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trends, diagnostic information, procedures, and outcomes were limited to the first 30 days 

following the operation, death or ECMO cannulation. Our Appendix contain the data 

elements included in the IDO2 calculation, and further details about the collection and 

preprocessing of data including: IDO2 calculation, approach to artifacts, level of monitoring, 

and missing data. Criteria for inclusion as a CA case were: 1. Event location in the CICU, 2. 

Event requiring chest compressions and/or defibrillation, 3. The CA is documented in the 

medical records and T3/BedMaster data are available for the calculation of IDO2. Exclusion 

criteria were: 1. Prematurity, 2. Birth weight < 2 kg, 3. Initiation of ECMO in the operating 

room or prior to the event, 4. Incomplete data, 5. Event occurred after the rollout of display 

of IDO2 values on bedside monitors in the unit.

A cardiac arrest (CA) was defined as an acute event requiring chest compressions and/or 

defibrillation as a result of loss of spontaneous circulation or acute bradycardia. CA event 

data were retrieved from the electronic medical record and reconciled with the T3 high 

definition bedside monitor-captured data. Event onset time stamp was obtained from the 

high definition data. Neonates from the same cohort of post-CPB patients who did not 

experience CA in the operating room or the first 30 postoperative days served as controls. A 

control event was defined as a random time window of 150 minutes (120 minutes analysis 

window and 30 minutes censored time interval) during a control patient’s postoperative 

time. From the possible control patients, we generated 1000 different cohorts of control 

events. Control event time windows were chosen to ensure monitoring was similar to the 

monitoring of the CA patients at the time of the event and that the distribution of control 

event times in the cohort was statistically similar to the distribution of CA event times in the 

exposed cohort. Figure 1 depicts the distribution of event times in a sample control cohort as 

compared to the exposed cohort. Distribution quartiles were matched between the exposed 

cohort and the control cohorts. Each control cohort included events from on average 489 of 

the 572 possible control patients to maintain a 15 to 1 ratio of control events to CA events. 

All 572 control patients were included in at least 1 of the 1000 cohorts generated. Each 

control patient selected for a cohort contributed one control event to the cohort.

As the IDO2 reflects a physiologic state that is dynamic, rather than calculating a rate of 

change or defined level of IDO2, we prospectively calculated the exposure or “dose” of 

IDO2 which we defined as the area under the IDO2 curve computed over a 120-minute 

window that preceded the CA and “control” event by a censored pre-event window of 30 

minutes (Figure 2). Secondary/sensitivity analyses assessed alternative definitions of “dose 

of IDO2” with 20 minute and 10-minute censored pre-event windows substituted for 30 

minutes.

Statistical Analysis

The probability of IDO2 depends on the monitoring data utilized by the algorithm. Hence, in 

order to allow comparison between CA events and control events it was important that 

similar level of monitoring be available for each patient during the CA or control event time 

window. Due to the minimum data set requirement of IDO2, every event for which IDO2 was 

calculated had, at a minimum, heart rate, SpO2, and blood pressure measurements, either 

from an invasive or non-invasive source.
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To analyze the relationship between 120 minutes IDO2 dose window and risk of CA, we 

performed a multivariate logistic regression analysis. In the analysis, the response variable 

was a binary variable indicating whether or not a CA event occurred following the prediction 

window (1=CA occurred or 0=CA did not occur), and the regression variables were IDO2 

dose (IDO2
Dose) as calculated in Figure 2 and a binary label (SV) indicating whether or not 

the patient that the event corresponded to was a single ventricle patient (1= Single Ventricle, 

0 = Non-Single Ventricle). The single ventricle label was included to adjust for the increase 

in CA risk associated with this type of physiology [5]. The regression model was as follows:

logit(pCA) = β0 + βIDO2
∗ IDO2

Dose + βSV ∗ SV Equation 1.

Where, pCA is the probability of CA occurring following the prediction window, and β0 is a 

constant offset, and βIDO2, βSV are the regression coefficients for each of the regression 

variables. The logit(pCA) is defined as the natural log of the odds of a CA event:

logit(pCA) = ln
pCA

1 − pCA
, Equation 2.

To examine how these odds are affected by each model term, we compute the odds ratio 

(OR), which is calculated from the regression model in equation 1 by taking the exponential 

of both sides and computing the ratio of the odds for one unit change of the model variable, 

while holding the other variable constant. Specifically, taking the exponential results in,

pCA
1 − pCA

= e
β0 + βIDO2

∗ IDO2
Dose + βSV ∗ SV

= e
β0e

βIDO2
∗ IDO2

Dose

e
βSV ∗ SV

Equation 3.

And then the OR for each component is calculated as,

OR(IDO2
Dose) = e

β0e
βIDO2

∗ (IDO2
Dose + 1)

e
βSV ∗ SV

e
β0e

βIDO2
∗ IDO2

Dose

e
βSV ∗ SV

= e
βIDO2 Equation 4.

And,

OR(SV) = e
β0e

βIDO2
* IDO2

Dose

e
βSV * 1

e
β0e

βIDO2
* IDO2

Dose

e
βSV * 0

= e
βSV Equation 5.
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Results are reported as the OR for each of the regression coefficients and as the c-statistic 

for the receiver operator curve. The OR represents the change in odds of CA for each unit 

change in IDO2 dose. The c-statistic represents the ability of the logistic regression model to 

distinguish between patients who suffered a CA event and control patients. [6].

After fitting the regression model to the data, to assess how well the model discriminated 

between CA events and control events, we computed the Receiver Operating Characteristic 

(ROC) curve and associated area under the curve (AUC). Confidence intervals for the AUC 

value were computed from the AUC distribution for all cohorts

All analyses were performed using the Python software programming language. The 

regression analysis was performed using the Generalized Linear Model regression tools that 

are a part of the StatsModels statistical analysis package, and the ROC AUC analysis was 

performed using the scikit-learn Machine Learning package.

RESULTS

Review of medical records between 01/10/2011 – 8/28/2016 identified 897 patients who met 

inclusion criteria. Following exclusions, 601 eligible patients remained (Figure 3A). Table 1 

provides a comparison between CA event and control patients.

Of the initial cohort, 90 CA events in 61 of all patients who met inclusion criteria were 

identified (6.8%). Following exclusions, 33 CA events in 29 of all eligible patients remained 

(4.8%) (Figure 3B) and were compared to on average 489 matched control events from 572 

control patients. Seventeen (59%) of CA events and 125 (26%) of control events were in 

single ventricle patients. Median age and weight at the day of the operation was similar in 

both groups. Median postoperative event time was 0.73 days [0.05-22.39] in CA patients and 

average median event time of all 1000 control cohorts was 0.82 days [0.08 25.11], p = 

0.4469.

Comparison of the level of monitoring in CA event versus control patients during the 150-

minute time window in CA and control patients is provided in Table 2. Invasive continuous 

arterial and central venous pressure data were available in 18 CA events and 319 control 

events. For this subset of events, the calculated AUC for CA event prediction using IDO2 

dose and single ventricle status was 0.81 (95% CI: 0.79 - 0.83). In 7 CA events and 83 

control events invasive central venous pressure data were not available. For this subset of 

events, the calculated AUC for event prediction using IDO2 dose and single ventricle label 

was 0.84 (95% CI: 0.78 - 0.89). For CA patients and control patients who had only central 

venous pressure data (0 and 2 respectively) we could not calculate the AUC because of 

insufficient data. In 8 CA events and 85 control events both invasive arterial or invasive 

central venous pressure data were not available and for this subset of events, the calculated 

AUC for event prediction using IDO2 dose and single ventricle label was 0.54 (95% CI: 0.49 

- 0.57). Lastly, in 15 CA events and 216 control events, hemoglobin data were not available, 

and for this subset of events, the calculated AUC of event prediction using IDO2 dose and 

single ventricle label was 0.63 (95% CI: 0.61 - 0.66).
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For all CA events from the logistic regression analysis, the OR of the coefficient associated 

with IDO2 dose over the 120-minute prediction window was 1.008 (95% CI: 1.006 - 1.012, 

p=0.045), indicating that the odds of CA increase by 0.8% for every unit increase of IDO2 

dose. The OR of the coefficient associated with single ventricle physiology was 2.952 (95% 

CI: 2.675 - 3.258, p=0.008) indicating 2.952 greater odds of CA compared to a patient with 

two-ventricle physiology. The calculated AUC for event prediction using IDO2 dose and 

single ventricle label was 0.74 (95% CI: 0.73 - 0.75) (Figure 4). Our secondary sensitivity 

analyses, which assessed alternative definitions of “dose of IDO2 with 20 minute and 10-

minute censored windows prior to CA event substituted for 30 minutes (Table 3) revealed no 

significant difference in odds of CA between these 3 windows.

DISCUSSION

In this retrospective study utilizing streaming analytics platform that calculated IDO2 in 

neonates following cardiac operations, we demonstrated that a higher IDO2 dose over a 120-

minute monitoring period is associated with a higher risk for cardiac arrest, even when the 

pre-event censored prediction window is 10, 20, or 30 minutes prior to the event. We also 

showed that higher level of monitoring and availability of hemoglobin level increased the 

performance of the algorithm (Table 2).

The IDO2 dose was calculated retrospectively for the purposes of our study, and was not 

displayed for the bedside healthcare providers. We refer to the IDO2 dose as the area under 

the IDO2 curve, computed as the integration of IDO2 values over a 120-minute prediction 

window that ends 30 minutes prior to the event (CA) or the start of retrograde data collection 

for control events (Figure 2). By using the area under the curve method, we account for both 

the magnitude and duration of IDO2 exposure, allowing for better quantification of exposure 

compared to maximum or mean IDO2 values. For example, a transient increase in IDO2 

reflecting a transient increase in the probability that a patient’s oxygen delivery is 

inadequate may not be clinically significant. In contrast, persistent elevation of IDO2 

representing higher probability of low oxygen delivery for a prolonged period of time may 

reflect a clinically significant change in the patient’s clinical state that may lead to end organ 

injury and culminate in CA. Bedside clinicians alerted by this quantitative risk assessment of 

exposure to low oxygen delivery over time (i.e. early warning alert) could be prompted to 

investigate possible etiologies underlying that change and adjust care accordingly. 

Furthermore, our analysis is based on a 120-minute dose window terminating 30 minutes 

before event time. Based on our primary analysis and secondary/sensitivity analysis we 

propose that our method may provide some lead time for the clinicians before a CA event 

occurs. Hence, providing them the opportunity to evaluate and possibly intervene.

As this study was conducted prior to implementation of IDO2 real-time display at bedside, 

we could not measure the effect of display of this index on patient management, prevention 

of CA, and patient outcomes. However, because IDO2 was not available to clinicians during 

the study period, we could test our hypothesis without bias introduced by clinician 

awareness of the IDO2 information. Indeed, our retrospective analysis suggests that the 

IDO2 signal could potentially provide warning for adverse changes in patient trajectory.
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The importance of early recognition of low oxygen delivery states that may lead to CA is 

emphasized by the impact of CA on outcomes in this patient population. Children with 

cardiac disease suffer CA at rates of 2.6-6% with corresponding survival ranging from 

32%-50.6% [1,2,7–10]. Development of progressive shock following open-heart surgical 

repair or palliation of critical CHD may lead to CA if not recognized in time. A recent 

analysis of the epidemiology and outcomes of CA in pediatric CICUs by Alten and 

colleagues [3] revealed that CAs were more prevalent in surgical CICU encounters. Their 

data revealed that the frequency of CA was higher in infants and especially in neonates. 

Cases involving greater surgical complexity and/or single ventricle palliation of any type had 

a disproportionally greater prevalence of CA. These data reinforce the value of our focus on 

this patient population.

Timely recognition of low oxygen delivery trajectories may allow prevention of CA events. 

Unfortunately, standard ICU monitoring systems are designed to alarm when age dependent 

set vital sign thresholds are crossed, but the sensitivity and specificity of such alarms to 

predict or prevent CA has not been established, and over 90% of such alarms may not be not 

relevant to patient safety [11].

Clinical support algorithms for identification of adverse clinical trajectories that increase the 

risk of CA are not available in the pediatric CICU in spite of major technological advances 

in high resolution data collection, storage, and graphic representation [12,13]. Kennedy et al 

[14] described CA prediction models using time series analysis as input. Their models were 

superior to traditional models built with multivariate data and a regression algorithm [15–

20]. Machine learning models are likely to generate even more robust predictions, but the 

clinical application of time series analysis and machine learning models will require the 

ability to feed processed data back to the bedside in a timely fashion, and such functionality 

is to our knowledge not currently available. In contrast, the IDO2 dose approach can deliver 

risk prediction information to the bedside in near-real time, with a pre-clinical deterioration 

window of sufficient duration to allow potential intervention.

The use of multi-institutional datasets also constitutes a strength of our approach [21], since 

testing the external validity of predictive models requires data aggregation from multiple 

institutions. The T3 platform demonstrated the feasibility of combining high resolution 

physiologic datasets from separate institutions, an important consideration given the relative 

low frequency of CA events.

The current study shows an association of higher IDO2 dose from 150 to 30 minutes prior to 

a CA, and this may be useful in our patient population. We propose that this signal could 

warn the CICU providers of ongoing low oxygen delivery states that increase the risk of CA 

events. Future studies will be needed to further validate this approach and test the ability of 

the IDO2 to effectively influence care and prevent CA events.

There are several limitations to our study. First, the retrospective nature of our data limits 

our ability to track real time management decisions, changes in support, and other 

confounding factors. While we can hypothesize that these CA events were preventable, a 

future interventional clinical trial would be needed to test such hypothesis. A second 
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limitation is the small number of CAs in our patient cohort. This is related to the known 

incidence of CA in neonates undergoing CPB operations. This limitation is offset by the 

homogeneous nature of the study group but also justifies the need for larger prospective 

validation studies.

In conclusion, we showed that in neonates post-CPB surgery, higher IDO2 index dose over a 

120-minute monitoring period is associated with increased risk of cardiac arrest. We propose 

that a model-based index derived from physiologic data streams and represented by a 

calculated IDO2 index provides potentially actionable early warning information to 

clinicians at the bedside. Our findings support the need for prospective work to test the effect 

of display of this early warning signal on timely patient assessment, decision making, patient 

management, prevention of cardiac arrests, and important patient outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An example distribution of event times in the exposed group and control group for one of the 

control group cohorts generated
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Figure 2. 
An example of the IDO2 index prior to a cardiac arrest. The value of the index at a given 

time slice is represented by the height of the red bars. The cardiac arrest occurs at Event 

Time. IDO2 Dose is computed by integrating the IDO2 index over the 120-minute window 

highlighted with the shaded box There is a 30-minute censored time interval prior to the 

cardiac arrest that is not included in the dose calculation
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Figure 3. 
Flow charts outlining study patient selection (A) and cardiac arrest event selection (B). CA, 

cardiac arrest; CPB, cardiopulmonary bypass; ECMO, extracorporeal membrane 

oxygenation; IDO2,inadequate oxygen delivery
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Figure 4. 
Receiver Operating Characteristic Curve (ROC) that assesses how well IDO2 Dose predicts 

cardiac arrest (blue line).The Area Under the Curve (AUC) of 0.74 is included in the legend. 

The ROC was generated using a logistic regression model that included IDO2 Dose, and a 

single ventricle label for risk adjustment. The ROC for an unbiased coin is also shown for 

comparison (black dashed line).
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Table 1.

Characteristics of study patients. For control patients, average values across he cohorts are depicted

Variable Exposed Control

No. (Percentage) Median [min – max] Average no. (Percentage) Average median [min – max]

Age at day of operation, days 5.8[2.79 21.15] 5.85[1.58 28.35]

Age at arrest, days 7.83[2.84 26.18] 8.18[2.05 28.93]

Weight at day of operation, kg 3.0[2.2 4.2 3.2[2.0 4.66]

Event time relative to operation, days 0.73 [0.05 22.39] 0.82[0.08 25.11]

Diagnosis: 17(59%) 125 (26%)

Single ventricle 12 (41%) 364 (74%)

Two ventricle 0 (0%) 13 (3%)

STAT 1 1 (3%) 33 (7%)

STAT 2 3 (10%) 122 (25%)

STAT 3 9 (31%) 213 (43%)

STAT 4 16 (55%) 108 (22%)

STAT 5
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Table 2.

Comparison of the monitoring level during cardiac arrest events and matched control events.

Case Total Events Exposed Events Control Events AUC

Arterial line/central line 337 18 319 0.81 (0.79-0.83)

Arterial line/no central Line 90 7 83 0.84 (0.78-0.89)

No arterial line/central line 2 0 2 Insufficient Data

No arterial line/no central Line 93 8 85 0.54 (0.49-0.57)

No hemoglobin 231 15 216 0.63 (0.61-0.66)
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Table 3.

Secondary sensitivity analyses, which assessed alternative definitions of “dose of IDO2” with 20 minute and 

10 minute censored windows prior to cardiac event substituted for 30 minutes. AUC, area under the receiver 

operating characteristic curve; O.R., odds ratio; SV, single ventricle. Average values reported and 95% 

confidence interval in parenthesis

Censored Time Interval AUC ROC IDO2 O.R. p-value SV Label O.R. p-value

10 min 0.74 (0.73-0.75) 1.010 (1.007-1.013) 0.0231 2.825 (2.538-3.125) 0.0113

20 min 0.74 (0.73-0.75) 1.009 (1.006-1.012) 0.0344 2.900 (2.618-3.203) 0.0091

30 min 0.74 (0.73-0.75) 1.008 (1.006-1.012) 0.0445 2.952 (2.675-3.258) 0.0079
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