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Abstract

Bone has well documented natural healing capacity that normally is sufficient to repair fractures 

and other common injuries. However, the properties of bone change throughout life, and aging is 

accompanied by increased incidence of bone diseases and compromised fracture healing capacity, 

which necessitate effective therapies capable of enhancing bone regeneration. The therapeutic 

potential of adult mesenchymal stem cells (MSCs) for bone repair has been long proposed and 

examined. Actions of MSCs may include direct differentiation to become bone cells, attraction and 

recruitment of other cells, or creation of a regenerative environment via production of trophic 

growth factors. With systemic aging, MSCs also undergo functional decline, which has been well 

investigated in a number of recent studies. In this review, we first describe the changes in MSCs 

during aging and discuss how these alterations can affect bone regeneration. We next review 

current research findings on bone tissue engineering, which is considered a promising and viable 

therapeutic solution for structural and functional restoration of bone. In particular, the importance 

of MSCs and bioscaffolds is highlighted. Finally, potential approaches for the prevention of MSC 

aging and the rejuvenation of aged MSC are discussed.
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1. Bone healing and aging

Annually, there are more than two million fragility-associated fractures with healthcare costs 

exceeding $20 billion in the United States [1]. There is a significant increase in the incidence 

of fractures as well as the associated morbidity with increasing age [2]. As an example, one-
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year mortality rates after hip fractures in the elderly have been reported as 33% [3]. FDA 

approved medical therapies for aging-related bone loss include estrogen and related agonists 

(e.g. raloxifene), bisphosphonates (e.g., alendronate, risendronate, ibandronate, zoledronic 

acid), recombinant parathyroid hormone (e.g. teriparatide, abaloparatide), and antibodies 

against receptor activator of NF-κβ (RANKL) (e.g. denosumab), as well as supplements 

such as vitamin D and calcium. Monoclonal antibodies targeting sclerostin (SOST) have 

recently shown promise in clinical trials [4]. Each of these therapies has its own limitations 

and side effects, including adverse cardiovascular events, risk of pathological fractures, 

increased incidence of bone tumors, and immune dysfunction, the majority of which are 

associated with the systemic administration of these agents [5].

To avoid these side effects, a variety of techniques have recently been developed that involve 

local delivery of combinations of cells, growth factors, and scaffolds to the site of fractures 

(Table 1). The Hernigou procedure involves application of bone marrow aspirate to the site 

of non-unions [6]. Recombinant bone morphogenetic protein-2 (BMP-2) is utilized in spine 

surgery to facilitate fusions [7], and recombinant human platelet-derived growth factor 

(rhPDGF) is used to help fill bony defects [8]. Finally, implantation of demineralized bone 

matrix, a frequent and long-practiced approach based on the well-known bone-inductive 

activity of bone tissue grafts, is used to facilitate fracture healing and spinal fusions, [9]. 

Thus, iliac crest bone autografts and fibula allograft are commonly utilized in clinical 

practice to facilitate spinal fusions, ankle arthrodesis, and the healing of long bone and 

pelvic fractures. Despite the availability of these approaches, the rate of delayed union and 

non-union for these procedures remains a significant 10–25% in elderly populations. [10].

While fracture healing is significantly delayed in older versus younger patients, the 

underlying mechanisms are not fully understood. Some aging-associated changes have been 

proposed, such as altered interaction between macrophages and MSCs [11], reduced level of 

estrogen in postmenopausal females [12], and transition of bone marrow, which changes 

from red marrow to fatty yellow marrow during aging [13]. For example, a recent report 

demonstrated that the accumulation of adipocytes in bone marrow significantly impairs the 

stem cell participation in bone healing [14]. In this article, we will review the current 

understanding of MSC aging and how aging-associated changes in MSCs may lead to 

compromised bone healing in the elderly. In particular, we will address MSC niche and 

discuss how niche aging affects MSC population density and functionality. An in-depth 

review of how tissue engineering strategies are being used to promote bone healing is also 

provided.

2. Aging of bone marrow-derived MSCs

In 1970, Friedenstein et al. first identified and described colony-forming fibroblasts (CFU-

Fs) able to adhere to plastic culture substrate from bone marrow [15]. The term, 

mesenchymal stem cells (MSCs), was suggested for this cell population by Caplan in 1991 

[16]. The first detailed description of the tri-lineage differentiation capacity of MSCs, 

including osteogenesis, chondrogenesis and adipogenesis, was reported in 1999 [17], which 

soon became a key criterion to identifying MSCs. It should be noted that MSCs are rare in 

bone marrow, constituting less than 0.01% of the overall mononucleated cells [17]. Under 
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normal conditions, they maintain a quiescent state. Upon stimulation by biological signals, 

e.g., as a result of tissue injuries, MSCs are activated and undergo symmetric or asymmetric 

division, and they are believed to be recruited to injured sites to replace or regenerate 

damaged tissues. Due to their robust reparative potential, MSCs have been applied in an 

expanding array of clinical indications, specifically for bone defects and cartilage loss [18]. 

The original rationale for the application of MSCs in tissue regeneration is the replenishment 

of damaged cells and their differentiation into tissue-specific cells for de novo tissue 

formation. Results from many animal studies have supported the clinical feasibility of MSC-

based treatments, demonstrating the presence of MSCs in the newly-formed bone tissues. 

Whether the transplanted cells can directly engraft and become bone cells in the human 

body requires further investigation. In addition, MSC-produced agents, or the MSC 

secrectome, have recently been proposed as a more important biological mechanism than 

their differentiation capacity that contributes to the function of MSCs [19].

Currently, MSCs have been isolated from many different tissues, including from bone 

marrow, adipose, cartilage, muscle, bone, and umbilical cord and placenta. While cells 

derived from these different tissue sources all possess a tri-lineage (bone, cartilage, and 

adipose) differentiation capacity and display similar surface marker expression profiles [20, 

21], differences in the biology of MSCs from different ontogenetic sources have also been 

extensively reported. For example, MSCs from human adipose tissue, and skin from both 

adults and newborns displayed significant differences in adipogenic and osteogenic potential 

[20]. Such origin-dependent characteristics of MSCs strongly implicate the critical role of 

the tissue microenvironment surrounding the MSCs, commonly referred to as the stem cell 

niche.

2.1 Contribution of MSCs to bone repair in vivo

The contribution of MSCs to bone repair has been long proposed. In particular, the crosstalk 

between MSCs and macrophages during the bone healing process has recently drawn 

investigative attention [22]. Studying the underlying mechanism has been facilitated by 

recent technical advancements in cell labeling and tracking, which allow the tracing of the 

lineage of a cell population in vivo to study their location and functions. For example, 

Mendez-Ferrer et al. exploited nestin as a marker of MSCs and tagged MSCs with a green 

fluorescent protein (GFP) transgene under regulation by the nestin promoter. Using this 

lineage-tracing method, they demonstrated that these GFP tagged MSCs directly contribute 

to bone remodeling by differentiating into osteoblasts [23]. Using a similar strategy, Park et 

al. showed Mx1-expressing bone marrow cells possessed all known MSC characteristics, 

and they could migrate to the injury site, supplying new osteoblasts during fracture healing 

[24]. Besides nestin and Mx1, leptin receptor (LepR) is another marker to identify MSCs. 

LepR positive cells were shown to be capable of giving rise to osteoblasts and adipocytes in 

bone marrow [25]. In a bone fracture model, 85% of the osteoblasts were shown to be 

derived from LepR+ MSCs after 8 weeks. It should be noted that MSCs in bone marrow is 

by nature heterogeneous. Recently, gremlin-1-expressing cells were isolated from bone 

marrow, which are capable of osteogenesis, but not adipogenesis [26, 27]. However, these 

cells still contribute to 28% of the osteoblasts found in the facture callus. Collectively, these 

studies indicate the critical roles of MSCs during the bone healing process.
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2.2 MSC niches

The concept of stem cell niche was first described by Schofield et al. to refer to the 

specialized microenvironment around hematopoietic stem cells (HSCs) [28] and to propose 

a mechanism to maintain stem cells under a quiescent state [29]. Currently, it is generally 

accepted that the stem cell niche includes the supporting cells, extracellular matrix (ECM), 

vascular network, as well as biochemical and physical cues [30]. Under normal conditions, 

the niche maintains stem cells in a quiescent state to prevent them from being depleted. 

Upon stimulation by injury or other signals, changes in the niche will activate stem cells and 

promote stem cell proliferation, differentiation, and migration. These activated cells may 

either divide into daughter stem cells, which can maintain a stable stem cell pool, or divide 

into cells committed to differentiation, thereby decreasing the number of stem cells [31]. As 

mentioned above, MSC phenotypes and functions are distinct in accordance to their tissue 

origin, which suggests the presence of tissue-specific MSC niches. However, their specific 

nature and characteristics are incompletely understood.

In 2003, Gronthos et al. isolated a human MSC population from bone marrow using the 

antibodies targeting vascular cell adhesion molecule-1 (VCAM-1/CD106) and STRO-1 [32]. 

In that same year, Shi et al. performed the first study to identify the in vivo niche of MSCs, 

and the group suggested that MSCs may reside in the microvasculature of tissues [33]. In 

this study, expression of STRO-1 was confined to the vascular wall in both human bone 

marrow and dental pulp. Covas et al. performed a subsequent comparative study to 

investigate the difference between perivascular cells (CD146+) and MSCs as well as between 

non-perivascular stromal cells and MSCs. They concluded that the gene expression profiles 

and differentiation capacities were similar between MSCs and perivascular stromal cells 

[34]. Again, in the same year, a landmark study by Crisan et al. demonstrated the 

perivascular origin of MSCs [35]. Prospectively, these investigators identified perivascular 

cells, principally pericytes, in multiple human organs. Long-term in vitro cultures of these 

cells expressed MSC markers and possessed tri-lineage, i.e., osteogenic, chondrogenic, and 

adipogenic differentiation potentials [35]. Additional subsequent studies by other groups 

confirmed the isolation of MSC-like cells from the vascular wall [36–38].

Based on this evidence, we elaborated on the perivascular location theory of the MSCs in 

2010 [39]. In fact, residing in a perivascular niche improves the migration capability of MSC 

in response to injury or the pathogenic signals. It should be noted that the perivascular niche 

theory is challenged by the fact that MSCs have also been isolated from avascular tissues. 

For example, MSC have been isolated from cartilage [40], which also displayed 

clonogenicity and multi-lineage differentiation ability [41]. In addition, the precise location 

of MSCs within the vascular wall remains unknown, although there is increasing evidence 

suggesting that MSCs may stay in the adventitia. The potential adventitia nature of MSCs 

was first described by Hoshino et al. in 2008 [42]. They isolated vascular adventitial 

fibroblasts (hVAFs) from human pulmonary arteries and showed that these hVAFs were 

positive for MSC markers, but negative for hematopoietic and endothelial cell markers. 

hVAFs also showed osteogenic and adipogenic differentiation upon appropriate stimulation. 

Furthermore, Corselli et al. used surface markers to further isolate cells from middle and 

outmost layers of blood vessels [43]. In their work, CD34+, CD31−, CD146−, and CD45− 
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cells were sorted, which represented the cells in the outmost layer of blood vessels from 

adipose tissue. These cells expressed a surface marker prolife and differentiation potential 

identical to standard bone marrow-derived MSCs. In contrast, pericytes, defined based on 

the expression of CD34, CD31, and CD146, retained phenotypes and genotypes distinct 

from those of cells from adventitia. In addition, adventitia-derived cells treated with 

angiopoietin-2 upregulated the expression of pericyte markers, suggesting that MSCs may 

function as the precursors of pericytes. Based on the adventitial nature of MSCs and middle 

perivascular nature of pericytes, de Souza et al. proposed a model to describe the association 

between these two cell types [44]. In this model, MSCs serve as the progenitor cells of 

perivascular populations, including pericytes.

We have previously reviewed the potential interaction between MSCs and their niches, 

including supporting cells, ECM, soluble factors, etc. [39]. Next, we will briefly describe 

MSC aging, with special attention paid to how aging affects each niche component and the 

consequent influence on MSC characteristics.

2.3 Identification and characterization of MSC Aging

Aging is characterized by a global, gradual, and functional decline of the entire body. To 

date, there is no established method to indicate or monitor in vivo aging of cells. Unlike in 
vitro replicative senescence, which has been well characterized on the basis of chromosome 

telomere length, cell proliferative behavior, and differentiation potential [45], the debate of 

natural aging compromising MSC functionality in vivo is unsettled. To date, senescence-

associated β-galactosidase (SA-β-gal) activity is the most widely used biomarker of aging 

cells, especially in combination with additional markers [46], although its role on the aging 

process is not known. In addition, p16 INK4a is a common marker of cell cycle arrest, which 

correlates with senescence both in vitro and in vivo [47, 48]. Based on these two markers, a 

protocol of quantitative analysis of cellular senescence has been described by Zhao et al. 

[49]. Recently, extracellular microvesicles (MVs) have been proposed as the potential 

biomarkers to identify MSC aging. Lei et al. reported that miR-146a-5p localized in MSC-

MVs characterized the senescent state of late passage MSCs [50]. Expression of miR-335 

was also reported to correlate with donor age of human MSCs (hMSCs), and overexpression 

of miR-335 resulted in a rapid senescent phenotype and abolished differentiation potential 

[51]. Furthermore, since the nuclear lamina undergoes aging-associated changes, prelamin A 

has emerged as a new marker to identify senescent MSCs [52]. McHugh et. al proposed that 

aging hallmarks should be divided into three categories: (1) primary, or the causes of age-

associated damage; (2) antagonistic, or the responses to the damage; and (3) integrative, or 

the consequences of the responses and culprits of the aging phenotype [53]. In the future, 

more studies addressing these issues in MSCs are clearly needed.

MSC aging, as well as its effects on MSC properties such as telomere length, cell 

proliferation capacity, differentiation potential, epigenetics, and secretome (Figure 1), have 

been recently discussed in several review articles [54–57]. Depending on the criteria used to 

define young and old cells, the methods of cell isolation, cell culture, culture passage, 

sample size, and results are not consistent in practice. However, it is generally accepted that 

organismal aging reduces the density of MSCs in bone marrow and compromises their 
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osteogenic potential based on in vitro standard osteogenesis assay and in vivo bone repair 

experiments. Interestingly, a study by Brusnahan et al. indicated that the loss of stem cells 

started with those that possessed the lowest biological quality [58]. In addition, there is 

increasing evidence suggesting that MSC aging benefits adipogenesis at the expense of 

osteogenesis, resulting in impaired bone formation capacity [59]. This is consistent with the 

fact that, in vivo, bone marrow contained increased adipose tissue during aging. Such a shift 

may be due to reduced expression of transcriptional coactivator with PDZ binding motif, 

thus enhancing expression of peroxisome proliferator-activated receptor gamma (PPAR-γ). 

PPAR-γ is associated with adipogenesis, and it inhibits expression of Runt-related 

transcription factor 2 (RUNX2) expression, which is associated with osteogenesis [60].

To enable the function of MSCs to facilitate tissue repair, it is critical to direct MSCs to the 

site of injury, referred to as “homing”. When tissues are damaged, signaling factors are 

released into the body fluid and activate both residential and systemic MSCs, resulting in the 

elevation of the level of CD44 on the surface of MSCs. During this process, high expression 

of stromal derived factor-1 (SDF-1) at the injury site recruits MSCs and docks them to the 

right spot by binding with the cytokine receptor, CXCR4, on the surface of MSCs. 

Afterwards, integrin α4 and β1 combine together and form very late antigen-4 (VLA-4) in 

MSCs, further directing MSCs to endothelial cells by interacting with VCAM-1. Finally, 

lytic enzymes such as matrix metalloproteinases (MMPs) are produced to generate space to 

allow MSC migration [61, 62]. In a mouse study, expression of CXCR4 on the surface of 

MSCs was significantly reduced in old mice compared with young counterparts [63]. 

Interestingly, intravenous injection of old MSCs homed less to wound site with less 

neovascularization-promoting capacity than intravenous injections of young MSCs. MSCs 

isolated from mouse bone marrow were found to lose their homing ability rapidly after in 
vitro expansion [64], which may be associated with decreased expression of VCAM-1, an 

MSC surface marker that is known to regulate MSC interaction with endothelial cells [65]. 

Moreover, by measuring migration rates, Geibler et al. showed that young MSCs of each 

passage always demonstrated significantly higher migratory potential compared to old 

MSCs [66], suggesting an impaired response of aged MSCs to injury signals. Recently, we 

have collected young and aged MSCs from more than twenty donors and found similar 

decline of migration capacity (unpublished observation). Similar phenomenon is also 

observed in MSCs derived from adipose tissues, suggesting that this characteristic may be 

associated with aging-associated inferior microenvironment [67]. However, in a hMSC-

based study, no difference in the migratory ability of MSC was reported with respect to the 

age of the donor, which could be due to the relatively “young” donors in the older group 

(38–58 years old) [68]. Similar to the findings from studies of natural aging, in vitro 
senescence was also found to severely impair the migratory capacity of human MSCs in 

response to proinflammatory signals [69].

As discussed above, MSC may function via the production and secretion of paracrine factors 

[70]. Autocrine and paracrine properties of senescent MSCs have been recently reviewed by 

Lunyak et al [71]. To date, how natural aging affects MSC secrectome has not received 

sufficient attention. In one study on adipose derived MSCs, adult MSCs (derived from >40 

years old individuals) produced significantly higher interleukin-6 (IL-6) and IL-8 than those 

isolated from donors of <16 years of age [72]. The difference was further confirmed by a 
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recent study [73]. Such enhanced pro-inflammatory secretome was likely to significantly 

diminished the immunomodulation capacity of MSCs [73]. In comparison, there have been a 

number of studies analyzing the secretome of early and late passage MSCs in vitro. 

Secretion of senescence-associated secretory phenotype (SASP) products from senescent 

MSCs has also been characterized. By generating senescent human bone marrow-derived 

MSCs with gamma irradiation, Sepúlveda et al. identified more than 27 SASP components, 

such as IL-17F, leptin, IL-8, Eotaxin, VCAM1, interferon β, IL4, and MCP1. In particular, 

IL-6 was robustly generated by these senescent cells, representing the most prominent SASP 

factors [69]. Severino et al. showed that conditioned media (CM) from passage 10 (P10) 

senescent MSCs could directly induce a senescent phenotype in P1 cells in association with 

insulin-like growth factor binding proteins (IGFBP) 4 and 7 [74]. Ozcan et al. used four 

different methods to generate in vitro senescence in human MSCs, including oxidative 

stress, doxorubicin treatment, X-ray irradiation, and replicative exhaustion, which were all 

confirmed by positive staining of SA-β-gal [75]. To date, how SASP from MSC affects bone 

healing has not yet been reported. However, IL-6, one of the most recognized SASP factors, 

has been shown to drive osteoclastogenesis [76] and negatively regulate osteoblast 

differentiation [77]. Knockdown of IL-6 significantly enhanced Runx2 and collagen type I 

gene expression in osteoblasts while decreasing the expression of osteoclast related genes 

such as tartrate resistant alkaline phosphatase (TRAP), MMP9, and CTSK [78]. Therefore, it 

can be extrapolated that SASP production would not be beneficial to bone regeneration.

Finally, it is noteworthy that most MSCs studied were isolated from surgical waste from 

patients with bone or osteochondral diseases, such as osteoarthritis. How important these 

disease states are as a variable that affects the experimental outcomes is unknown, and more 

rigorous and standardized methods to collect MSCs from “healthy” or “abnormal” tissues 

are clearly needed. Also, it is important to point out that aging or senescence does not 

always imply a negative physiological function. For example, acute or chronic injury is 

found to lead to the accumulation of senescent muscle stem cells, which could initiate in 
vivo reprogramming, leading to the repair of muscle injury [79].

2.4 Mechanisms Underlying MSC Aging

To date, the mechanism of in vivo natural MSC aging in humans is still not clear, as there is 

no feasible way to trace the in-body changes of MSCs. However, several factors have been 

proposed to be associated with this process, including diseases, over-division, and exposure 

to multiple stresses such as reactive oxygen species (ROS) [55]. Since MSCs reside in 

unique tissue niches within the body, their aging is expected to be associated with systemic 

and local factors. For example, natural aging is accompanied by increased levels of pro-

inflammatory cytokines, called inflammaging [80], in particular IL-6 [81–83]. Although it is 

clear that IL-6 may disrupt bone formation, its effect on MSCs is apparently opposite. 

Previously, we, for the first time, showed that IL-6 gene expression is significantly higher in 

undifferentiated MSCs than those exposed to an osteogenic differentiation medium. 

Interestingly, treatment with IL-6 enhances MSC proliferation rates and protects MSCs from 

apoptosis, which may function through the activation of ERK1/2 pathway [84]. Moreover, 

IL-6 and the IL-6 receptor (IL-6R) complex activate STAT3 signaling pathway, which 

promotes osteogenic differentiation in BM-MSCs [85]. Therefore, whether elevated IL-6, 
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which is a natural response to aging, is in fact acting to activate or rejuvenate the 

functionality of MSCs requires further investigation.

These potential risk factors then function on cell phenotype or functions through signaling 

pathways. For example, canonical Wnts and members of the forkhead family were shown to 

be significantly involved in the MSC aging process (see review in [55]). Recently, forkhead 

box P1 (FOXP1) has been shown to play a major role in transcriptional control of MSC 

senescence. The expression of FOXP1in bone marrow MSCs decreased with the aging 

progress, and the conditional depletion of FOXP1 significantly accelerated MSCs aging in 
vivo [86]. In fact, overexpression of FOXP1 increased the proliferation rate and resulted in 

higher osteogenic potential over adipogenesis of MSCs, which may function through the 

inhibition of p16.

2.5 Effect of niche aging on MSC

2.5.1 Effect of aged supporting cells—As shown in Figure 2, MSCs reside together 

with many other cell types, including osteoblasts, osteoclasts, fibroblasts, endothelial cells, 

adipocytes, and within bone marrow compartments [39]. The interactions between MSCs 

and niche supporting cells may be through direct physical contact, secreted soluble factors, 

or ECM proteins [30]. Due to well-recognized technical challenges, analysis and 

understanding of the cellular interactions within bone marrow in vivo are difficult. 

Therefore, most of the current studies have used in vitro culture system in an attempt to 

investigate the interactions of cells during the aging process, which may not mirror the 

situation in vivo.

Since aging represents a decline in systematic functions, all cells in bone marrow should 

undergo a similar “aging stress”, affecting neighboring cells. For example, conditioned 

media (CM) from passage 10 senescent MSCs could directly induce a senescent phenotype 

in P1 cells by secreting IGFBP 4 and 7 [74]. Additionally, aging decreased the expression 

level of fibroblast growth factor-2 (FGF-2) in most cells, which may cause the diminution of 

proliferative capacity of MSCs [87]. Furthermore, data from our laboratory showed that 

canonical and non-canonical Wnts, Wnt3a and Wnt5a, respectively, act in opposite ways for 

modulating the behavior of MSCs, i.e., Wnt3a maintains stemness, while Wnt5a induces 

osteogenesis [88]. With aging, increased Wnt/β-catenin signaling was seen in old mice, the 

function of which, however, requires further investigation [89].

Currently, the supporting function of MSCs to HSCs has been well demonstrated. Given 

their very close location in bone marrow, how HSCs affect MSCs, in particular during the 

aging process, requires further investigation. A study from June et al. suggests that HSCs do 

not rest passively in the bone marrow [90]. Instead, HSCs directly induce MSC osteogenesis 

through the secretion of BMP-2 and −6. In addition, aging causes the dysregulation of BMP 

expression by HSCs, which may contribute to the pathogenesis of osteoporosis.

Although the mechanism of generation of inflammaging is unclear, adipose tissue has been 

proposed as the major generator of systemic proinflammatory cytokines with advancing age 

[91–93]. After the discovery of leptin in 1994, adipose endocrine function and involvement 

in many physiologic and pathologic processes are now well recognized [94]. Aging 
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significantly alters adipose tissues in both lean and obese individuals, including progenitor 

cell function decline, cellular senescence, adipose-derived hormone changes, and reduced 

miRNA processing [95]. In particular, through a senescence-associated secretory phenotype, 

senescent cells themselves generate many pro-inflammatory cytokines and chemokines [96, 

97]. Accumulation of fat tissues and adipocytes has been observed in the bone marrow of 

older human [98] and mice subjects [14]. These cells impair the bone healing process 

through the excessive generation of dipeptidyl peptidase-4. It is noteworthy that the 

increased number of adipocytes may be due to the bias of aged MSC towards adipogenic 

differentiation [99], which increases the complexity in understanding the interaction 

between adipocytes and MSCs during aging.

MSCs also have direct physical contact with osteoblasts. In monolayer co-cultures, MSCs 

and osteoblasts were observed to actively establish cell-cell contact, which was sufficient to 

drive MSC osteogenesis [100]. Similar results were reported by Glueck et al. [101]. Based 

on next- generation sequencing and bioinformatics analysis, differentially expressed 

microRNAs and genes were identified between normal and senescent osteoblasts. In 

particular, miR-204–5p was identified as an upstream regulator, inhibiting the expression of 

Runx2 [102]. Aged osteoblasts showed compromised capacity of generating cell junction 

upon stimulation; in fact, connexin 43 was shown to be critical for MSC survival and 

migration [104, 105]. As discussed above, MSCs reside in a perivascular environment. By 

co-culturing MSCs with human umbilical vein endothelial cells (HUVEC), there was not 

only a significant increase of MSC proliferation, but also the promotion of osteogenic 

differentiation of MSCs [106]. In fact, we have previously shown that ECM generated from 

HUVECs directs differentiation of MSCs into vascular lineages [107]. Since endothelial cell 

dysfunction was shown to be associated with sedentary aging, such as the robust production 

of proinflammatory cytokines [108, 109], they may have the potential to change the 

functionality of MSCs as well.

2.5.2 Effect of aged ECM—The composition, mechanical properties, and topography 

of ECM have all been shown to affect the phenotype of MSCs to varying extents. We have 

previously reviewed the function of ECM on MSCs [39]. Recently, our results, drawn 

together with others, showed that the ECM derived from MSCs could promote MSC 

proliferation and maintain their potential [110, 111]. MSCs expanded on this ECM 

regenerated significantly higher bone in vivo than those maintained on tissue culture plastic. 

Interestingly, ECM generated by aged MSCs showed significantly decreased capacity in 

preserving normal MSC function, suggesting the critical role of ECM in MSC aging [112]. 

However, whether the amount of ECM generated by MSCs representing a major determining 

factor in bone marrow is not clear. In addition to stem cell-derived ECM, the aging of tissue 

matrix also affects stem cell function. Our recent study showed that aged muscle ECM 

displayed decreased collagen tortuosity and stiffness with aging, which increased the 

fibrogenic marker expression in muscle stem cells at the expense of myogenesis [113]. In 

2006, a landmark work by Engler et al. showed that MSCs could sense the stiffness of 

culture substrate and differentiate into different lineages according to the stiffness of 

substrate, including neurogenesis on the soft surface and osteogenesis on the hard surface 

[114]. Afterwards, Winer et al. cultured MSC on a soft gel with 250Pa stiffness and found 
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that the cells maintained a quiescent state without division. However, they were activated by 

being switched to a stiff substrate [115]. Similar results were reported in another 

independent study [116]. Taken together, these results suggest the effects of mechanical cues 

derived from the ECM on MSC aging. Unfortunately, how aging may change these aspects 

of the ECM within bone marrow is still unknown.

2.5.3 Effect of aged systemic factors—As mentioned, aging represents a systemic 

dysfunction. In addition, MSCs are physically located around the blood vessels. Therefore, 

the aging of MSCs must be associated with the circulating systemic factors. Zhang et al. 

showed that serum from old rats caused significantly higher senescent cell ratio in MSCs 

compared with young serum, which may functionally relate to enhanced β-catenin level 

[117]. By inhibiting canonical Wnt/β-catenin, the negative effect of old serum was 

mitigated. Similar inhibition by aged serum on MSC proliferation was also reported [118]. 

Interestingly, serum from aged rats treated with NT-020 did not show such inhibitory effects. 

Utilizing parabiotic pairing method to allow the transfer of blood borne cells, bone marrow 

stem cells from old animals significantly enhanced osteogenic differentiation upon 

stimulation, which also resulted in enhanced fracture repair [119]. Results from these studies 

also suggest that this effect is partially mediated through β-catenin. Recently, Rebo et al. has 

reported a new method, which allows heterochronic blood exchange between young and old 

mice without sharing other organs. They also showed that blood from old mice significantly 

inhibited the proliferation of stem cells in young mice [120]. Taken together, these results 

suggest that the old serum/plasma contains inhibitory factors that impede MSC function. 

Murphy et al. reviewed the potential mechanisms and proposed that CCL11, GDF11, 

mTOR, and insulin/IGF1 signaling pathways may significantly participate as the systematic 

factors on stem cell function [121].

3. Stem cell therapy in bone repair and regeneration

3.1. Current strategies for stem cell-based therapy

As discussed previously in this review article, bone has a unique and well-documented 

natural healing process that is normally sufficient to repair fractures and other common 

injuries [122, 123]. However, with aging, bone healing capacity is decreased, partially due to 

functional decline of MSCs. Therefore, an intervention is usually required to treat delayed 

union or nonunion. The current surgical methods of repairing bone defects are highly 

invasive and not always successful due to poor vascularization, soft tissue conditions, 

infection, and pre-existing bone malignancy [124]. Stem cell-based therapy is a viable 

alternative with promising therapeutic advantages in restoring both the structure and 

function of damaged bone [125]. In general, stem cells can be therapeutically used in one of 

three ways. First, freshly isolated stem cells can be transplanted directly into tissue and 

undergo in vivo differentiation to become a desired cell type. Second, stem cells can be 

manipulated in vitro before implantation. In many cases, stem cells are genetically 

engineered to express specific types of genes or pre-differentiated into a particular cell type 

prior to implantation to enhance lineage-specific differentiation [126]. Third, administration 

of specific cytokines can recruit circulating endogenous stem cells into injury sites and 

further facilitate cell proliferation, migration, adhesion, and differentiation [126, 127].
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A review of the literature from the past fifteen years shows that various types of stem cells, 

including bone marrow-derived MSCs (BM-MSCs), adipose-derived stem cells (ADSCs), 

muscle- derived stem cells (MDSCs), umbilical cord blood-derived MSCs (UCB-MSCs), 

and dental pulp stem cells (DPSCs), have been used to enhance bone regeneration and repair 

(Table 2). These studies have utilized strategies to transplant different types of stem cells in 

animal models, with or without scaffolds; however, they all report similar stem cell 

implantation effects. Stem cell-based therapy has been shown to facilitate bone or blood 

vessel formations and/or decrease inflammation and lower immunogenicity. A good amount 

of literature has reported that the direct injection of autologous MSCs from different tissue 

sources were able to engraft and regenerate bone to repair critical-size bone defects after 

implantation in different types of animals [128–134]. Among these, some recent studies 

have reported that engrafted stem cells play a crucial role in improving the process of bone 

regeneration, primarily through the secretion of paracrine factors to create a pro-osteogenic 

microenvironment at the defect site [135–138]. For example, Gao et al., reported that MDSC 

implantation enhanced angiogenesis and bone regeneration in a critical size calvarial defect 

by promoting endothelial cell proliferation via secreting multiple growth factors. Moreover, 

the MDSCs were shown to suppress initial immune responses in the host animal by secretion 

of monocyte chemotactic protein 1 and attract macrophages [135]. Another group from 

Japan recently reported that secretomes in MSCs include various cytokines that are 

important in regulation of osteoclast differentiation and the recruitment and proliferation of 

osteogenic- and angiogenic- cells [136]. These studies suggest that investigating and 

developing drugs that can deliver the above-mentioned secreting factors from stem cells may 

lead to effective therapeutic modality for the treatment of bone fractures and defects.

In addition to direct stem cell injection, researchers have used tissue engineering approaches 

by delivering stem cells on biodegradable scaffolds [139–144]. In this case, several groups 

show that pre-differentiating or pre-manipulating stem cells in vitro prior to implantation 

could be beneficial to generate a particular cell phenotype [143, 145, 146]. Various genes, 

such as BMP-2 and BMP-4, have been introduced in stem cells to enhance osteogenic-

specific differentiation. Additionally, US2/US3 genes, which can decrease the expression of 

MHC I protein in cells and reduce the activation of T-cells of the recipient animals, have 

been utilized for this goal as well [147–150]. Interestingly, in 2010, Lyons et al. reported that 

cell-free collagen-based scaffolds developed for bone repair showed excellent healing, 

relative to MSC-seeded constructs. Their results suggested that the matrix deposited by 

MSCs during the differentiation process may adversely affect healing by forming a barrier to 

healthy macrophage activity and thus preventing remodeling of the implanted tissue and 

formation of new bone by the host. This barrier prevents vascularization of the implanted 

tissue, resulting in the initiation of avascular necrosis at the center of the implanted scaffold 

[151]. From a bone healing and repair perspective, this study may provide a simpler 

solution, which is the development of a biomimetic scaffold with a composition similar to 

native bone tissue and without requiring any cell compartments. However, further studies 

will be needed to accurately access the effect of stem cells on scaffolds. Utilization and 

effects of different types of scaffolds and biomaterials for bone tissue engineering will be 

discussed in detail, in a later section of this review.
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3.2. Effect of aging on stem cell therapy

3.2.1. Intrinsic and extrinsic factors affecting stem cell behavior and their 
niche—Although MSC-based therapy offers the possibility of a renewable source of 

replacement cells and tissues to treat various types of bone defects and injuries [152], aging 

and the aging-associated processes can significantly impact the beneficial effect of stem cell-

based therapy. The active stem and progenitor cells in young adult tissues persist into old 

age; however, these populations are different from their younger counterparts. In old age, 

resident stem cells are affected by both intrinsic and extrinsic factors, which often 

compromise their functions [153]. For example, Baster et al. showed that the number of BM-

MSCs with osteogenic potential decreases early during aging in humans, which may be 

responsible for the age-related reduction in bone formation and in the mechanical properties, 

and integrity of bone [154]. In addition to MSCs, neural stem cells (NSCs), satellite cells, 

and HSCs have also been reported to show significant age-related decrease in the 

proliferation and differentiation potentials both in vitro and in vivo [155–157]. The loss of a 

number of functional stem cells with age can lead to profound consequences on tissue 

viability. The mechanism of stem cell exhaustion/depletion is unclear; however, it may be 

caused by a combination of a number of both intrinsic and extrinsic factors, including a 

change in growth factors activity, accumulation of DNA damage, and decline in progenitor 

cell responsiveness.

Intrinsic factors: Independent lines of evidence suggest that forms of cell cycle regulators, 

cell DNA damage, and telomere shortening lead to the activation of the tumor-suppressor 

mechanism, such as senescence, and cause stem cell behavior change in old age [158, 159]. 

As with all dividing cells, tight regulation of cell cycle is important for regulating the rate of 

cell division and cell kinetics [158]. Some studies have shown that the inhibitor of cyclin-

dependent kinase, p16Ink4a, which regulates the G1-S phase cell cycle transition, restricts 

stem cell self-renewal in aging systems, including NSCs [160] and HSCs [161]. Stem cell 

aging is also due to accumulation of heritable intrinsic events such as DNA damage. This 

damage is associated with exposure to ROS, ionizing radiation, chemical mutagens, and 

repeated DNA replication [158, 159]. Moreover, recent studies suggest that stem cell 

exhaustion, decreased proliferation, differentiation, and homing capabilities may be due to 

the shortening of telomere length in stem cells [162, 163]. Several studies have reported that 

there is a strong correlation between MSCs self-renewal capacity and telomere length in 

culture with donor age [162, 163].

Recently, the best strategy suggested to cure aging due to cell damage is a rapid and 

effective elimination of the damaged stem cells by apoptosis [164]. When the DNA repair 

mechanism falls apart due to the aging process, cells respond to innate changes and enter 

independent stress-response mechanisms including apoptosis and cellular senescence. 

Senescent cells (SCs) are permanently withdrawn from the cell cycle; however, unlike 

apoptotic cells, which are permanently eliminated, they are viable for prolonged periods of 

time, and accumulate with age. These persistent SCs are thought to accelerate aging and the 

onset of age-related diseases [164, 165]. Recently, a group of researchers have identified a 

molecular mechanism of SC viability and have reported that disruption of FOXO4-p53 

interactions in SCs selectively induce cell-intrinsic apoptosis. Furthermore, targeted 
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apoptosis of SCs restored fitness, hair density, and renal function in fast and naturally aged 

mice models [164]. Similarly, another group has reported that the clearance of SCs in a 

progeroid mouse model delays several age-associated disorders. They have identified a 

specific inhibitor of the anti-apoptotic proteins Bcl-2 and Bcl-xl, ABT263, as a potent drug 

and showed that ABT263 selectively kills senescent HSCs, and muscle stem cells (MuSCs) 

both in vitro and in vivo [166]. Taken these together, therapeutic targeting of SCs could 

counteract the loss of tissue homeostasis in response to aging.

Extrinsic factors: In addition to the intrinsic factors, the function and regenerative potential 

of MSCs are impacted by extrinsic factors in aging. Studies report that the age-associated 

impairment of stem cell function is induced to a significant extent by the molecular 

composition of the surrounding niche rather than by cell intrinsic changes alone [167]. 

Additionally, many studies show that morphological and functional changes within different 

tissues and organs due to aging result in deleterious changes in the stem cell niche and their 

microenvironments, which further inhibit their regenerative potential [55, 158, 168]. For 

example, in old age, the status of stem cells is altered with decreased niche cells, fragmented 

ECM, increased genomic, mitochondrial DNA damage, disruption in a hypoxic 

microenvironment, and increased ROS [169]. Additionally, stem cells require growth 

factors, cytokines, and mitogens for maintaining self-renewal and multipotency; however, 

changes in ECM components and structure will further cause subsequent modification on the 

availability of these factors [158, 159, 169].

A concrete example of the influence of the local and systemic environment on stem cell 

function during aging has been well demonstrated by Conboy et al. This group has shown 

that the rejuvenation of aged progenitor cells in old animals is possible by exposing the old 

to a young, systemic environment [156]. In their experiments, they have used strategies such 

as heterochronic parabiosis to expose cells in an aged mouse to the systemic environment of 

the young mouse. Their results clearly indicated that aged murine MuSCs and hepatocytes 

showed significant increase in their proliferation and regenerative capacities after 

heterochronic parabiosis with a young mouse [156]. More recently, using the same 

parabiosis technique, Villeda et al. has shown that when young stem cells were subjected to 

an aged systemic milieu, they exhibited functional decline in neurogenesis, which further 

negatively affects cognitive function in mice [170]. Lastly, a group of researchers have also 

shown that systemic inhibition of TGFβ2 signaling pathways, responsible for increased 

fibrosis and inhibit muscle regeneration in dystrophic skeletal muscles, rescue the satellite 

cell phenotypes and significantly reduce fibrogenesis of satellite cells in dystrophic mice 

[171]. Defective regeneration and accumulation of fibrotic tissue also characterize aging 

muscles [172]. Therefore, this study suggests that changes in stem cell milieu definitely have 

a vital effect on changing stem cell behavior and fate. These studies, taken together, clearly 

indicate that changes in the stem cell microenvironment that occur with aging affect stem 

cell behaviors.

The vast majority of stem cell-based therapies are currently being explored for cell 

replacement. However, the above studies strongly suggest that stem cell-based therapy might 

be less effective when the cells are derived from older individuals or when therapy is 
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performed in older patients. Therefore, for any stem cell transplantation-based strategy, it 

may be crucial to consider the age of both the donor tissue and the recipient environment.

3.3. Stem cell rejuvenation for bone repair in aging

Similar to other stem cell types, bone marrow-derived MSCs are affected by aging, and 

MSCs from old patients show significantly limited fracture repair and osteoblast 

differentiation potential compared to MSCs from younger patients [154]. The cause of this 

difference in MSC bone repair and differentiation potential with age is still unknown; 

however, this phenomenon is irreversible and similar in mice [173]. Recently, Baht et al. has 

reported that exposure to youthful circulation by heterochronic parabiosis reverses the aged 

fracture repair phenotype and the diminished MSC-medicated osteoblastic differentiation 

capacity of old animals. They have also demonstrated that the engraftment of young bone 

marrow, particularly CD45+ hematopoietic cells, was able to rejuvenate bone repair and 

osteoblast differentiation. This rejuvenation was driven by a factor that was able to modulate 

Wnt/β-catenin signaling pathways through the downregulation of β-catenin expression in 

old fracture calluses early in fracture repair and subsequent revitalizion of fracture repair 

processes in mice [119]. It will be interesting to further investigate if rejuvenation affects the 

levels of any growth factors related to bone regeneration or inflammatory response during 

bone repair in these parabiosis experiments. Considering all these results together, this study 

strongly suggests that aged cells exposed to a youthful systemic milieu display more 

youthful characteristics, promising that it may be possible to mitigate certain aging features 

that hinder bone repair and regeneration in old patients. Furthermore, rejuvenating MSCs 

prior to the cell therapy for bone repair may be a possible option to consider.

4. Scaffolds for bone regeneration

In addition to growth factors and stem cells, bioscaffolds are also needed. Often, 

bioscaffolds can function as the reservoir for multiple factors, the carrier for cells, the filler 

for the void space, and the template for bone regeneration. The requirements of an ideal 

scaffold for bone tissue engineering are as follows: (1) showing no local and systematic 

toxic effects to the host tissue; (2) supporting normal cellular activity; (3) allowing cell 

adhesion, proliferation, extracellular matrix deposition, and inducing new bone formation; 

(4) prompting the formation of blood vessels after several weeks implantation; and (5) 

appropriate mechanical properties, pore size, and in vivo biodegradation rate [174–177]. 

Many researchers have investigated the development of biomimetic scaffolds with 

osteogenic microenvironment to facilitate the ossification process and to improve clinical 

therapy (Figure 3).

4.1 Decellularized extracellular matrix scaffolds

Bone tissue ECM retains multiple bioactive molecules, such as pro-inflammatory cytokines 

and growth factors (e.g. BMPs and vascular endothelial growth factor (VEGF)) that will be 

beneficial for bone repair without adverse immune responses. In addition, decellularized 

ECM can be combined with growth factors or calcium phosphates (CaP) (e.g. β-tricalcium 

phosphate, β-TCP, and hydroxyapatite, HA) to enhance osteoinductivity [178, 179].
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Decellularized native ECM (nECM), which is obtained from a mature organ (allograft or 

xenograft) after the removal of cells and cellular antigens, retains the structure and 

architecture of the original tissue and has the ability to facilitate bone repair [180]. 

Moreover, nECM is also considered a promising candidate structure for stem cell delivery 

system due to its functionality of growth factor regulation [181]. Another widely used bone 

ECM is demineralized bone matrix (DBM), which is obtained from allogeneic cortical bone 

after demineralization by acid [182]. DBM contains collagenous proteins and ECM-

associated growth factors (BMPs and FGFs), which act to increase bone healing efficiency. 

Decellularized engineered ECM (eECM), which is a cell-free matrix generated by stem cells 

in vitro containing various components of the native ECM, has also been demonstrated to 

improve in vitro MSC expansion and osteogenic differentiation [183]. Additionally, 

combining bioactive eECM with synthetic scaffolds has been found to increase the 

osteoblastic hMSC differentiation, calcium deposition, and osteoid tissue formation, as 

compared to eECM-free scaffolds [184].

4.2 Synthetic scaffolds

Calcium phosphate based bioactive ceramic scaffolds—Calcium phosphate 

ceramics (CaP), such as HA and β-TCP, major components of bone, have good 

biocompatibility, high bioactivity, and osteoconductivity, and they are widely applied in 

bone tissue engineering. Zhang et al. found that composite porous scaffolds containing β-

TCP as a matrix and HA nanofibers of different concentrations showed improved 

mechanical properties. The compressive strength of the β-TCP porous scaffold with the 

presence of 5% of HA nanofibers was 9.8 ± 0.3 MPa, which is comparable to that of human 

cancellous bone (2–10 MPa) [185]. A porous collagen-calcium phosphate scaffold fabricated 

via three-dimensional (3D) printing showed suitable mechanical properties and 

osteoconductivity for non-loading bone defect implantation and new bone formation [186].

Metallic scaffolds—Metallic materials, such as stainless steel and cobalt- and titanium-

based alloys, are widely used in clinical orthopedics and demonstrate good biocompatibility 

and mechanical properties. However, the lack of bio-specific recognition epitopes on the 

metallic material surface makes these metallic scaffolds biologically less active. To improve 

cell-scaffold interaction and tissue repair/regeneration efficiency, growth factors and other 

bioactive factors have been coated onto the surface of the scaffold [187]. Moreover, 

development of magnesium and its alloy scaffolds has attracted great research interest, as 

magnesium-based scaffolds are bioresorbable and osteoconductive, and they do not elicit an 

inflammatory response [188]. Hybrid scaffolds, which combine two or more materials, 

endow the benefits of each type of material and therefore exhibit novel properties. For 

example, metal–ceramic–polymer hybrid scaffolds with porous structure have increased 

implant interface with preservation of the titanium implant lifetime, and they show improved 

tissue formation through load-sharing and stress distribution compared with fully dense 

titanium [189].

Polymeric scaffolds—Both natural and synthetic polymer-based (e.g. collagen and 

polycaprolactone (PCL)) scaffolds have been widely used in the bone tissue engineering 

field because the porosity, mechanical properties, and degradation behavior can be designed 
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and controlled. Hutmacher [190] and Liu et al. [191] have provided extensively reviewed 

polymer materials for bone repair applications, including polymeric materials and the 

design, fabrication methods, and modification of scaffolds.

Hydrogels, formed by highly hydrated polymers, can provide an appropriate 

microenvironment for cell culture and are actively being explored as promising substrates 

for bone repair. Hydrogel scaffolds can be modified or bio-activated with growth factors 

(such BMP and FGF), gene constructs, and small inductive molecules to enhance the 

proliferative and osteogenic activities of the seeded stem cells [192]. Hydrogels can also be 

combined with calcium phosphate ceramics to improve the mechanical properties [193]. 

Additionally, 3D hydrogel scaffold itself also induces osteoblast differentiation and 

mineralization by virtue of the mechanical properties of the scaffold. For example, poly 

(ethylene glycol) dimethacrylate hydrogel with a gradient in compressive modulus (~10–300 

kPa) and encapsulated osteoblasts resulted in gradient-dependent osteoblastic differentiation 

[194]. Shen et al. also found that methylcellulose-based scaffolds with different cross-

linking densities and controlled Young’s modulus had a stimulatory effect on inducing 

osteogenic differentiation of seeded MSCs in the absence of inductive agents [195].

The development of 3D printed synthetic material-based scaffolds fabricated via computer 

aided design (CAD) using ceramic, metallic, polymeric, and composite materials has shown 

great potential for regenerative bone application due to controllable chemistry, shape, and 

porosity [196]. The precise, designed, 3D printed scaffold can mimic the structure and 

mechanical properties of trabecular bone, as well as support vessel formation [197].

4.3 Nanomaterial-based scaffolds

With a hierarchical structure ranging from nanoscale to macroscale by virtue of its 

composition of organic (e.g. collagen) and inorganic (e.g. nano-hydroxyapatite) materials, 

bone can be considered a “nanomaterial”. To overcome limitations in traditional therapies, 

nanomaterials are being explored in bone tissue engineering, as they provide a closer 

structural support approximation to native bone architecture and can also regulate cell fate 

[198]. Scaffolds composed of nanofibers, nanotubes, nanoparticles, and hydrogels with 

nanostructures/nanopatterns have recently attracted increasing research interest.

Nanopatterned scaffold—To mimic the native tissue, nanogrooved matrices were 

investigated. It has been reported that the body and nucleus of hMSCs cultured on substrate 

with sparser nanogrooved pattern were elongated and orientated along the direction of 

nanogrooves [199]. The nano-topographical density of the nanopattern scaffold also played 

an important role on the osteogenesis of hMSCs by regulating the formation of cytoskeleton, 

which is necessary for tension effects on cell morphology and stem cell differentiation 

mediated via the Rho-associated protein kinase (ROCK)-pathway. In addition, multi-scale 

hierarchical topography-based substrates could provide native ECM-like topographical 

signals to influence substrate adhesion and differentiation of hMSCs. For example, the poly 

(lactic-co-glycolic acid) (PLGA) patches with nanopatterned hierarchical topography 

showed enhancement of hMSC osteogenesis and in vivo bone regeneration [200]. The 

symmetry and order of the nanopits also present the capability of regulating the expression 
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of bone-specific ECM proteins (osteopontin and osteocalcin) [201]. Interestingly, a 

nanopatterned substrate with surface immobilization of osteoinductive BMP-2 peptides 

exhibited additive effects of BMP-2 induction and nanotopographical stimulation on 

osteogenic differentiation of hMSCs [202].

Nanofibrous scaffold—Nanofibers fabricated via electrospinning technique have a wide 

range of diameter from tens of nanometers to microns. The diameter of the polymeric 

nanofibers can be affected by controlling the fabrication parameters, including polymer 

properties, solvent properties, solution flow rate, voltage, distance from the needle to the 

collector, and polymer concentration. Therefore, by tuning the parameters of 

electrospinning, the nanofibers produced are able to mimic the intricate fibrillar architecture 

of natural ECM components [203]. Synthetic polymers, such as poly-L-lactic acid (PLLA), 

polyglycolic acid (PGA), PLGA and PCL, and natural polymers, such as collagen, gelatin, 

alginate and chitosan, are used to design nanofibrous scaffolds. The synthetic polymers are 

more flexible in terms of synthesis, processing, and modification, while the natural polymers 

are more bioactive for stimulating cell adhesion [204, 205].

Our group has previously found that 3D PCL nanofibrous scaffolds supported and 

maintained osteogenic, chondrogenic, and adipogenic differentiation of hMSCs in vitro 
[205]. To endow the nanofibers with desired functionalities, hybrid nanofibers containing 

multiple components were explored. For example, chitosan/PCL nanofibers showed 

improved cell adhesion and osteogenic differentiation compared to pure PCL nanofibers 

[206]. PCL–CaCO3 hybrid nanofibers improved mechanical tensile properties and water 

affinity [207]. Furthermore, nanofibrous scaffolds with surface-functionalization or internal 

incorporation of growth factors, gene constructs, and small molecules were widely 

investigated as controlled delivery systems for the acceleration of bone regeneration [208]. 

The silk/polyethylene oxide nanofibrous substrate with BMP-2 encapsulation showed 

enhancement of osteogenesis and calcium deposition [209]. PLGA nanofibers with DNA 

encapsulated within polylactide–poly (ethylene glycol) incorporation were able to gene 

transfection of the cultures and subsequently encode protein β-galactosidase [210].

Nanoparticles—Nanomaterials were explored as factors/genes nanocarriers during bone 

regeneration. For example, gold nanoparticles promoted osteogenic differentiation and 

inhibited the adipogenic differentiation of MSCs by causing mechanical stress on the MSCs 

to activate p38 mitogen-activated protein kinase pathway (MAPK) signaling pathway 

through the interaction with cell membrane and cytosolic proteins [211]. Interestingly, 

Henstock et al. found that functionalized magnetic nanoparticles directly targeted cell-

surface mechanosensors and transduced forces from an external magnetic field, thus 

providing mechanical stimuli to hMSCs. The functionalized magnetic nanoparticles binding 

to the mechanically gated TREK1 K(+) channel of hMSCs increased mineralization of the 

cells as a result of mechanotransduction. This study presented the potential of using 

nanoparticles to enhance bone formation via stimulation of mechanotransduction [212]. 

Besides metal nanoparticles, carbon nanoparticles, including carbon nanotube and graphene, 

have also been explored in acceleration osteogenesis. Due to the unique physicochemical 

properties of graphene and its derivatives, graphene-based nanomaterials not only acted as a 
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nanoplatform for growth factor adsorption and delivery, but also provided mechanical 

support [213]. For example, we found that PLGA nanofibrous scaffold with graphene oxide 

incorporation accelerated hMSC osteogenesis as a result of preconcentration of protein and 

inductive agents by graphene oxide [214]. In addition, graphene-based nanomaterials have 

the capability of biomineralization under simulated body fluid environment [215], likely 

contributing to the enhancement of osteogenic differentiation of MSCs by graphene–

biomineral materials [216].

4.4 Vascularization in engineered bone

Bone has a rich vascular supply. Thus, providing an artificial environment rich in functional 

vascular networks may achieve efficient osseointegration and accelerate bone repair after 

implantation. VEGF and FGF-2 are two key factors involved in angiogenesis [217]. A 

combination delivery and release of angiogenic and osteogenic factors (such as VEGF and 

BMP-2) by a PLGA scaffold combined with condensed plasmid DNA encoding for BMP-4 

and VEGF [218], or a scaffold encapsulated with BMP and VEGF proteins [219], were 

shown to significantly promote bone formation after implantation. In addition, co-culturing 

MSCs and HUVECs on a 3D β-TCP scaffold also resulted in the formation of vessel-like 

structure and osteogenesis, which can be considered as a cell-based strategy for 

vascularization in the biomaterial scaffolds [220]. Interestingly, nanomaterials have shown 

the potential of promoting vascularization even without the use of growth factors. For 

instance, a self-assembling peptide amphiphile (PA) molecule, functionalized with bioactive 

groups mimicking heparin, was designed and synthesized for angiogenesis induction. Both 

in vitro and in vivo experiments demonstrated that the 3D nanofibers formed as a result of 

PA-mediated self-assembly have the capacity of angiogenesis and robust vascularization 

[221].
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Future perspectives

Because aging is accompanied by increased incidence of bone diseases and compromised 

fracture healing capacity, the successful development of strategies that maintain healthy 

or functional MSCs in vivo should be of great benefit. The strategy to maintain MSC 

functionality during the host aging process includes two major avenues: maintaining cell 

quantity within the bone marrow or rejuvenating aged cells. The second method, 

rejuvenating MSCs of declining functions, is as described above. Since aging causes 

inevitable stem cell exhaustion, the success of the first method may rely on the 

supplementation of functional MSCs. In fact, direct injection of MSCs into the bone 

marrow has been performed, and these cells were found to stay in the injection area and 

home to bone fracture site after injury occurred [222, 223]. Twenty-four hours after 

transplantation of uncultured MSC into sublethally irradiated mice, more than half of the 

injected cells were found in the bone marrow [64]. However, whether hMSCs also have 

such capacity and how long these transplanted cells could require further investigation. In 

addition, the compromised homing capacity of MSCs during aging may not be solely due 

to the aging of MSCs, and additional guiding signals may be required. For example, a 

synthetic high-affinity and specific peptidomimetic ligand (LLP2A), against integrin 

α4β1 on the MSC surface, was attached to a bisphosphonate (alendronate, Ale) with high 

affinity for bone. Interestingly, the introduction of LLP2A-Ale was able to increase the 

homing of transplanted MSCs and augment bone formation [224]. Finally, to completely 

overcome the aging-associated issues of MSCs, an unlimited supply of young and 

functional MSCs from other resources is required, such as induced pluripotent stem cell 

(iPSCs). Our previous study had generated MSC-like cells from iPSCs, which displayed 

a robust osteogenic potential similar to primary MSCs [225].
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Figure 1. 
Major changes during cell aging. Compared to young cells, old cells display reduced 

autophagy, proteostasis, and altered mitochondrial function. The proliferation capacity also 

declines with aging, due to the increase of P16 and P21 level. In addition, old cells produced 

SASP factors, which cause adverse effect on other cells.
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Figure 2. 
MSC Niche in bone marrow. In quiescent state, MSCs reside in a homeostatic 

microenvironment, which contains different cells, soluble factors and extracellular matrix.
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Figure 3. 
Application of engineered scaffolds to augment MSC-based bone repair.
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Table 1

FDA approved therapies for bone healing

Systemic Local

Bisphosphonates INFUSE (rhBMP-2)

Recombinant parathyroid hormone Regranex (rhPDGF-BB)

RANKL inhibitors rhBMP-7*

SOST inhibitors (pending) Healos (GDF-5) (pending)

Demineralized bone matrix

Fibula allograft

Iliac crest autograft

*
FDA humanitarian device exemption in 2003, failed to pass FDA approval in 2009 (https://www.fda.gov/)
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Table 2

Characteristics of studies involve stem cell therapy in bone repair and regeneration

Cell Type Source Animal Model Type of Defect Study Design Ref.

MSCs Bone Marrow Dog Mandibular MSCs + PRP injection [142]

MSCs Bone Marrow Sheep Metatarsal MSC seeded PRP-based scaffold implantation [144]

MDSCs Skeletal Muscle Mouse Skull BMP-2. VEGF. sFlt1 expressing MDSC 
transplantation

[147]

ASCs Adipose Tissue Dog Parietal bones MSCs seeded coral scaffold implantation [141]

MSCs Bone Marrow Dog Mandibular MSCs seeded β-TCP scaffold implantation [143]

ASCs Fat Tissue Dog Ulna BMP-2 expressing ASC transplantation [149]

MSCs Umbilical cord blood Dog Radial MSC injection [226]

MSCs Bone Marrow Dog ONFH MSC injection [131]

DPSCs Teeth Pig Mandibular DPSC transplantation [133]

MDSCs Orbicular oris muscle Rat Cranial defect hMDSC transplantation [134]

MDSCs Skeletal muscle Mouse Calvarial BMP4 expressing MDSC transplantation [148]

MSCs Bone Marrow Dog Femoral head MSC-seeded BCP scaffold implantation [140]

MSCs Bone Marrow Rabbit Femurs Pre-osteogenically differentiated MSC 
transplantation

[146]

MSCs Bone Marrow Sheep Tibial hMSC transplantation [132]

MPCs Bone Marrow Sheep Tibial diaphyseal defect MPC-seeded scaffold implantation [128]

MSCs Bone Marrow Dog Craniofacial PRFG-MSCs injection [139]

MSCs Bone Marrow Dog Inferior orbital rim bone Pre-osteogenically differentiated MSC-seeded β-
TCP scaffold implantation

[145]

MSCs Bone Marrow Rabbit Tibial MSC-seeded bone scaffold implantation [130]

ASCs Adipose Tissue Pig Ulna US2/US3 gene transfected ASC transplantation [150]

MSCs Bone Marrow Sheep Mandibular MSC injection [129]

MSCs Adipose Tissue Rabbit Jaw bone hMSC transplantation [137]

MDSCs Skeletal muscle Mouse Calvarial BMP-4 expressing MDSC transplantation [135]

ASCs Adipose Tissue Rabbit OA-like damage hASC injection [138]

MSCs Bone Marrow Rabbits Jaw bone loss MSC injection [136]

MSCs, mesenchymal stem cells; MDSCs, muscle-derived stem cells; ASCs, adipose-derived stem cells; DPSCs, dental pulp stem cells; MPCs, 
mesenchymal progenitor cells; h, human; PRP, platelet rich plasma; β-TCP, beta-tricalcium phosphate; BCP, biphasic calcium phosphate ceramic.
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