
How macrophages deal with death

Greg Lemke
Molecular Neurobiology Laboratory, Immunobiology and Microbial Pathogenesis Laboratory, The 
Salk Institute for Biological Studies, La Jolla, CA 92037

Abstract

Tissue macrophages rapidly recognize and engulf apoptotic cells. These events require the display 

of ‘eat-me’ signals on the apoptotic cell surface, the most fundamental of which is 

phosphatidylserine (PtdSer). Externalization of this phospholipid is catalyzed by scramblase 

enzymes, several of which are activated by caspase cleavage. PtdSer is detected both by 

macrophage receptors that bind this phospholipid directly, and by receptors that bind a soluble 

‘bridging protein’ that is independently bound to PtdSer. Prominent among the latter receptors are 

the Mer and Axl receptor tyrosine kinases. Eat-me signals also trigger macrophages to engulf 

virus-infected or metabolically traumatized, but still living cells; and this ‘murder by 

phagocytosis’ may be a common phenomenon. Finally, the localized presentation of PtdSer and 

other eat-me signals on delimited cell surface domains may enable the phagocytic pruning of these 

‘locally dead’ domains by macrophages, most notably by microglia of the central nervous system.

Introduction

In long-lived organisms, abundant cell types are often short lived. In the human body for 

example, the lifespan of many white blood cells — including neutrophils, eosinophils, and 

platelets — is less than two weeks. For normal healthy humans, a direct consequence of this 

turnover is the routine generation of more than 100 billion dead cells each and every day of 

life1,2. This macroscopic mass of cell corpses, which is largely the product of apoptosis, 

must be recognized and cleared. These quotidian functions are carried out continuously, in a 

‘silent’ non-inflammatory fashion, by tissue-resident macrophages, the dedicated 

undertakers of the immune system3. These often highly specialized cells mediate tissue 

homeostasis in all organs, and include marginal zone macrophages of the spleen, Kupffer 

cells of the liver, alveolar macrophages of the lungs, Langerhans cells of the skin, and 

microglia of the central nervous system4. In settings of fulminant infection or severe tissue 
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trauma where cells may also die by immediate necrosis, the dead cell burden reaches even 

higher levels, but tissue-resident macrophages are again mobilized to eat these cells. 

Although apoptosis and necrosis are morphologically and physiologically distinct death 

processes — apoptotic cells shrink and their plasma membranes bleb but remain intact, 

whereas necrotic cells swell and their plasma membranes rupture5 — the principal 

phagocytes that deal with both dead cell types are macrophages.

As apoptosis accounts for the bulk of the everyday dead cell burden, this Review focuses on 

recent findings with respect to the phagocytosis of apoptotic cells by tissue-resident 

macrophages — a process termed ‘efferocytosis’, from the Latin efferre, to carry to the 

grave6 — and on the molecules that mediate this process. Efferocytosis is a remarkably 

efficient business: macrophages can engulf apoptotic cells in less than 10 minutes, and it is 

therefore difficult experimentally to detect free apoptotic cells in vivo, even in tissues where 

large numbers are generated7. Many of the molecules that macrophages and other 

phagocytes use to recognize dead cells are themselves the products of apoptosis, and are 

often generated via the action of the cysteine-aspartic acid proteases, most notably caspase 3 

and caspase 7, that are the ultimate executioners of apoptotic signalling cascades8. Since 

defects in efferocytosis have significant consequences for tissue integrity, homeostasis and 

function, and can lead to the development of autoimmunity9,10, identifying these molecules 

and elucidating their mechanisms of action is of genuine importance to understanding and 

treating human disease.

Finding dead cells

Find-me signals.

Many macrophages are embedded within tissues in which apoptosis occurs continuously (for 

example, the neurogenic regions of the adult brain)11,12 or in which dead cells are delivered 

directly to phagocytes by the circulation (for example, the marginal zones of the spleen)13. 

In other settings, however, tissue-resident and blood-borne macrophages, or the processes of 

these cells, appear to be recruited and to migrate to apoptotic cell loci in response to cues. 

This may also be the case for tissues in which the number of resident macrophages is low 

relative to that of the cells surrounding them. In these settings, macrophages in vitro, and to 

a much more limited extent in vivo, have been shown to respond to a set of so-called ‘find-

me’ signals14,15, released by injured and dying cells, and to use these signals to migrate 

toward sites of cell death. The most-studied find-me signals have been, firstly, the 

lysophospholipids lysophosphatidylcholine (LPC)16,17 and sphingosine-1-phosphate 

(S1P)18, and secondly, the nucleotides ATP, AMP, and UTP19. LPC production is triggered 

by caspase 3 activation of phospholipase A2 (PLA2)16. PLA2 generates LPC via partial 

hydrolysis (removal of one of the fatty acid chains) of phosphatidylcholine, and so its 

activation by caspase-mediated cleavage may be an intrinsic component of the apoptotic 

cascade. LPC release from cells is dependent on the ATP-binding cassette transporter 1 

(ABCA1)20. This is consistent with the fact that ABCA1 is a homologue of ced-7, which 

was among the first gene products identified in genetic screens for mutations that perturb the 

engulfment of dead cells in Caenorhabditis elegans21.
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ATP, AMP, and UTP are released from apoptotic but still intact cells via a mechanism that 

may also be caspase-dependent. This release involves export of the nucleotides through 

connexin-like Pannexin-1 channels in the plasma membrane, the gating of which is 

controlled by cleavage of the C-termini of oligomeric Pannexin-1 subunits by caspase 3 and 

caspase 722. These auto-inhibitory C-termini normally occlude the channel, and their 

proteolytic removal in mid-to-late apoptosis therefore opens Pannexin-1 for nucleotide 

transport23–25.

In addition to lysophospholipids and nucleotides, several other find-me signals have been 

investigated, although most analyses have been carried out in cells in culture, and the case 

for the in vivo biological relevance of many of these additional signals is therefore less clear. 

Among the strongest candidates is the chemokine CX3CL1 (also known as fractalkine), 

which has been implicated as a find-me signal that mediates macrophage chemotaxis 

towards apoptotic B cells in germinal centres26.

Find-me receptors.

Macrophages are thought to detect and respond to find-me signals using an array of receptor 

systems that have been reviewed previously15. For lysophospholipids, the G protein coupled 

receptor (GPCR) G2A appears to play a role in the chemotactic response of macrophages to 

LPC27, although the extent to which LPC binds to G2A is unclear, and the precise pathway 

that transduces LPC signalling in macrophages remains to be elucidated. There are five S1P 

receptors in the mouse, but only limited data as to which of these might control macrophage 

chemotaxis in vivo28. For nucleotides, tissue macrophage populations express several 

different P2Y purinoceptors, which are GPCRs that bind ATP, ADP, UTP, and UDP29,30. 

These include the P2Y2, P2Y6, P2Y12, P2Y13, and P2Y14 receptors, some of which show 

expression that is highly restricted to specific macrophage subsets31,32. The Gi-coupled 

P2Y12 receptor, for example, is very abundantly expressed in CNS microglia, where it plays 

important roles in the earliest stages of microglial chemotaxis and process extension30,33, 

but is not expressed by most other tissue macrophages. As such, P2Y12 is now used as a 

specific marker of ‘homeostatic’ as opposed to activated microglia33,34. How various 

receptors might mediate a response to gradients of find-me signals such that macrophages 

move in the right direction; that is, toward increasingly higher levels of a find-me signal, 

remains controversial and unresolved35; and in vivo gradients of these signals (in tissues 

where apoptotic cells are cleared) have not been quantified.

Distinguishing live cells from dead

Phosphatidylserine, flippases, and scramblases.

Once macrophages are close enough to actually touch apoptotic cells, they rely on the 

expression of a set of cell surface molecules that tag these cells as dead. These tags are the 

so-called ‘eat-me’ signals for phagocytosis. Multiple eat-me candidates have been advanced 

(discussed below), but the most ubiquitous, efficacious, pleiotropic, and important of these 

is, without a doubt, phosphatidylserine (PtdSer)1,36,37. This humble glycerophospholipid is a 

component (at varying levels) of many different membranes – including those of the 

endoplasmic reticulum, the mitochondria, the Golgi apparatus, and the plasma membrane – 
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within each and every cell of the body. Given this, it is difficult, a priori, to imagine how 

PtdSer might function as a signal for efferocytosis – or anything else. It can do so only 

because it is normally highly polarized with respect to its membrane bilayer localization 

(Box 1). In the plasma membrane of healthy cells, for example, nearly 100% of PtdSer is 

confined to the inner, cytoplasm-facing leaflet of the bilayer. (Phosphatidylinositol and 

phosphatidylethanolamine are also highly enriched in the inner leaflet.) Except in the special 

circumstances discussed below, PtdSer is never seen by the extracellular world38,39. When it 

is externalized on the plasma membrane surface, PtdSer serves as a signal — most generally 

to indicate that the cell has died by apoptosis or is en route to this end. As discussed below, 

externalized PtdSer is recognized by several different ligand/receptor systems on 

macrophages, but all of these systems function based on their detection of this everyday 

phospholipid.

The remarkable PtdSer membrane asymmetry of healthy cells is established by the action of 

a family of ion-channel-like, 10-transmembrane-domain phospholipid translocases 

commonly referred to as ‘flippases’40,41 (Box 1). These flippases are P4-type ATPases. 

There are 14 such intramembrane ATPases in human cells, distributed among different 

tissues and membrane compartments40,42; and several of these proteins — including 

ATP8A1, ATP8A2, ATP10A, ATP11A, and ATP11C — have been found to catalyze the 

translocation of phospholipids41,43,44. In general, flippases display substrate specificity 

either for aminophospholipids, such as PtdSer and phosphatidylethanolamine, or 

alternatively, for phosphatidylcholine41. At the plasma membrane, ATP11A and ATP11C 

flip essentially all of the PtdSer to the inner leaflet of the plasma membrane bilayer45,46. In 

some settings, flippase expression has been shown to be essential for the normal 

development of cell lineages. Mice that lack ATP11C, for example, present with a severe B 

cell deficiency that results from the fact that ATP11C-deficient B cell precursors display 

high levels of surface PtdSer, and are therefore aberrantly recognized and eaten by 

macrophages47. Flippases require a chaperone, generally CDC50A, in order to take up 

residence at their appropriate membrane locations41, and cells that lack CDC50A have been 

shown to lose all plasma membrane flippase activity and to constitutively expose PtdSer on 

the cell surface46,48.

If flippases set up PtdSer bilayer asymmetry, how is this asymmetry ever disrupted? 

Although a subset of flippases, notably ATP11A and ATP11C, are inactivated by caspase 

cleavage during the course of apoptosis45,46, this inactivation alone is insufficient for the 

exposure of PtdSer on the cell surface, as the inner-to-outer transmembrane exchange of any 

phospholipid has a high energy barrier (15–50 kcal/mol) and thus does not occur 

spontaneously49,50. Instead, the movement of PtdSer from the inner to the outer leaflet of the 

plasma membrane requires yet another set of phospholipid translocases – so-called 

‘scramblases’ – which catalyze this reverse translocation (Box 1). It is these ATP-

independent enzymes that allow PtdSer to act as a signal. There are now thought to be two 

major classes of scramblases — those of the TMEM16 and XKR families51–53. The latter 

has at least three members, XKR4, XKR8, and XKR9, that are cleaved and activated by 

caspase-3 and/or caspase-7 during apoptosis54,55, and correspondingly, caspase inhibitors 

antagonize PtdSer externalization by these XKR scramblases. XKR8 is thought to be 

especially important for the externalization of PtdSer on the plasma membrane of apoptotic 
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cells52. A large second set of scramblases, those of the transmembrane protein 16 

(TMEM16) family, are Ca2+-activated56–58. Also referred to as Anoctamins (they were 

originally thought to be anion channels with 8 transmembrane helices), these 10-

transmembrane domain proteins are particularly interesting. Although two family members 

— anoctamin 1 (ANO1) and (ANO2) — appear to function exclusively as Ca2+-activated 

ion (chloride) channels, there is now good evidence that ANO3, ANO4, ANO5, ANO7, 

ANO9, and especially ANO6 (also known as TMEM16F) function as Ca2+-dependent 

phospholipid scramblases50,51,53,58. TMEM16F plays a key role in PtdSer externalization on 

activated platelets during blood coagulation59. As discussed below, the localized activation 

of XKR and/or TMEM16 family scramblases may allow for the localized externalization of 

PtdSer on only a small segment of the plasma membrane, as opposed to across the entire 

surface of the cell.

Receptors for apoptotic cell uptake

TIM4.

As PtdSer is the only universal apoptotic cell-intrinsic eat-me signal, the most intensively 

studied of the macrophage cell surface proteins that mediate apoptotic cell recognition are 

those that bind, either directly or indirectly, to this phospholipid. Prominent among these are 

the transmembrane receptors of the T cell immunoglobulin- and mucin-domain-containing 

molecule (TIM)60 and Tyro3, Axl and Mer (TAM)61 families (Fig. 1). The TIM family has 

three members in the human genome and eight in the mouse, but the best-studied of these 

with respect to macrophage efferocytosis is TIM4 (Fig. 1). TIM4 is a heavily glycosylated 

single transmembrane protein with a short (42-residue) cytoplasmic tail62. It binds PtdSer — 

but not phosphatidylcholine, phosphatidylinositol, or phosphatidylethanolamine — tightly 

and directly, with low nanomolar affinity, in a Ca2+-dependent reaction. When transduced 

into heterologous cells, such as NIH3T3 cells and mouse embryonic fibroblasts, TIM4 

strongly supports efferocytosis of apoptotic cells62. This activity requires a secondary 

intracellular signalling transducer, as the short cytoplasmic domain of TIM4 is dispensable 

for signalling in response to PtdSer binding. TIM4 is presumed to use the TAM tyrosine 

kinase activities for signal transduction, since when it is introduced into fibroblasts that lack 

a TAM receptor (see below) it is unable to support efferocytosis63. Similarly, phagocytosis 

studies using PtdSer-coated beads and AD293 cells that heterologously expressed TIM4 

suggested that TIM4 may also use β1, β3, and β5 integrins as co-receptors, and in turn, the 

cytoplasmic signalling proteins that are associated with these integrins (for example, Src-

family kinases), as downstream intracellular effectors64. As discussed below, the β3 and β5 

subunits also play important roles in other PtdSer-dependent phagocytosis pathways.

AlthoughTIM4 is expressed in large peritoneal macrophages, which are frequently studied 

due to their ease of isolation, it is not detectably expressed by several other highly 

phagocytic macrophage populations, including alveolar macrophages and microglia32, and 

so its stimulation of efferocytosis is not common to all macrophages. Mice deficient in TIM4 

do not display detectable accumulation of apoptotic cells in the spleen or other tissues, and 

do not present with splenomegaly or lymphadenopathy, although modestly elevated 

circulating levels of anti-dsDNA autoantibodies have been reported65,66. The related TIM1 
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and TIM3 proteins, which are prominently expressed in T helper (Th2) cells, plasmacytoid 

DCs, and Th1 cells, have also been reported to bind PtdSer62,67–69, but these proteins are not 

generally expressed by macrophages.

TAM receptors and their ligands.

The TAM proteins Tyro3, Axl, and Mer (gene name Mertk) are cell surface receptor tyrosine 

kinases (RTKs)61,70. These receptors do not bind PtdSer directly, but instead rely on their 

activating ligands — growth arrest specific Gas6 and Protein S (Pros1) – for this activity 

(Fig. 1)61,71–74. As such, Gas6 and Pros1 may be viewed as co-receptors that act in concert 

with the TAM RTKs to mediate PtdSer recognition and signalling. The C-terminal sex 

hormone-binding globulin (SHBG) domains of the ligands bind to the extracellular domains 

of the TAMs, while their N-terminal γ-carboxyglutamic acid (GLA) domains bind to 

PtdSer61,70,71,75,76. Gas6 binds and activates all three TAMs, whereas Pros1 binds and 

activates only Tyro3 and Mer71. In a very unusual arrangement, Gas6 is constitutively bound 

to Axl in tissues in vivo, and moreover, is entirely dependent on Axl for its stable expression 

in these tissues74,77. Both Gas6 and Pros1 only function as effective activators of TAM 

tyrosine kinase activity and drivers of phagocytosis when, first, they are simultaneously 

bound to PtdSer via their GLA domains and to a TAM receptor via their SHBG domains; 

second, the γ carbons of glutamic acid residues within their GLA domains are carboxylated 

in a vitamin K-dependent reaction; and third, 6–7 divalent cations (probably Ca2+) are also 

bound to the GLA domains61,71,73,78. In this way, the TAM ligands ‘bridge’ a TAM 

receptor-expressing phagocyte (for example, a macrophage) to a PtdSer-expressing 

phagocytic target (for example, an apoptotic cell).

The TAM receptors and their ligands are the most broadly expressed PtdSer recognition 

system in macrophages. Unlike TIM4, Mer appears to be universally expressed on all 

phagocytic macrophages at steady state31,32, and antibodies to Mer and the high-affinity Fcγ 
receptor are now routinely used as a marker pair to define and sort these cells. Multiple 

studies have shown that Mer is a critical mediator of efferocytosis by tissue macrophages 

throughout the body11,79–84. Axl is more restricted in its macrophage expression under basal 

conditions – to red pulp macrophages, Kuppfer cells, and alveolar macrophages, among 

others74. However, Axl expression is markedly up-regulated in all macrophages by most 

inflammatory stimuli, including type I interferons and interferon-γ (IFNγ), 

lipopolysaccharide (LPS), and poly I:C74,80. Dramatic Axl up-regulation is also seen when 

tissue macrophages in vivo are activated by trauma, disease, or viral infection11,80. Similarly 

to other RTKs, including MET, ERBB4 and EPHB2, Axl exhibits ‘shedding’ of a soluble 

version of its extracellular domain, which is generated via the action of ADAM family 

metalloproteases, subsequent to tyrosine kinase activation86,87. As such, soluble Axl in the 

blood, generated by proteolytic cleavage of the Axl ectodomain subsequent to receptor 

activation, is now commonly used as an inflammation indicator85.

Thus, macrophage Mer is thought to handle the bulk of steady state apoptotic cell 

phagocytosis that is associated with continuous tissue turnover and homeostasis, whereas 

Axl participates in apoptotic cell phagocytosis during the resolution of inflammation 

subsequent to infection and tissue trauma74,80. Correspondingly, the two receptors 
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frequently — though not always — display a ‘yin and yang’ relationship with respect to 

their regulation in macrophages: when one goes up, the other tends to go down74. This is 

also true with respect to their expression in most DCs, where Axl is more prominent than 

Mer74,88. Tyro3 expression in macrophages is very limited, but this RTK is expressed in 

select DC populations, where it plays a role in the inhibition of type 2 immunity74,89. 

Importantly, mice with mutations in TAM receptor genes, most notably loss-of-function 

mutants in the Mertk gene, show prominent accumulation of apoptotic cells in multiple 

tissues — and develop splenomegaly, lymphadenopathy, autoantibodies, glomerular 

nephritis, rheumatoid arthritis and broad-spectrum autoimmune disease — in the absence of 

any other overt perturbation or challenge11,70,71,76,90–92.

Also unlike TIM4, the TAM RTKs do not need an accessory intracellular signal transducer 

to promote phagocytosis, as they carry very strong tyrosine kinases74,88. Indeed, the kinase 

activities of Mer and Axl are absolutely required for their stimulation of apoptotic cell 

phagocytosis by macrophages74. The TAMs are not mere signal transducers, however, since 

their kinase activity alone is not sufficient to stimulate efferocytosis. The TAM kinases can 

be strongly activated artificially using extracellular domain antibodies that cross-link the 

receptors in the absence of Gas6 or Pros1, but this artificial activation has no stimulatory 

effect on the phagocytosis of apoptotic cells by cultured bone marrow-derived macrophages 

in the absence of a TAM ligand74. It appears that in order for the TAM system to function in 

efferocytosis, the entire assembly of PtdSer exposure on apoptotic cells, TAM ligand 

bridging between apoptotic cells and macrophages, and TAM receptor kinase activation 

within macrophages must operate (Fig. 1). As noted at the outset, in most settings, routine 

efferocytosis is immunologically silent, in that it is not associated with the secretion of 

inflammatory cytokines. The TAM receptors also appear to play an essential role in this 

effect, as the activation of Mer and Axl in macrophages and DCs has repeatedly been found 

to be potently immunosuppressive83,88,91,93–95.

MFG-E8 and integrins.

In a manner that is very much analogous to the TAM ligands Gas6 and Pros1, the soluble 

extracellular matrix glycoprotein MFG-E8 (milk fat globule-EGF factor 8, also named 

lactadherin)96 functions during efferocytosis to bridge PtdSer on the surface of apoptotic 

cells to receptors that are expressed by phagocytic macrophages97,98 (Fig.1). In this case, 

these receptors are the αvβ3 and αvβ5 integrins, which bind to MFG-E8 via an Arg-Gly-Asp 

(RGD) motif located within its second EGF-like repeat. MFG-E8 ‘bridging’ of these 

macrophage-expressed integrins to PtdSer on the surface of apoptotic cells is mediated by a 

C-terminal discoidin-like domain rather than a Gla domain (which is not present in the 

protein)99,100 (Fig.1). Both MFG-E8 and the integrin proteins to which it binds are widely 

expressed in many cell types in addition to macrophages and their phagocytic targets, but 

introduction of these proteins into heterologous cells often strongly potentiates 

efferocytosis97. Consistent with its activity and expression, mice that lack MFG-E8 can 

display apoptotic cell accumulation in the spleen and lymph nodes, and often go on to 

develop splenomegaly, nephritis, autoantibodies and a systemic lupus erythematosus (SLE)-

like autoimmune disease98,101. Recent studies suggest that glucocorticoid-mediated 
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amelioration of autoimmunity in mice may be dependent on the ability of glucocorticoids to 

up-regulate MFG-E8 expression102.

Additional ‘eat-me’ signals and receptors.

There are additional receptor systems that have been found to play a role in direct PtdSer 

binding and recognition, and consequently, in the efferocytosis of apoptotic cells by select 

subsets of tissue macrophages (Fig. 1). These include the single Ig-domain type I 

transmembrane protein CD300b103, a member of the large CD300 receptor family104, which 

is expressed by peritoneal macrophages and neutrophils, but not microglia. This protein also 

binds PtdSer directly, is localized to the phagocytic cup of engulfing macrophages, and uses 

the adaptor protein DAP12 to nucleate intracellular signal transduction events that mobilize 

F-actin for phagocytosis103. Similarly, brain-specific angiogenesis inhibitor 1 (BAI1), an 

adhesion-related GPCR with a relatively large extracellular domain that carries an RGD 

motif and multiple thrombospondin type I repeats, has been reported to bind PtdSer, 

cardiolipin, phosphatidic acid, sulfatide and LPS, and to promote the phagocytosis of 

apoptotic cells (and Gram-negative bacteria) by coupling to downstream effectors105,106. 

While BAI1 is highly expressed in the brain, its expression in many macrophage populations 

is very low; and although mice deficient in BAI1 exhibit deficits in synaptic plasticity107, 

they do not, except upon challenge, display significant apoptotic cell accumulation in most 

tissues where clearance is mediated by macrophages108. An additional direct PtdSer binder 

implicated in apoptotic cell clearance, notably that of spent erythrocytes, is the large, 19-

EGF-domain-containing, transmembrane protein Stabilin-2109,110. While highly expressed 

in red pulp macrophages and present in Kuppfer cells, it is not generally expressed by tissue 

macrophages.

Finally, there are several sets of plasma proteins that have been shown to decorate the 

surface of apoptotic cells and have been tied to efferocytosis. Among the most intriguing of 

these are proteins of the complement cascade, notably C1q and C3b111–113. C1q is a very 

large, 18-chain hexameric plasma glycoprotein assembly, structurally similar to mannose 

binding lectin and ficolins, which is an essential upstream activator of the classical 

complement cascade114. As might be expected given its size and abundance in serum, C1q 

has been reported to associate with many molecules (for example, β amyloid, calreticulin, 

fibronectin, DNA) in addition to its well-described binding to IgM and IgG immune 

complexes114. There are conflicting reports as to its ability to bind to PtdSer, and the 

macrophage/phagocyte receptors for C1q remain the subject of investigation114,115. C1q has 

nonetheless received considerable attention, as the majority of human patients with C1q 

deficiency eventually develop lupus116, and C1q binding to macrophages in culture is 

immunosuppressive117. C3b has also been found to decorate the surface of apoptotic cells, 

and to account for much of the ability of serum to potentiate apoptotic cell 

phagocytosis118,119. The phagocyte receptors for C3b engagement are thought to be CR3 

(CD11b/CD18; αMβ2 integrin) and CR4 (CD11c/CD18; αxβ2 integrin)114. Interestingly, 

reduced plasma levels of the TAM RTK ligand Pros1 are observed in patients with SLE that 

have serositis, haematological, neurological and immune disorders, and these reduced Pros1 

levels are in turn correlated with reductions in plasma levels of C3, which is consistent with 

complement consumption, in these patients120.
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Don’t eat me.

Although most attention has been focused on signals that promote efferocytosis, a 

countervailing, phagocytosis-inhibiting activity, or ‘don’t eat-me’ signal, has been proposed 

to function as a negative regulator of engulfment. This activity is exhibited by the 

transmembrane, immunoglobulin-related cell surface protein CD47121 (Fig. 1). In addition 

to interacting with integrins and thrombospondin-1 to regulate neutrophil migration, 

neuronal axon growth and T cell co-stimulation, CD47 has been found to bind to signal 

regulatory protein alpha (SIRPα) on macrophages to inhibit phagocytosis122,123. This 

inhibition appears to require phosphorylation of immunoreceptor tyrosine-based inhibition 

motifs (ITIMs) in the SIRPα cytoplasmic domain, leading to the activation of the SHP1 and 

SHP2 phosphatases124, although the precise mechanism of inhibition remains the subject of 

investigation125. Tumour cells have frequently been found to up-regulate CD47 expression 

as a potential mechanism of immune evasion126, and antibodies that target the CD47–SIRPα 
interaction have shown efficacy as therapeutics in some mouse pre-clinical cancer 

models127,128. Correspondingly, four of these antibodies are now in clinical trials as 

therapeutics for haematological malgnancies129. The relative power of CD47 as a don’t eat-

me signal versus PtdSer as an eat-me signal has not been measured, but it should be noted 

that B cell precursors deficient in the ATP11C flippase (mentioned above), which strongly 

express both signals, are readily engulfed47. Apart from the efferocytosis of apoptotic cells, 

the CD47–SIRPα axis has also recently been implicated in the negative regulation of more 

local membrane excision events carried out by microglia during ‘synaptic pruning’ in the 

postnatal brain130, as discussed below.

Phagocytic attack and engulfment

Efferocytosis requires: one, the engagement of signal transduction pathways that activate 

RAC1–CDC42 GTPases and dramatically re-organize the macrophage actin cytoskeleton; 

two, the extension of a phagocytic cup around the target cell; three, the internalization of this 

doomed cell into the macrophage; four, the routing of the internalized cargo to endosomes 

and lysosomes; and five, its eventual enzymatic degradation and turnover131–134. The 

genetic and biochemical pathways underlying these intracellular engulfment events are 

beyond the scope of this Review, but have recently been discussed135–137. The remainder of 

this Review will focus on our growing understanding of how it is not just dead and dying 

cells that are targeted by macrophages, but also, in some settings, the living.

Eaten alive.

Do eat-me signals only trigger macrophage phagocytosis of dead cells? Indeed, they do not. 

Recent findings indicate that macrophages do not always wait for cells to die before 

initiating phagocytic attack, and may kill living cells by eating them, if these cells express 

sufficient levels of externalized PtdSer. These findings harken back to much earlier 

observations in C. elegans, in which mutation of engulfment genes, including ced-6 and 

ced-7, whose products are required for the phagocytosis of dead and dying cells, led to the 

long-term survival of ‘half-dead’ embryonic cell populations (expressing a hypomorphic 

ced-3 allele) that would normally have been eliminated138,139. The recent findings support 

the hypothesis that scramblase activation and the externalization of PtdSer may result in a 

Lemke Page 9

Nat Rev Immunol. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



‘murder by phagocytosis’ phenomenon that is both PtdSer- and TAM-dependent (Fig. 2). 

For example, the precursor B cells that are aberrantly cleared, by macrophages, in mice 

deficient for the ATP11C flippase, are alive at the time of their engulfment; and genetic and 

tyrosine kinase inhibitor analyses indicate that this fatal engulfment is dependent on the 

action of Axl and Mer47. In the adult brain, when dividing progenitor cells in the 

subventricular zone (SVZ) are pulse-labelled with BrdU during cell division, many more 

healthy, functional, BrdU-labelled neurons are observed in the olfactory bulb, to which 

newborn SVZ cells migrate, one month after labeling in Axl−/−Mertk−/− mice than in wild-

type11. Conditional inactivation of the Mertk gene only in microglia again indicates the cells 

responsible for this effect are the brain’s macrophages11. Similarly, adenovirus-transduced 

astrocytes have been shown to transiently externalize PtdSer after infection. Over the course 

of the next several days, many of these PtdSer-displaying transduced cells are phagocytically 

cleared by activated microglia140. This phagocytosis is not observed in Axl−/−Mertk−/− 

mutants or when PtdSer externalization is inhibited140. Importantly, these cleared cells are 

unambiguously alive at the time of phagocytosis, since the surviving transduced cells seen in 

the Axl−/−Mertk−/− mutants persist as healthy functioning astrocytes for many months after 

infection – if they are not eaten140 (Fig. 2).

These findings of microglial murder by phagocytosis are also consistent with analyses of 

tissue recovery following focal brain ischemia, in which areas of neuronal atrophy were 

found to be markedly reduced in size, and functional recovery to be enhanced and 

accelerated, in Mertk−/− mice relative to wild-type animals141 (Fig. 2). They may also be 

relevant to neurodegenerative disease, since neurons in the P301S-tau mouse model of 

frontotemporal dementia were recently shown to externalize PtdSer and, as a consequence, 

to be phagocytosed by microglia while still alive142. In this instance, MFG-E8 appears to 

play an important role in microglial recognition of the externalized PtdSer142 (Fig. 2). This 

may also be the case for microglial phagocytosis of viable neurons during brain 

inflammation, since neuronal loss subsequent to in vivo LPS injections is also reduced in 

Mfge8−/− mice relative to wild-type143. Finally, recent work suggests that macrophage 

engulfment of HIV-1-infected but still living CD4+ T cells can occur, and that this 

engulfment of live cells is TAM-dependent, since it is triggered by; one, PtdSer 

externalization after infection; two, Pros1 or Gas6 binding to this externalized PtdSer; and 

three, engagement of macrophage Mer by these bound TAM ligands144. It is possible that 

the phagocytic killing of PtdSer-expressing but nonetheless living cells by microglia and 

other tissue macrophages, a process that is sometimes referred to as ‘phagoptosis’145,146, 

may be a common and numerically substantial phenomenon whose general significance has 

not heretofore been widely appreciated.

Phagocytosis of membrane segments.

There are select settings in which only small membrane segments of cells, as opposed to 

entire cells, are phagocytically engulfed. The best-understood of these selective ‘pruning’ 

phenomena occurs in the retina. For a few hours each morning around subjective dawn, the 

retinal pigment epithelial (RPE) cells of the eye, which are not macrophages but rather 

neuroectoderm-derived epithelia, nibble off the distal ends of photoreceptor outer 

segments147,148 (Fig. 3). This localized phagocytosis disposes of toxic oxidized proteins and 
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lipids that are produced by reactive oxygen species during phototransduction; these oxidized 

products normally accumulate in the outer segments and would kill the photoreceptors if not 

removed. Students used to be taught that photoreceptors ‘shed’ the distal tips of their outer 

segments on a daily basis, but this is not entirely correct: these tips are instead actively eaten 

by RPE cells, the most vigorous phagocytes in the body148.

This RPE phagocytosis displays an absolute requirement for Mer: RPE cells express Mer 

(and Tyro3), and mice, rats and humans with complete loss-of-function mutations in 

MERTK are blind due to a failure in RPE phagocytosis and the consequent death of most 

photoreceptors149–152. Many different human MERTK mutations account for inherited 

forms of retinitis pigmentosa151, and clinical trials involving subretinal injection of Mertk-

expressing adeno-associated virus vectors have been initiated in patients carrying these 

mutations153. Gas6 and Pros1 function in concert as Mer ligands for this RPE-mediated 

phagocytosis154. The MFG-E8–αvβ5 integrin system highlighted above also plays a role, 

albeit a secondary one, in RPE phagocytosis of these photoreceptor outer segments155. Very 

importantly, the membrane segment that is phagocytosed by an RPE cell appears to be 

delimited by the precisely localized exposure of PtdSer at only the tips of photoreceptor 

outer segments around subjective dawn156. This externalized PtdSer provides a binding site 

for both the GLA domains of Gas6 and Pros1 (which bridge to RPE-expressed Mer) and the 

discoidin-like domain of MGF-E8 (which bridges to RPE-expressed αvβ5 integrin). That is, 

externalized PtdSer tells RPE phagocytes exactly how much of the outer segment membrane 

to eat, and is thus the essential signal for this localized phagocytosis.

Macrophages also prune. Microglia selectively phagocytose pre-synaptic elements (boutons) 

of axonal membrane during postnatal brain development, in a process termed ‘synaptic 

pruning’157–159 (Fig. 3). This very selective phagocytosis is known to be driven by neuronal 

electrical activity and is thought to be mediated at least in part by the deposition of 

complement proteins C1q, C3, and C4 on pre-synaptic elements that are to be engulfed by 

microglia159,160. Indeed, defects in synaptic pruning associated with complement deposition 

may contribute to neurodegenerative and neuropsychiatric disease161.

Complement proteins are not intrinsic to the neuron, however, and so how they might 

specifically decorate pre-synaptic boutons of the axon that are to be pruned, while not 

decorating others, has remained unclear. One recently advanced hypothesis is that PtdSer 

might again be an important signal75 (Fig. 3). Neuronal activity is associated with Ca2+ 

influx into boutons, which might in principle locally activate Ca2+-dependent scramblases 

that would in turn result in the local externalization of PtdSer — to which C1q has been 

reported to bind75,115. Interesting experimental support for this hypothesis has very recently 

been provided by the demonstration of preferential association of C1q with pre-synaptic 

membrane vesicles that are both positive for Annexin V binding; that is, have externalized 

PtdSer, and cleaved (that is, activated) caspase 3162. As highlighted above, PtdSer 

scramblases of the XKR family are activated by caspase 3 proteolysis. Together, these 

observations suggest that highly localized externalization of PtdSer on pre-synaptic axonal 

boutons that are not paired with a post-synaptic element (to form a complete synapse) may 

serve as a platform for the binding of Gas6 and/or Pros1, MFG-E8 or complement proteins 

to trigger microglial engulfment of these boutons (Fig. 3). How PtdSer externalization might 
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be confined to small membrane domains of cells — unpaired pre-synaptic boutons or the 

tips of photoreceptor outer segments — remains the subject of speculation. Possibilities 

include the localized clustering of either plasma membrane or intracellular Ca2+ channels, 

which would locally activate Ca2+-dependent scramblases, and/or the localized expression of 

the scramblases themselves, and/or the localized cleavage (activation) of caspase 3 and 

caspase 7. Locally externalized PtdSer would in theory be prevented from diffusing within 

the plane of the plasma membrane by its immediate binding to the panoply of extracellular 

agents — for example, Gas6/Pros1-TAM, MFG-E8-integrin, TIM4 – described above, all of 

which are physically connected to another cell.

PtdSer-dependent phagocytosis of membrane segments highlights the vast scale over which 

PtdSer and TAM receptor signalling operates: most of the apoptotic and live cells illustrated 

in Fig. 1 and Fig. 2 have volumes ranging from 1,000 to 100,000 μm3, whereas the tips of 

photoreceptor outer segments that are engulfed by RPE cells have volumes of roughly 10 

μm3, and the engulfed pre-synaptic boutons of neuronal axons measure in the range of 0.2 to 

1μm3. PtdSer- and TAM-dependent phagocytosis of enveloped virus particles also occurs — 

in a process termed ‘apoptotic mimicry’163,164 — and these viruses have volumes on the 

order of 0.005 μm3. Together, these diverse phagocytic events, all of which are initiated by 

PtdSer externalization and most of which are known to be TAM-dependent, can capture 

engulfment targets whose sizes span over seven orders of magnitude.

Conclusion: what could go wrong?

The consequences of defective efferocytosis by macrophages, which leads to secondary 

necrosis and the presentation of autoantigens, are commonly assumed to be dire. However, 

the evidence for this with respect to disease in humans, as opposed to mouse models, is 

largely circumstantial. Deficient efferocytosis has been observed in advanced human 

atherosclerotic plaques, leading to the formation of highly inflammatory necrotic 

lesions165,166. In human inflammatory lung diseases, including chronic obstructive 

pulmonary disease, inadequate efferocytosis has also been strongly implicated in the 

exacerbation of disease pathology167. And defects in the clearance of apoptotic cells from 

the germinal centers of the lymph nodes of patients with SLE have been a consistently 

reported feature of the disease9,168. Nonetheless, these observations of apoptotic cell 

accumulation can only be said to correlate with disease, as human beings are not, except in 

the context of clinical trials, experimental animals.

As noted above, mice in which the TAM system, the MFG-E8/integrin system, or the 

enzymes that externalize PtdSer are either partially or fully disabled do indeed display very 

substantial accumulations of apoptotic cells and often develop severe autoimmune disease. 

Tyro3−/−Axl−/−Mertk−/− triple mutant mice, for example, are a mess. They present with 

prominent apoptotic cell accumulation and activated lymphocytes in many tissues (both 

lymphoid and non-lymphoid), are plagued by massive splenomegaly, rheumatoid arthritis, 

psoriasis, and nephritis, are infertile as males due to severely impaired phagocytosis of 

apoptotic germ cells by Sertoli cells in the testes, and are blind due a failure in RPE 

phagocytosis of photoreceptor outer segments in the retina90,91,154. In humans, there are now 

descriptions of a plethora of MERTK gene mutations that result in inherited retinal 
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diseases152, but patients carrying these mutations have not been evaluated for immune 

dysfunction. Particularly for those patients with complete loss-of-function mutations in 

MERTK, such evaluations — for example, tests for splenomegaly and/or the presence of 

anti-dsDNA, anti-nuclear antigen, or anti-phospholipid autoantibodies in the circulation — 

are clearly warranted. Finally, the TAM RTKs play very important roles in the initiation, 

growth, metastasis and resistance of many different cancers, and several small molecule 

kinase inhibitors of these receptors are now in development or in clinical trials as cancer 

therapeutics169. Given the macrophage biology highlighted above, evaluation of the effects 

of these inhibitors on the development of autoimmune disease should also be a priority.
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Box 1.

Stringent regulation of phosphatidylserine localization in the plasma 
membrane.

Mammalian genomes encode many 10-transmembrane-domain, channel-like enzymes 

that are devoted to the intra-bilayer translocation and localization of phosphatidylserine 

(PtdSer) and other phospholipids1,38–40,42,50,56. Although some members of the indicated 

families display other activities — the TMEM16A and TMEM16B proteins, for example, 

are Ca2+-activated chloride channels — many are catalytically active phospholipid 

translocases. A subset of ATP8 and ATP11 proteins, notably ATP11C, use ATP 

hydrolysis to establish the pronounced asymmetric distribution of PtdSer and other 

phospholipids seen at the plasma membrane (and internal membranes) of all healthy 

cells. Importantly, nearly 100% of PtdSer is normally confined to the cytoplasmic leaflet 

of the plasma membrane bilayer. Scramblases are ATP-independent enzymes that move 

PtdSer to the extracellular leaflet, where it is displayed to the external world. Several 

XKR scramblases, notably XKR8, are activated by caspase cleavage and are thought to 

function during apoptosis. Several TMEM16 scramblases, notably TMEM16F, are 

activated by Ca2+ binding subsequent to membrane depolarization and other signaling 

events.
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Figure 1. Receptors and ligands mediating apoptotic cell (AC) recognition and phagocytosis by 
macrophages.
Apoptotic cell surfaces are marked by a profusion of membrane blebs that universally 

display externalized phosphatidylserine (PtdSer, purple). PtdSer – the most potent ‘eat-me’ 

signal for apoptotic cell phagocytosis – is recognized by macrophage receptors that directly 

bind this phospholipid – including CD300b, BAI1, TIM4 (green), and Stabilin-2. PtdSer is 

also recognized by soluble, bi-functional ‘bridging’ proteins, including Gas6/Pros1 (red) and 

MFG-E8 (blue). These proteins carry one domain that binds PtdSer – the ‘Gla’ domains of 

Gas6/Pros1 and the Discoidin-like domain (Dld) of MFG-E8 – and a second domain that 

binds to phagocytic receptors expressed by macrophages – the SHBG domain of Gas6/Pros1 

and an RGD motif within the second EGF-like domain of MFG-E8. The macrophage 

receptors for Gas6/Pros1 are the TAM receptor tyrosine kinases Mer and Axl (red), while 

those for MFG-E8 are αvβ3 and αvβ5 integrin dimers (blue). Complement proteins, 

including C1q, C3b, and C4 (closed gray circle), also decorate the surface of apoptotic cells 

by mechanisms that remain under study, but may involve the recognition of PtdSer. These 

complement factors are recognized by the complement receptors CR1, CR3, and CR4. Some 

apoptotic cells also express CD47 (light blue), which negatively regulates phagocytosis by 

acting as a ‘don’t-eat-me’ signal. Its receptor is SIRPα. All phagocytic receptors must 

engage signal transduction networks that ultimately activate Rho family GTPases, but the 
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only receptors that carry intrinsic signaling activity are the TAM receptors, which are robust, 

ligand/apoptotic cell-activated tyrosine kinases (TKs).

Lemke Page 25

Nat Rev Immunol. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. PtdSer-triggered phagocytic engulfment of living cells.
Recent findings indicate that a variety of stressors - including hypoxia precipitated by stroke, 

calcium influx triggered by excitatory and/or exitotoxic stimulation (depolarization), 

infection by HIV and adenoviruses (AdV), and the toxic effects of Amyloid β (Aβ) and 

phospho-Tau deposition (top) – can lead to the activation of XKR and TMEM16 

scramblases and the exposure of PtdSer on the surface of living cells (middle). In some 

settings, this leads to the engulfment of stressed but still living cells – or murder by 

phagocytosis (bottom).
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Figure 3. PtdSer-delimited phagocytosis of only small parts of cells.
a. The phagocytic retinal pigment epithelial (RPE) cells of the eye pinch of and engulf the 

distal ends of the rhodopsin-containing outer segments of photoreceptors (PR) each 

morning. This localized phagocytosis is entirely Mer-dependent (red) and is assisted by the 

MFG-E8 integrin system (blue). Patients with complete loss-of-function MERTK mutations 

have an inherited form of retinitis pigmentosa due to a failure in RPE phagocytosis. b. 

Microglia, the tissue macrophages of the brain, phagocytose unpaired pre-synaptic axonal 

boutons of the postnatal brain (those that are not part of an anatomically complete, 

functional synapse), in a process termed ‘synaptic pruning’. These boutons are decorated by 

several of the eat-me signals highlighted in Fig. 1, including complement proteins (gray). 

Importantly, the extent of the bouton to be pruned may again be delimited by the local 

externalization of PtdSer on its surface. The localized activation of scramblase activity for 

the events depicted in a and b is at this point a speculation.
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