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Neuroinflammation is a key part of the etio-pathogenesis of Alzheimer’s disease (AD). We tested the relationship between neuroinflam-
mation and the disruption of functional connectivity in large-scale networks, and their joint influence on cognitive impairment. We
combined [11C]PK11195 positron emission tomography (PET) and resting-state functional magnetic resonance imaging (rs-fMRI) in 28
patients (12 females/16 males) with clinical diagnosis of probable AD or mild cognitive impairment with positive PET biomarker for
amyloid, and 14 age-, sex-, and education-matched healthy controls (8 females/6 males). Source-based “inflammetry” was used to extract
principal components of [11C]PK11195 PET signal variance across all participants. rs-fMRI data were preprocessed via independent
component analyses to classify neuronal and non-neuronal signals. Multiple linear regression models identified sources of signal cova-
riance between neuroinflammation and brain connectivity profiles, in relation to the diagnostic group (patients, controls) and cognitive
status.

Patients showed significantly higher [11C]PK11195 binding relative to controls, in a distributed spatial pattern including the hip-
pocampus, frontal, and inferior temporal cortex. Patients with enhanced loading on this [11C]PK11195 binding distribution displayed
diffuse abnormal functional connectivity. The expression of a stronger association between such abnormal connectivity and higher levels
of neuroinflammation correlated with worse cognitive deficits.

Our study suggests that neuroinflammation relates to the pathophysiological changes in network function that underlie cognitive
deficits in Alzheimer’s disease. Neuroinflammation, and its association with functionally-relevant reorganization of brain networks, is
proposed as a target for emerging immunotherapeutic strategies aimed at preventing or slowing the emergence of dementia.

Key words: [ 11C]PK11195; Alzheimer’s disease; functional connectivity; independent component analysis; neuroinflammation; PET

Introduction
Neuroinflammation plays a key role in the etio-pathogenesis of
Alzheimer’s disease (AD) and other neurodegenerative disorders

(Edison et al., 2008; Fernández-Botran et al., 2011; Fan et al.,
2015; Stefanetti et al., 2016). Preclinical models (Heppner et al.,
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Significance Statement

Neuroinflammation is an important aspect of Alzheimer’s disease (AD), but it was not known whether the influence of neuroin-
flammation on brain network function in humans was important for cognitive deficit. Our study provides clear evidence that in
vivo neuroinflammation in AD impairs large-scale network connectivity; and that the link between neuro inflammation and
functional network connectivity is relevant to cognitive impairment. We suggest that future studies should address how neuro-
inflammation relates to network function as AD progresses, and whether the neuroinflammation in AD is reversible, as the basis
of immunotherapeutic strategies to slow the progression of AD.
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2015; Hoeijmakers et al., 2016; Villegas-Llerena et al., 2016; Li et
al., 2018; Wang et al., 2018), and research in humans (Fernández-
Botran et al., 2011; Edison et al., 2013; Fan et al., 2015; Stefaniak
and O’Brien, 2016; Passamonti et al., 2018), demonstrate that
microglia, the brain’s innate immune system, are activated in AD
and other neurodegenerative diseases. Furthermore, genetic as-
sociation studies have demonstrated a link between AD and poly-
morphisms or mutations in genes linked to immune response
(Villegas-Llerena et al., 2016). Although the mechanisms and
mediators of inflammatory risk in AD are not fully understood,
synaptic and neuronal injury may arise from the release of cyto-
kines and proinflammatory molecules such as interleukin-1�
and TGF-� (Fernández-Botran et al., 2011), or direct microglial
injury to synapses (Hong and Stevens, 2016; Hong et al., 2016).
These, in turn, impair synaptic function, network communica-
tion, and may accelerate neurodegeneration and synaptic loss
(Heppner et al., 2015; Hoeijmakers et al., 2016; Villegas-Llerena
et al., 2016; Li et al., 2018; Wang et al., 2018).

Clinical studies of neuroinflammation in dementia have ex-
ploited positron emission tomography (PET) ligands that bind to
the mitochondrial translocator protein (TSPO) in activated mi-
croglia (Cagnin et al., 2001; Gerhard et al., 2006a,b; Edison et al.,
2008, 2013; Fan et al., 2015; Passamonti et al., 2018). For example,
relative to controls, patients with AD have higher [11C]PK11195
binding in the hippocampus, other medial-temporal lobe re-
gions, and posterior cortices such as the precuneus (Passamonti
et al., 2018).

These findings raise the possibility of immunotherapeutic
strategies to prevent or slow the progression of AD. However, key
issues remain to be resolved before such therapeutic strategies
can be realized. For example, it is necessary to show how neuro-
inflammation is linked to cognitive deficits. A critical and unan-
swered question is whether regional neuroinflammation changes
the functional connectivity of large-scale networks. Such large-
scale neural networks represent an intermediate phenotypic ex-
pression of pathology in many diseases that can be non-invasively
quantified with resting-state functional magnetic resonance im-
aging (fMRI). A challenge is that neither the anatomical sub-
strates of cognition nor the targets of neurodegenerative disease
are mediated by single brain regions: they are in contrast distrib-
uted across multivariate and interactive networks.

We thus undertook a multimodal and multivariate neuroimag-
ing study to combine [11C]PK11195 quantification of distributed
neuroinflammation with resting-state functional imaging in pa-
tients at different stages of AD. We used “source-based inflammetry”
(SBI; analogous to “volumetry”) to reduce the dimensionality (i.e.,
complexity) of the neuroinflammation signal, and used multiple

linear-regression models to associate neuroinflammation, func-
tional network connectivity, and cognition.

We tested two hypotheses: (1) that spatially distributed neu-
roinflammation related to significant changes in large-scale func-
tional connectivity in patients with AD, relative to controls. (2)
That the relationship between neuroinflammation and abnormal
functional connectivity mediates cognitive deficit in AD.

Materials and Methods
Participants
The study was conducted in the context of the Neuroimaging of Inflam-
mation in MemoRy and Other Disorders (NIMROD) study (Bevan-
Jones et al., 2017). We included 14 patients meeting clinical diagnostic
criteria for probable AD (McKhann et al., 2011), and 14 patients with
mild cognitive impairment (MCI); (12 females and 16 males in total)
defined by: (1) a mini-mental score examination MMSE �24/30; (2)
memory impairment at least 1.5 standard deviation (SD) below that
expected for age and education (Petersen et al., 1999); and (3) biomarker
evidence of amyloid pathology [positive Pittsburgh Compound-B PET
scan (MCI�); Okello et al., 2009]. We combined patients with clinical
AD and MCI� on the basis that these two groups represent a continuum
of the same clinical spectrum (Okello et al., 2009).

Fourteen age-, sex-, and education-matched healthy controls (8 fe-
males, 6 males) with no history of major psychiatric or neurological
illnesses, head injury, or any other significant medical comorbidity were
also recruited. All participants were aged �50 years, with premorbid
proficiency in English for cognitive testing, and had no acute infectious
or chronic symptomatic systemic inflammatory disorder (e.g., lupus,
rheumatoid arthritis, etc.), or contraindications to MRI. Patients were
identified from the Cambridge University Hospitals NHS Trust Memory
Clinics and the Dementias and Neurodegenerative Diseases Research
Network (DeNDRoN), whereas healthy controls were recruited via DeN-
DRoN. All participants had mental capacity and gave written consent in
accordance with the Declaration of Helsinki. The study was approved by
the local research ethics committee.

Clinical and cognitive assessment
Clinical indices of cognitive deficit included Mini Mental State Exami-
nation (MMSE), Addenbrooke’s Cognitive Examination-Revised (ACE-
R), and Rey auditory verbal learning test (RAVLT). The demographic
and neuropsychological measures are reported in Table 1. A principal
component analysis (PCA) on the total MMSE, ACE-R, and RAVLT
scores was conducted to reduce the dimensionality of the cognitive def-
icit into one latent variable, which summarized the largest portion of
shared variance as the first principal component.

Experimental design
Structural and fMRI protocols and preprocessing. Structural and functional
MRI were performed using a 3-tesla Siemens Tim Trio scanner with a
32-channel phased-array head coil. A T1-weighted magnetization-
prepared rapid gradient-echo image was acquired with repetition time �
2300 ms, echo time � 2.98 ms, matrix � 256 � 240, in-plane resolution
of 1 � 1 mm, 176 slices of 1 mm thickness, inversion time � 900 ms and
flip angle � 9 degrees. The coregistered T1 images were used in a single-
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Table 1. Participant details (mean, with SD and range in parentheses) and group
differences by �2 test, one-way ANOVA, or independent samples t test

Demographic and
clinical data

AD/MCI�
(N � 28)

Controls
(N � 14)

AD/MCI� �
Controls

Sex, females/males 12/16 8/6 NS
Age, years (SD, range) 72.7 (�8.5, 53– 86) 68.3 (�5.4, 59 – 81) NS
Education, years

(SD, range)
12.9 (�3.0, 10 –19) 14.1 (�2.7, 10 –19) NS

MMSE (SD, range) 25.6 (�2.2, 21–30) 28.8 (�1.0, 27–30) t � 4.9, p � 0.0001
ACE-R (SD, range) 78.9 (�7.7, 62–91) 91.6 (�5.3, 79 –99) t � 5.5, p � 0.0001
RAVLT (SD, range) 1.5 (�1.6, 0 – 6) 9.6 (�3.2, 3–15) t � 10.8, p � 0.0001

NS, Not significant with p � 0.05 (uncorrected).
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channel segmentation to extract probabilistic maps of six tissue classes:
gray matter, white matter, cerebro-spinal fluid (CSF), bone, soft tissue,
and background noise. The native-space gray-matter and white-matter
images were submitted to diffeomorphic registration to create group
template images (Ashburner, 2007). The template was normalized to the
Montreal Neurological Institute (MNI) template using a 12-parameter
affine transformation. After applying the normalization parameters from
the T1 stream to warp preprocessed functional images into MNI space,
the normalized images were smoothed using an 8 mm Gaussian kernel.
An estimate of total gray matter, used in between-subject analysis as a
covariate of no interest, was calculated as the median gray-matter tissue
intensity in a group mask based on voxels with gray-matter tissue prob-
ability of 0.3 across all individuals. Resting-state multi-echo functional
imaging was performed for 11 min. A total of 269 echoplanar image
volumes were acquired with repetition time � 2430 ms, echo times �
13.00, 30.55, and 48.10 ms, matrix � 64 � 64, in-plane resolution of
3.75 � 3.75 mm, 34 slices of 3.8 mm thickness with an inter-slice gap of
0.38 mm, and a generalized autocalibrating partial parallel acquisition
(GRAPPA) imaging with an acceleration factor of 2 and bandwidth �
2368 Hz/pixel. The first six volumes were discarded to eliminate satura-
tion effects and achieve steady-state magnetization. Pre-processing of
resting-state data used the Multi-Echo Independent Components Anal-
ysis (ME-ICA) pipeline, which uses independent component analysis to
classify blood oxygenation level-dependent (BOLD) and non-BOLD sig-
nals based on the identification of linearly dependent and independent
echo-time related components (https://wiki.cam.ac.uk/bmuwiki/MEICA;
Kundu et al., 2013). This provides an optimal approach to correct for
movement-related and non-neuronal signals, and is therefore particularly
suited to our study, in which systematic differences in head position might
have been expected between groups. After ME-ICA, the data were smoothed
with 5.9 mm full-width half-maximum Gaussian kernel.

The location of the key brain regions in each network was identified by
spatial independent component analysis (ICA) using the Group ICA of
fMRI Toolbox (Calhoun et al., 2001) in an independent dataset of 298
age-matched healthy individuals from the population-based cohort in
the Cambridge Centre for Aging and Neuroscience (Cam-CAN; Shafto et
al., 2014). Details about pre-processing and node definition are pub-
lished previously (Tsvetanov et al., 2016). Four networks were identified
by spatially matching to pre-existing templates (Shirer et al., 2012). The
default mode network (DMN) contained five nodes: the ventral anterior
cingulate cortex (vACC), dorsal, and ventral posterior conjugate cortex
(PCC), and right and left inferior parietal lobules (IPL). The frontopari-
etal network (FPN) was defined using bilateral superior frontal gyrus
(SFG) and angular gyrus (AG). Subcortical (SC) nodes included brain
regions having differential group accumulation of [11C]PK11195,
namely, bilateral putamen and hippocampus. The node time-series were
defined as the first principal component resulting from the singular value
decomposition of voxels in an 8-mm-radius sphere, which was centered
on the peak voxel per each node (Tsvetanov et al., 2016).

After extracting nodal time-series we sought to reduce the effects of
noise confounds on functional connectivity effects of node time-series
using a general linear model (Geerligs et al., 2017). This model included
linear trends, expansions of realignment parameters, as well as average
signal in the white-matter and CSF, including their derivative and qua-
dratic regressors from the time-courses of each node (Satterthwaite et al.,
2013). The signals in the white-matter and CSF were created by using the
average across all voxels with corresponding tissue probability �0.7 in
associated tissue probability maps available in the SPM12 software
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). A bandpass filter
(0.0078 – 0.1 Hz) was implemented by including a discrete cosine trans-
form set in the general linear model, ensuring that nuisance regression
and filtering were performed simultaneously (Hallquist et al., 2013;
Lindquist et al., 2019). The total head motion for each participant, which
was used in subsequent between-subject analysis as a covariate of no
interest (Geerligs et al., 2017), was quantified using the approach re-
ported by Jenkinson et al. (2002), i.e., the root mean square of volume-
to-volume displacement. Finally, the functional connectivity between
each pair of nodes was computed using Pearson’s correlation on post-
processed time-series.

PET protocols and preprocessing. All participants underwent [11C]
PK11195 PET imaging to assess the extent and distribution of neuroin-
flammation while patients with MCI also underwent [11C]PiB (Pitts-
burgh compound-B PET) scanning to evaluate the degree of �-amyloid
accumulation. [11C]PK11195 and [11C]PiB PET were produced with
high radiochemical purity (�95%), with [11C]PiB PET having a specific
activity �150 GBq/�mol at the end of synthesis, whereas [11C]PK11195
specific activity was �85 GBq/�mol at the end of synthesis. PET scan-
ning used a GE Advance PET scanner (GE Healthcare) and a GE Discov-
ery 690 PET/CT, with attenuation correction provided by a 15 min 68Ge/
68Ga transmission scan and a low dose computed tomography scan,
respectively. The emission protocols were 550 MBq [11C]PiB injec-
tion followed by imaging from 40 to 70 min postinjection, and 75 min
of dynamic imaging (55 frames) starting concurrently with a 500 MBq
[11C]PK11195 injection. Each emission frame was reconstructed us-
ing the PROMIS 3-dimensional filtered back projection algorithm
into a 128 � 128 matrix 30 cm trans-axial field-of-view, with a trans-
axial Hann filter cutoff at the Nyquist frequency (Kinahan and Rog-
ers, 1989). Corrections were applied for randoms, dead time,
normalization, scatter, attenuation, and sensitivity.

For [11C]PiB we used reference tissue region-of-interest (ROI) defined
by �90% on the SPM8 gray-matter probability map (smoothed to PET
resolution) in the cerebellar cortex (Schuitemaker et al., 2007). For
[11C]PK11195, supervised cluster analysis was used to determine the
reference tissue time-activity curve (Turkheimer et al., 2007). [11C]PiB
data were quantified using standardized uptake value ratio (SUVR) by
dividing the mean CSF corrected radioactivity concentration in each
Hammers atlas ROI by the corresponding mean CSF-corrected radio-
activity concentration in the reference tissue ROI (whole cerebellum).
[11C]PiB data were treated as dichotomous measures (i.e., positive or
negative) and considered positive if the average SUVR value across
the cortical ROIs was �1.5 (Hatashita and Yamasaki, 2010). For
[11C]PK11195 maps of non-displaceable binding potential (BPND), a
measure of specific binding, were determined using a basis function
implementation of the simplified reference tissue model, both with
and without CSF contamination correction (Gunn et al., 1997).
[11C]PK11195 BPND maps (termed from now on PK maps for sim-
plicity) were also generated using this basis function approach.

The PK maps were coregistered and warped to the MNI space using the
flow fields. To minimize the noise effects from non-gray-matter regions,
the normalized PK maps were masked with a group-based gray-matter
mask based on voxels having gray-matter tissue probability larger than
0.3 in gray-matter segmented images across all individuals. The normal-
ized images were smoothed using a 6 mm Gaussian kernel. We then used
independent component analysis across participants to derive spatial
patterns of PK maps across voxels expressed by the group in a small
number of independent components. All PK maps were spatially concat-
enated and submitted to Source Based Inflammetry (SBI) to decompose
images across all individuals in a set of spatially independent sources
without providing any information about the group (Xu et al., 2009),
using the GIFT toolbox. Specifically, the n-by-m matrix of participants-
by-voxels was decomposed into: (1) a source matrix that maps each
independent component to voxels (here referred to as PKIC maps), and
(2) a mixing matrix that maps PKICs to participants. The mixing matrix
consists of loading values (1 per participant) indicating the degree to
which a participant expresses a defined PKIC. The independent compo-
nent loading values for the PKIC were taken forward to between-
participant analysis of functional connectivity (Fig. 1), if they were (1)
differentially expressed by controls vs. patients with AD pathology; and
(2) were associated with atrophy (see Results and Fig. 3). Only one de-
pendent variable (IC3) met these criteria.

Statistical analyses
We adopted a two-level procedure, in which, at the first-level, we sought
to identify functional connectivity differences associated with differences
in [11C]PK11195 binding. In a second-level analysis, we tested whether
individual variability in functional connectivity (from first-level analy-
sis) is specifically associated with variability in cognitive deficit in the
group of patients with AD pathology.
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Details about the first-level analysis approach are published previously
(Tsvetanov et al., 2018). In short, we used multiple linear regression
(MLR) with well conditioned shrinkage regularization (Ledoit and Wolf,
2004) to identify correlated structured sources of variance between func-
tional connectivity and neuroinflammation measures. In particular, this
analysis describes the linear relationship between functional connectivity
and PK maps on a between-subject level, in terms of structure coeffi-
cients (Thompson and Borrello, 1985), by providing a linear combina-
tion of the functional connectivity measures, which we term brain scores,
that are optimized to be highly correlated with the between-subject vari-
ability in the expression of the PK maps. Namely, brain-wide connectiv-
ity strength for each individual defined the independent variables, and
PKIC subject-specific loading values for group differentiating compo-
nents were used as a dependent variable.

To identify and exclude potential outliers, Grubbs’ test was used
(Grubbs, 1969; Barnett and Lewis, 1994). None of the loading values in
the IC3 was outlying observation. Furthermore, to down-weight the ef-
fects of extreme or imprecise data points, the analyses used robust linear
regression.

To avoid overfitting, first-level multiple linear regression model was
integrated with a fivefold cross-validation approach (Thompson and
Borrello, 1985). To minimize the non-negligible variance of traditional
k-fold cross-validation procedure, we repeated each k-fold 1,000 times
with random partitioning of the folds to produce an R value distribution,
for which we report the median value.

Next, we tested the hypothesis that the effect of neuroinflammation on
functional connectivity was related to cognitive deficit, in patients rela-
tive to controls. To this end, we performed a second-level multiple linear
regression (MLR) analysis. Independent variables included subjects’
brain scores from first-level MLR (reflecting how strongly each individ-
ual expressed the whole-brain pattern of functional connections
weighted by the IC3-PET-derived data), group information, and their
interaction term (brain scores � group).

In other words, we examined the linear relationship between func-
tional connectivity and expressions of PK maps on a between-subject
level, in terms of structure coefficients (Thompson and Borrello, 1985).
Hence, we used multiple linear regression to identify a linear combina-
tion of the functional connectivity measures, which we term brain scores,
that were optimized to be highly correlated with the between-subject
variability in the expression of PK maps. More specifically, the whole-
brain connectivity strength for each individual defined the independent
variables (m � n), and PKIC subject-specific loading values for the group
differentiating component (IC3) were used as dependent variable (m �
1), where m is the number of subjects and n is the number of pairwise
connections. This produced a set of structure coefficients (1 � n) and a
set of subject scores (m � 1) for the functional connectivity data. The
structure coefficients reflect the contribution of each connection to the
overall functional connectivity pattern; conceptually similar to the com-
ponent loadings in a PCA on cognitive data and the source matrix in
group ICA on PET-PK data (here called SBI). The brain scores indicated
how strongly an individual expresses the functional connectivity pattern,
which is conceptually similar to the subject-specific scores in a PCA and
subject-specific loadings in the SBI analysis. These brain scores were corre-
lated with the subjects’ cognitive performance, in a second-level multiple
linear-regression analysis. For the cognitive performance, we did not choose
a single test, but rather a summarized cognitive ability score in terms of the
first principal component across three cognitive tests.

Covariates of no interest included age, sex, head movement, and global
gray-matter volume.

Results
Source-based inflammetry (SBI)
The optimal number of components (n � 5) was detected with
minimum-distance length criteria. One component showed sig-
nificant differences between the patient and control group in

Figure 1. Schematic representation of various modality datasets in the study, their processing pipelines on a within-subject level (light blue), as well as data-reduction techniques and statistical
strategy on between-subject level (dark blue) to test for associations between the datasets. FC, Functional connectivity; Cov, covariates; COG PC1, latent variable (cognitive deficit, which summarizes
the largest portion of shared variance as the first principal component); GM, gray matter. NIMROD study (Neuroimaging of Inflammation in Memory and Other Disorders), AD/MCI�, Alzheimer’s
Disease/Mild Cognitive Impairment (positive PET amyloid, 11C PiB PET), PET PK, positron emission tomography [11C]PK11195 ligand (microglia activation), PK-IC maps, PET [11C]PK11195
independent component maps, PK IC3, 3rd component of [11C]PK11195 ligand maps, 11CPiB PET (amyloid PET), fMRI, functional magnetic resonance imaging, Cam-CAN, Cambridge Centre for
Ageing and Neuroscience, G, diagnostic group (AD/MCI� or Controls), ACE-R, Addenbrookes’ Cognitive Examination - revised test, MMSE, mini-mental status examination, RAVLT, Ray Audio-Visual
Learning Test, MLR, multiple linear regression.
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terms of their loading values (PKIC3, t � 	2.1, p � 0.04; Fig. 2
right, robust linear regression). The spatial extent of this PKIC3

included voxels with high values in cortical and subcortical re-
gions, including the inferior temporal cortex and hippocampus,
indicating that individuals with higher loading values, in this case
the patient group, had higher [11C]PK11195 binding in these
regions, relative to the control group (Fig. 2, left). The other
components did not differentiate patients from controls (Fig. 3,
first row).

The PKIC3 component, which differed between patients and
controls, was also the sole PK component that negatively corre-
lated with total gray-matter values in patients but not controls
(Fig. 3, third column, and second and third rows). In other
words, the patients expressing higher [11C]PK11195 binding

showed also higher levels of cortical atrophy (Fig. 3, second and
third rows). This result was obtained when including the gray-
matter volume as a covariate of no interest in the analysis, which
suggests that the reported association was over and above the
effects of overall brain atrophy.

All in all, our findings imply that the PKIC3 component reflects
specific patterns of neuroinflammation and neurodegeneration
in AD. These patterns were next tested in terms of their relevance
for changes in large-scale network function and their interactive
effect in mediating cognitive deficit in AD.

Functional connectivity
As expected, there was strong positive functional connectivity
between all nodes within the four networks, identified by spatially

Figure 2. Source Based Inflammetry (SBI) for the component differentially expressed between groups: (left) independent component spatial map reflecting increase in PK ([11C]PK11195 ligand-
activated microgia) binding values in cortical and subcortical areas (red blobs) including inferior temporal cortex and hippocampus, these regionally specific increases are over and above the global
PK differences between groups. Right, Bar plot of subject loading values for AD/MCI� and control group (each circle represents an individual) indicating higher loading values for AD/MCI� than
control group as informed by two-sample unpaired permutation test (a robust linear regression was used to down-weight the effects of extreme data points). AD/MCI�, Alzheimer’s Disease/Mild
Cognitive Impairment (positive PET amyloid, 11C PiB PET), HC, healthy controls.

Figure 3. The Source Based Inflammetry (SBI) identified five independent components (ICs) that reflected PK ([11C]PK11195 ligand-activated microgia) binding values in cortical and subcortical
areas. The PKIC3 component differed between AD/MCI�patients and controls (first row, third column). This PKIC3 component negatively correlated with total gray-matter volumes in all individuals
as well as in patients only (but not controls only; third column and second, third, and fourth rows). In other words, the patients expressing higher [11C]PK11195 binding PKIC3 component (reflecting
higher binding in the inferior temporal cortex and hippocampus as shown in Fig. 2) displayed higher levels of brain-wide atrophy. GM, gray matter, AD/MCI�, Alzheimer’s Disease/Mild Cognitive
Impairment (positive PET amyloid, 11C PiB PET), HC, healthy controlls.
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matching to pre-existing templates (Fig. 4, left). In terms of group
differences, the functional connectivity within networks (within
the default mode network, within the frontoparietal network,
left-right putamen and left-right hippocampus) and between the
default mode network and hippocampus was weaker in patients
relative to controls (Fig. 4, right). Furthermore, the connectivity
between the putamen and hippocampus increased, whereas the
connectivity between default mode network and putamen was
less negative for patients relative to controls.

Functional connectivity and neuroinflammation
The first-level multiple linear-regression model assessing the re-
lationship between PKIC3 maps and functional connectivity data
was significant (r � 0.52, p � 0.001). The standard coefficients
indicated positive and negative associations between the PKIC3

loading values and between-subjects variability in functional
connectivity (Fig. 5, left). In other words, individuals with higher
[11C]PK11195 binding values in the inferior temporal cortex and
medial temporal lobe regions (as reflected by higher PKIC3 val-
ues) showed: (1) increased connectivity between the default
mode network, the hippocampus, and other subcortical regions;
and (2) weaker connectivity for nodes within the default mode
network.

Linking neuroinflammation, connectivity, and
cognitive deficits
The first component of the PCA of cognitive tests explained 80%
of the variance across the three cognitive measures (with coeffi-
cients of 0.61, 0.61, and 0.52 for MMSE, ACE-R, and RAVLT,
respectively).

Next, we tested whether the effects of neuroinflammation on
network connectivity were specific to the patient group and
whether this functionally-relevant neuroinflammation related to
cognitive deficits. Consistently with this hypothesis, the interac-
tion term between group and brain scores (reflecting how
strongly each individual expresses the pattern shown in Fig. 5 left,

which is the brain-wide pattern of functional connections opti-
mized to highly correlate with the IC3-PET-derived data) was
significantly associated to the first component of the PCA of cog-
nitive tests (t � 	3.4, p � 0.004).

A post hoc analysis within each group indicated a significant
negative association between the behavioral scores from the PCA
and functional connectivity/PK-combined indices in the patient
group (r � 	0.51, p � 0.005; Fig. 5, right). Conversely, a non-
significant positive direction of association for the same relation-
ship between PCA-derived cognitive scores and brain measures
was found in controls (r � 0.46, p � 0.09). The significant differ-
ence between patients and controls remains if AD and MCI�
subgroups are analyzed separately (data not shown). The nega-
tive association in the patient group indicated that patients in
whom higher neuroinflammation was more strongly associated
with more abnormal connectivity also performed worse on a
summary measure of cognitive deficit.

Discussion
This study establishes a link between the presence of neuroinflam-
mation and the disruption of large-scale functional connectivity in
AD. The degree to which patients expressed the association between
abnormal functional connectivity and neuroinflammation itself cor-
related with their cognitive deficit. In other words, the patients’ cog-
nitive scores were correlated to a pattern of brain connectivity that
was itself linked to microglia activation. This relationship between
cognition and a PET-rs-fMRI association (i.e., neuroinflammation
relevant functional connectivity) was only seen in patients with AD,
but not healthy controls. This suggests that not only does neuroin-
flammation relate to large-scale network function, but also that the
disruption of connectivity linked to neuroinflammation mediates
cognitive deficits in AD.

We propose that the cognitive deficits in AD can be directly
related to changes in functional connectivity which in turn are
mediated by microglia activation, although we acknowledge that
there are several mechanisms by which neuroinflammation can

Figure 4. Mean effects (left) and group difference effects (AD/MCI��Controls, right) between default mode network (DMN) and subcortical (SC) regions using univariate approach. vACC,
ventral Anterior cingulate cortex; PCC, posterior cingulate cortex; IPL, intraparietal lobule; FPN, frontoparietal network; Put, putamen; Hipp, hippocampus, AG, angular gyrus; CN-MFG, middle frontal
gyrus (cortical network), SFG, superior frontal gyrus; r, right; l, left. Note that the whole pattern of brain connectivity rather than each connection separately was used to study how subject-specific
neuroinflammatory levels influence large-scale network connectivity (Fig. 5). AD/MCI�, Alzheimer’s Disease/Mild Cognitive Impairment (positive PET amyloid, 11C PiB PET).
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alter brain functional connectivity and vice versa (i.e., the ways in
which synaptic firing can influence microglia). Microglia are im-
portant contributors in the process of synaptic pruning and reg-
ulation of synaptic function (Hong et al., 2016). The microglia’s
highly mobile and ramified branches can reach and surround
synaptic terminals to promote phagocytosis and synaptic demise
(Hong et al., 2016). Microglia-induced complement activation
might also contribute to synaptic dysfunction and loss, especially
in the context of amyloid deposition and neuritic plaque forma-
tion (Hong et al., 2016). On the other hand, synaptic firing can
influence microglia activation via specific membrane receptors
and ion channels (Tofaris and Buckley, 2018).

The anatomical distribution of neuroinflammation in AD and
its effects on large-scale network function supports the hypothe-
sis that neuroinflammation might be an early event in the patho-
genesis of AD and that our current results are not driven by a
global effect of a systemic inflammatory confound which would
have affected the whole-brain indistinctively.

Our study has three implications. First, it supports the use of
integrative or multimodal neuroimaging as a useful tool to im-
prove our understanding of the brain determinants that mediate
healthy and pathological aging (Geerligs and Tsvetanov, 2017).

Second, it reinforces the notion that neuroinflammation is a
key pathophysiological mediator of AD and its clinical variability
(Weiler et al., 2016). Genome-wide association studies have chal-
lenged the idea that neuroinflammation is merely a secondary
event caused by neurodegeneration and have conversely sus-
tained a primary role of microglia-related molecular pathways in
the etio-pathogenesis of AD (Guerreiro et al., 2013; Jonsson et al.,
2013). For instance, mutations in TREM2, an immune cells re-
ceptor expressed on microglia, represent a risk factor for AD and
other neurodegenerative diseases (Guerreiro et al., 2013; Jonsson

et al., 2013). Together with our results, these data suggest that
immunotherapeutic strategies might be helpful to reduce the
deleterious impact of neuroinflammation on cognitive deficits
in AD.

Third, the functional connectivity abnormalities observed
here can be considered an intermediate phenotypic expression of
the neuroinflammatory pathology in AD. This can be relevant to
reconcile the apparent conflict between the encouraging findings
from basic research on the role of neuroinflammation in AD
pathogenesis (Heppner et al., 2015) and the results from human
studies, which as yet have provided little support for immuno-
therapeutics in AD (Adapt Research Group et al., 2007, 2008),
despite epidemiological evidence (Breitner and Zandi, 2001; in’t
Veld et al., 2001).

In other words, assessing how neuroinflammation influences
the intermediate phenotypes of large-scale network functional
connectivity might help explaining why clinical trials have failed
so far to demonstrate a role for immunotherapeutic strategies
because of high patient heterogeneity. We showed marked indi-
vidual differences in the relationship between resting-state func-
tional connectivity and neuroinflammation in patients with AD
at different stages, and it was this variance that was significantly
related to individual differences in cognitive performance.

Our study has also limitations and caveats. First, we recognize
that even the multivariate methods of statistical associations used
here do not in themselves demonstrate causality between neuro-
inflammation, network dysfunction, and cognition. To address
this issue, longitudinal and interventional studies are needed,
alongside mediation analyses (Fan et al., 2015; Kreisl et al., 2016).

Second, the molecular pathology of AD is multifaceted, with
amyloid deposition, tau accumulation, and vasculopathy. These
processes, alone or in combination, may moderate the associa-

Figure 5. Left, First-level Multiple Linear Regression (MLR) indicating that functional connectivity differences (deviating from groups effects in Fig. 3) are associated positively with PKIC3 (PK PET
ligand 3rd Independent Component). Connections surviving a threshold of p � 0.05 corrected for multiple comparisons are highlighted with a black contour, although it is important to bear in mind
that the whole-pattern of brain connectivity was used in the analysis shown on the right. Right, Second-level MLR association between PKIC3 pattern of functional connectivity and cognitive
performance for patients with AD pathology (including MCI�; orange) and control (green) groups. The group difference in slopes was significant ( p � 0.0001). By using multiple linear regression
and correlations with cognitive performance, we found that the change in patients’ cognition was correlated to a pattern of brain connectivity that was itself linked to neuro-inflammation. This
relationship between cognition and a PET-rsfMRI association (i.e., neuroinflammation-functional connectivity) was only seen in AD/MCI� patients, not controls. vACC, ventral Anterior cingulate
cortex; PCC, posterior cingulate cortex; IPL intraparietal lobule; FPN, frontoparietal network; SC, subcortical, DMN, default mode network, DMNd, dorsal DMN, Put, putamen; Hipp, hippocampus, AG,
angular gyrus; SFG, superior frontal gyrus; R, right; L, left.
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tion between neuroinflammation and functional connectivity;
hence, multimodal studies that capture each of these aspects will
be useful to formally assess the complex interplay between neu-
roinflammation, abnormal tau deposition, vasculopathy, and
cognitive deficits.

Third, the confounding effect of head motion on functional
imaging has been fully recognized as both challenging and critical
for interpretation of functional imaging studies, especially in
clinical populations. To minimize such confound, we used
ME-ICA and validated pre-processing pipelines, which separate
changes in the fMRI signal that distinguish between BOLD
and non-BOLD signals. Furthermore, we included movement-
related parameters as covariates of no interest in second-level
analyses, as well as motion and physiological signals in first-level
analyses.

Fourth, the use of the [11C]PK11195 tracer has its own limi-
tations in terms of reduced affinity to the mitochondrial TSPO in
activated microglia, especially compared with second-generation
TSPO tracers as PBR28 (Fujita et al., 2017). On the other hand,
such second-generation TSPO tracers are affected by common
genetic polymorphisms (Owen et al., 2012).

Fifth, at the phenotypic level, it remains to be determined
whether the deleterious impact of neuroinflammation on net-
work function can be revealed in pre-symptomatic individuals at
risk of AD, for example, in carriers of autosomal dominant ge-
netic mutations. Despite the inclusion of patients with mild cog-
nitive impairment with biomarker evidence of AD pathology, our
study cannot resolve the timing of neuroinflammation and its
causal relationship to network dysfunction, cell loss, and cogni-
tive deficit. There is initial evidence that neuroinflammation may
precede abnormal protein aggregation and brain atrophy in pre-
symptomatic carriers of MAPT mutations (Bevan-Jones et al.,
2019), although further studies are needed to confirm these pre-
liminary findings in AD or other neurodegenerative diseases.

In conclusion, we have shown that SBI of [11C]PK11195 PET
data revealed a distributed profile of neuroinflammation in AD,
which in turn related to abnormal functional connectivity. Our
crossmodal multivariate analyses also indicated that heterogene-
ity in cognitive status was associated to variability in neuroin-
flammation-related network dysfunction. These data emphasize
the value of multi-modal neuroimaging to study how different
aspects of the molecular pathology of AD mediate brain function
and cognition. Improved stratification procedures may facilitate
more efficient therapeutic trials in AD, based not only on neuro
inflammation, tau, atrophy, or connectivity, but on their com-
plex interaction that leads to individual differences in cognitive
impairment.
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