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MAP?7 Prevents Axonal Branch Retraction by Creating a
Stable Microtubule Boundary to Rescue Polymerization

Stephen R. Tymanskyj and “Le Ma
Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College,
Thomas Jefferson University, Philadelphia, Pennsylvania 19107

Complex neural circuits are built from axonal branches that allow each neuron to connect with multiple targets. During development,
maturation of nascent branches depends on stabilization of newly assembled or transported microtubules, which are thought to be
regulated by microtubule-associated proteins (MAPs). However, because many known MAPs inhibit branch formation, it is not clear
which MAP is responsible for regulating microtubule stability during branch development. Here, we show that MAP7, a less-well under-
stood MAP that is localized to branch junctions, provides a key molecular mechanism to regulate microtubule stability during branch
formation. In developing rodent sensory neurons of mixed sex, MAP7 is required for branch maturation mainly by preventing branch
retraction. This function is mediated by the ability of MAP7 to control microtubule stability, as microtubules are more stable at
branch junctions where MAP?7 is localized. Consistently, nascent branches depleted of MAP7 have decreased stable microtubules but
increased dynamic microtubules. Moreover, MAP7 binds to the acetylated and stable region of individual microtubules and avoids the
dynamic plus end, thereby creating a boundary that prevents microtubule depolymerization and rescues microtubule polymerization.
This unique binding property, which is not observed for other MAPs, can prevent branch retraction caused by laser-induced severing or
nocodazole-induced microtubule depolymerization. Together, our study identifies a novel molecular mechanism mediated by MAP7 to
regulate microtubule stability and strengthen branches at different stages of axonal branch morphogenesis.
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Development and maintenance of axonal branches rely on microtubule stability, but the underlying molecular mechanisms are
not fully understood. Here, we show that MAP7, a unique protein that interacts with both microtubules and the motor protein
kinesin-1, plays a key role at branch junctions. MAP7 stabilizes microtubules in nascent branches and prevents branch retraction
during branch maturation or after laser-induced injury. MAP7 also binds to the acetylated region of microtubules to prevent
depolymerization and rescue polymerization. This unique binding property supports a novel mechanism mediated by MAP7 to
cooperate with other MAPs and control microtubule stability during axonal branch development. This mechanism could also
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Introduction

Establishing the complex neural connectivity depends on the
generation of elaborate axonal branches that allow a single neu-
ron to connect with multiple synaptic targets (O’Leary et al.,
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1990; Acebes and Ferrus, 2000; Gibson and Ma, 2011; Rockland,
2019). Formation of these branches is achieved through various
signaling pathways, all of which ultimately converge on the reg-
ulation of key cytoskeleton components, actin and microtubule
(Gallo, 2011; Lewis et al., 2013; Kalil and Dent, 2014; Kapitein
and Hoogenraad, 2015). Actin-based filopodia initiate branch
formation along the axon; microtubules then invade the filopo-
dia via polymerization or transport to generate nascent branches
that continue to grow and become mature branches (Gallo, 2011;
Kalil and Dent, 2014). However, nascent branches can retract if
microtubules are not stabilized inside them (Gallo, 2011; Lewis et
al., 2013; Kalil and Dent, 2014). The ability to control branch
growth and retraction is thus critical to establishing stereotypic
and plastic synaptic connections, as demonstrated by recent
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studies of the formation of layer-specific collateral branches in
cortical pyramidal neurons (Hand et al., 2015) and synapse elim-
ination in the neuromuscular junction (Brill et al., 2016).

During branch development, it is thought that microtubules
are stabilized by microtubule-associated proteins (MAPs) in nas-
cent branches (Gallo, 2011; Kalil and Dent, 2014). Several MAPs,
including tau, MAP1B, and doublecortin, which bind or cross-
link microtubules, have been proposed to stabilize microtubules
to promote branch maturation (Kalil and Dent, 2014). However,
these MAPs are often present uniformly along the axon or at the
axonal terminal (Dotti et al., 1987; Tint et al., 2009; Tymanskyj et
al., 2010); and expression perturbation studies show that these
MAPs suppress branch formation (Koizumi et al., 2006; Yu et
al., 2008; Bilimoria et al., 2010; Tymanskyj et al., 2012; Ket-
schek et al., 2015). Therefore, it is not clear which specific
MAP is responsible for stabilizing microtubules during nas-
cent branch maturation.

In this study, we investigated MAP7, a MAP that can promote
branch formation, especially branch maturation of rodent dorsal
root ganglion (DRG) sensory neurons (Tymanskyj et al., 2017,
2018). MAP?7 is enriched at branch junctions, making it an ideal
candidate to stabilize microtubules in nascent branches. MAP7
has two microtubule binding domains that contribute to its high
microtubule binding affinity (Tymanskyj et al., 2018) and com-
petes against tau for microtubule binding in vitro (Monroy et al.,
2018). MAP7 shows strong recruitment of kinesin-1 to microtu-
bules via a carboxyl terminal domain (Sung et al., 2008; Metzger
et al., 2012; Barlan et al., 2013; Tymanskyj et al., 2018) and can
influence kinesin-1 based organelle transport in neurons (Ty-
manskyj et al., 2018). Although the kinesin interaction allows
MAP7 to regulate organelle transport, the microtubule binding
property of MAP7 that is essential for recruiting kinesin to mi-
crotubules has largely been overlooked. Additionally, how MAP7
affects microtubule stability critical to branch growth remains to
be studied.

Using a gene-trap mouse mutant (Komada et al., 2000) that
produces Map7-null neurons, we show that MAP7 is required for
branch maturation by preventing branch retraction. We show
that the MAP7-rich regions in axons and branch junctions con-
tain more stable microtubules and MAP7 deletion or overexpres-
sion has opposing effects on microtubule stability in these axonal
regions. We also show that MAP7 is needed to increase microtu-
bule stability in nascent branches. These functions are achieved
by MAP7 binding to specific regions along microtubules that
generates a boundary to prevent microtubule depolymerization
and rescue polymerization, a property specifically seen with
MAP7 but not the axonal MAP, tau. This unique binding prop-
erty supports MAP7 to prevent retraction of laser-severed mature
branches and influence branch retraction caused by nocodazole-
induced microtubule depolymerization. Our combined data thus
provide strong evidence to support a microtubule regulatory
mechanism governed by MAP7 to regulate axonal branch devel-
opment and maintenance.

Materials and Methods

DNA constructs, animals, and cell lines. EGFP expression constructs for
MAP7 (FL and N) were described previously (Tymanskyj et al., 2017,
2018). 3R-tau-EGFP (Qiang et al., 2006) and EB3-mCherry (Qiang et al.,
2010) were gifts from Dr. Peter Baas (Drexel University). Timed preg-
nant Sprague-Dawley rats were obtained from Charles River Laborato-
ries and used in accordance with the Guidelines for the Care and Use of
Laboratory Animals of the National Institutes of Health and the approved
IACUC protocol (#01560) of the Thomas Jefferson University. The
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Map77/7 mouse line (Komada et al., 2000) was obtained from The
Jackson Laboratory (JAX stock #004153) and maintained in accordance
with the approved IACUC protocol (#01558, #01559). Vaginal plug dates
were designated as E0.5 for mice and EO for rats. COS-7 cells (originally
from the stock of the Tessier-Lavigne laboratory) were grown in DMEM
with 10% fetal bovine serum (Invitrogen).

Culture of primary DRG neurons and COS cells. Primary rat DRG neu-
ronal cultures were performed as described previously (Zhao et al.,
2009). Briefly, DRGs were dissected out from E17 rat embryos of mixed
sex, washed once in HBSS, and incubated at 37°C with 0.25% trypsin for
10—15 min. Trypsin-treated DRGs were resuspended in L15 medium
plus 10% horse serum and then mechanically triturated with a fire-
polished glass pipette. Dissociated rat DRG neurons (~7.5 X 10° cells)
were transfected with various MAP7 or tau constructs by Nucleofection
(Lonza) using reagent P3 and the CU-133 program. Neurons were then
plated at ~20,000 cells on 18 mm glass coverslips coated with 10 ug/ml
poly-p-lysine/10 ug/ml laminin and cultured in F12 medium (with the
N3 supplement, 40 mm glucose, and 25 ng/ml NGF). After 24 h, cells
were either fixed or subjected to live imaging as described in the following
sections.

Map7 '~ neurons were collected from E15.5 mouse embryos of
mixed sex. DRGs with the same genotype were then pooled and pro-
cessed for culture as described for rat neurons. Dissociated neurons were
imaged live or grown for 24 h before fixation.

COS cells were transfected using a TransMax system (gift from Yun
Yao, University of Southern California) with various DNA constructs
and plated on glass coverslips or glass bottom dishes (MatTek; Tyman-
skyj et al., 2018). For microtubule polymerization experiments, EB3-
mCherry was cotransfected along with EGFP tagged constructs. After
overnight culture, cells were fixed or subjected to live imaging described
in the following sections.

Immunocytochemistry, imaging, and quantification. After overnight
culture, neurons or COS cells were either fixed in 4% PFA/PBS for mor-
phology analysis or 4%PFA/0.5% glutaraldehyde in PBS for microtubule
analysis. For the nocodazole treatment (Baas and Black, 1990), DRG neu-
rons were treated either with 6.6 uM nocodazole (NocF) or with DMSO
control (CtrlF) in the medium for 15 min before fixation with methanol.

Cells were stained with the following primary antibodies: a-tubulin
(1:5000; Abcam; RRID:AB_2210057), a-tubulin (DM1a; 1:2000, Sig-
ma-Aldrich; RRID:AB_521686), C-terminal MAP7 (1:1000; Gene-
Tex; RRID:AB_11170884), acetylated tubulin (1:1000; Sigma-Aldrich;
RRID:AB_477585), tyrosinated tubulin (YL1/2, Bio-Rad; 1.2000; RRID:
AB_325003) or neurofilament (RMO270, 1:1000; Sigma-Aldrich; RRID:
AB_2315286). EGFP-tagged proteins in DRG neurons and COS cells
were visualized directly by the fluorescence of the EGFP tag or by labeling
with an EGFP antibody (Aves Labs; RRID:AB_10000240). For antibody
labeling, cells were blocked in PBS plus 5% goat serum and 0.1% Triton
(PGT) for 1 h and then incubated with primary antibodies diluted in
PGT for at least 1 h at room temperature or overnight at 4°C. After
washing, they were incubated with Cy3 and/or Cy5-labeled secondary
antibodies (Jackson ImmunoResearch) diluted in PGT for 1 h at room
temperature. Digital images were taken on a Yokogawa spinning disk
confocal system using 488, 560, or 680 nm laser excitation with a 20X or
100X objective. Images are shown as 2-dimensional projections with
specific pseudo-colors based on the LUTSs in Image J.

Based on digital confocal images, the following parameters were ana-
lyzed in Image] as previously described (Tymanskyj et al., 2017): number
of branches per 100 wm axon, main axon length, branch length, and
number of primary neurites per neuron. Primary axons were counted as
any processes >20 um extending from the cell body. The longest of
them, measured from the cell body to the growth cone, was considered as
the primary axon. Branches >10 wm were traced, counted, and normal-
ized to the primary axon length. They were divided into two groups based
on their location along axons (terminal vs interstitial) as defined in the
Results section. Branch numbers for each neuron were summed and
normalized to the axon length of each individual neuron.

For fluorescence intensity measurements in DRGs, lines were drawn
along the axon or branch region and gray values along the lines were
acquired as indicated in the figure. For the MAP7 overexpression level,
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the fluorescent intensity of MAP7 antibody
staining was compared between nontrans-
fected and FL-EGFP-expressing neurons in
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axon and branch regions.

Live cell imaging. E15.5 mouse DRG neurons
were dissociated and cultured in laminin-
coated glass bottom dishes. The dish was
mounted onto a heated and humidified cham-
ber (Okolab) equilibrated to 37°C with 5%

CO, on an inverted microscope (Axiovert 200,
Zeiss). Both phase contrast and fluorescent im- -
ages were acquired using a spinning disk con-
focal system (Yokogawa, W1) with an sCMOS
camera (Zyla, Andor) or an EMCCD camera
(Cascade 512, Photometrics). For branch dy-

Map7/-

Map7/-

|55

namic analysis, images were taken using a 40X

objective every 5 min for 10—18 h. For filopo-
dia analysis, images were taken using a 63X
objective every 2 min for 30 min. Image con-
trast was auto adjusted in Image] using min/
max values.

In branch dynamic analysis, branch growth
refers to branches that appeared and extended
>20 pwm over the length of imaging time (be-
tween 6 and 18 h) and is represented by the
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modes of branching (bifurcation and collateral
branch formation) as described in the Results
section.

EB3 imaging in live COS cells was performed
24 h after transfection. Images were captured
on a spinning disk confocal system with an
EMCCD camera at 2—4 s time intervals for a
total of 4 min. Kymographs were generated us-
ing Image]. For EB3 analysis, the plusTip-
Tracker (Applegate et al., 2011) was used to
generate EB3 speeds and growth lengths. For the
nocodazole treatment, cells were set up for live

Figure 1.

imaging of EB3, followed by perfusion with fresh media containing 15 um
nocodazole. Cells were monitored until the majority of EB3 signals had been
removed. For washout, fresh media without nocodazole was perfused while
cells were imaged.

Analysis of branch response after laser-severing or nocodazole treatment.
Rat DRG neurons were transfected with various DNA constructs, grown
overnight, and then moved to the on-stage culture system (Okolab).
Images were acquired using 488 nm laser or phase contrast on a spinning
disk confocal system by an sCMOS camera (Zyla, Andor). Neurons were
injured using a Micropoint (Andor) with the minimum power setting to
achieve severing of the axon. Successful severing was identified as com-
plete separation of the axon at the site of injury by phase contrast imag-
ing. Initial images were acquired using a 63X objective every 1 min for 20
min, subsequently followed by imaging every 5 min for 1 h. For nocoda-
zole experiments, imaging was done the same way after rat or mouse
neurons were treated with 15 uM nocodazole.

In situ analysis. Cryosections (16—20 wm) were processed following a
standard procedure (Zhao et al., 2009) using DIG-labeled riboprobes.
The Map7-specific RNA probes were subcloned into the pCRII-TOPO
vector (Invitrogen) with the following primers: N-terminal probe (250
bp): forward, ATCCCCCACCTGTGCTACG; reverse, CTTGTCCTCC

Loss of MAP7 decreases axon branching in DRG neurons. A, In situ analysis of E15.5 mouse spinal cords from WT and
Map7 ~'~ animals labeled with a Map7-specific DIG-labeled probe. B, Cultured WT and Map7 ~/~ DRG neurons colabeled by
antibodies for NF and MAP7. €, D, Inverted fluorescence images of dissociated WT (€) or Map7 '~ (D) neurons cultured for 24 h
and labeled with NF antibodies. E~H, Comparison between WT and mutant (—/—) neurons of branch number per 100 um axon
length (E; total p = 0.0046, interstitial p = 0.0001, terminal p = 0.6081,n = 35 for WT and n = 34 for —/—, Mann—Whitney
test), primary axon length (F; p = 0.0298, n = 35 for WT and n = 34 for —/— ,unpaired t test), branch length (G; p = 0.0002,
n = 30for WT; n = 25 for —/—, Mann—Whitney test), and primary neurite number (H; p = 0.8894, n = 35 for WT, n = 39 for
—/—,Mann-Whitney test). Dataare reported as mean == SEMin E-G,and medianin H. *p << 0.05; **p << 0.01; ***p << 0.001; ns, not
significant. Scale bars, 100 um.

TCCAGCCTCTG; C-terminal probe (543 bp), forward: ACAGCAAT
CAGAAGTGACCACAGAGAG; reverse, TGTCTGCACACCATCCACCT.

Experimental design and statistical analysis. All measurements are re-
ported as mean * SEM, except that Figure 1H is shown by the median.
Statistical analysis was performed in Prism 8.0 software (GraphPad).
Data were first tested for normality by the Kolmogorov—Smirnov. Nor-
mally distributed data were compared by unpaired two-tailed ¢ tests for
two samples or one-way ANOVA with Tukey’s post hoc analysis for three
or more samples. Data that were not normally distributed were analyzed
by the Mann—Whitney test for two samples or by the Kruskal-Wallis test
for three or more samples. The statistical test, the sample size (1), and the
p values are reported in the figure legend or the Results section. P values
<0.05 are considered significant and represented by asterisks.

Results

MAP7 is required for axonal branch maturation by
preventing branch retraction

To understand the role of MAP7, we analyzed DRG neurons isolated
from a gene-trap mouse line in culture. The mouse line was created
by an insertion of a 3-gal gene-trap cassette into intron 1, which
disrupts MAP7 at amino acid 23 and thus creates a null allele (Kom-
ada et al., 2000). Absence of MAP7 expression was confirmed by in
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Figure 2.  Loss of MAP7 increases axonal branch retraction in DRG neurons. A, Formation of filopodia (arrows) is shown by

sequential phase contrast images of an axonal segment. B-D, Comparisons between WT and Map7 ~/~ (—/—) neurons in
filopodium formation frequency (B; p = 0.8026, n = 8 for WTand n = 9 for —/—, unpaired t test), filopodium lifetime (C; p =
0.7047,n = 9forWTand n = 8 for —/—, unpaired t test), and filopodium length (D; p = 0.2575,n = 15 for WT and n = 21 for
—/—, unpaired t test). E-G, Examples of sequential phase contrastimages (60 min apart) to show branch growth (yellow arrows)
and branch retraction (red arrows) of WT (E, F) and Map7 ~'~ (G) neurons. H-K, Comparison between WT and mutant (—/—)
neurons of branch growth (H; total p = 0.0169, bifurcation p = 0.1318, collateral p = 0.0510;n = 18 cells forWTand n = 10 cells
for —/—; unpaired t test), branch retraction (/; total p = 0.0157, bifurcation p = 0.0244, collateral p = 0.0204; n = 18 cells for
WTandn = 10 cells for —/—; Mann—Whitney test), branch length before retraction (J; total p = 0.1092,n = 19for WTand n =
27 for —/—; bifurcation, p = 0.2948,n = 7 for WTand n = 11 for —/—; collateral, p = 0.2344,n = 12 forWT and n = 16 for
—/—; Mann—Whitney test), and branch lifetime before retraction (K; total p = 0.3267, n = 20 for WT and n = 20 for —/—;
bifurcation, p = 0.3590, n = 6 for WT and n = 7 for —/—; for collateral, p = 0.5808, n = 14 for WTand n = 13 for —/—;
unpaired t test). Data are reported as mean == SEM. *p << 0.05; ***p << 0.001; ns: not significant (only shown for the total in H—K).
Scale bars: 20 m.

situ analysis in spinal cord sections (Fig. 1A) and antibody staining of
MAP7 and neurofilament (NF) in cultured DRG neurons (Fig. 1B)
of wild-type (WT) and Map7 ~/~ animals.

Consistent with previous studies (Tymanskyj et al., 2017),
DRG neurons isolated from E15.5 WT mouse embryos had exu-
berant branches (Fig. 1C), producing 1.23 = 0.11 total branches
per 100 wm axon in culture (Fig. 1E). However, DRG neurons
from Map7 '~ littermates displayed a 37% decrease in the num-
ber of total branches per 100 wm axon to 0.79 * 0.10 (Fig. 1 D, E).
The reduction in branches was due to a 44% decrease in intersti-

J. Neurosci., September 4, 2019 - 39(36):7118-7131 « 7121

tial branches, defined as those extending
from the proximal 90% of the axon, from
1.08 £ 0.10 branches in WT neurons to
0.60 = 0.08 branches in Map7 '~ neu-
rons per 100 wm axon. However, there
were no significant differences in terminal
branches, defined as those from distal
10% axons, between WT and Map7 '~
neurons (0.16 * 0.04 vs 0.19 *= 0.05
branches per 100 wm; Fig. 1E). Loss of
MAP7 did not affect the formation of ax-
ons, but the main axon produced by mu-
tant neurons were shortened by 17%
(WT: 540.2 * 29.3 um vs Map7 '~
445.8 = 24.7 um; Fig. 1F). Because the
reduction in branch number is larger than
that of axonal length, the impact on
branch formation by the loss of MAP7 is
not merely a secondary consequence of
primary axonal growth. Additionally, the
total branch length was reduced by 39%
(209.9 £ 16.0 wm in WT vs 127.0 £ 17.1
wm in Map7 ~'~; Fig. 1G) without affect-
ing the neurite number per cell (Fig. 1H),
further supporting a role of MAP7 in
branch growth. These results demonstrate
that MAP7 is required for axon growth,
branch formation, and branch growth, con-
sistent with the previous analysis by shRNA
knockdown (Tymanskyj et al., 2017) and
domain expression (Tymanskyj etal.,2018).

Our previous studies of precocious ex-
pression of MAP7 in DRG neurons sug-
gested that MAP7 is required for branch
maturation but not branch initiation
(Tymanskyj etal., 2017). To test these differ-
entroles, we used live-cell imaging (Fig. 2A)
to analyze filopodia formation, the initial
step in branch development. WT neurons
normally produce ~0.046 * 0.007 filopo-
dia/um every 30 min and Map7 '~ neu-
rons showed no significant difference
(0.048 = 0.006 filopodia/um/30 min; Fig.
2B). Further comparison of the lifetime and
length of filopodia showed that neither was af-
fected by the loss of MAP7 (Fig. 2C,D). These
data demonstrate that MAP7 is not required
for branch initiation and suggest its role in
branch maturation.

To understand the precise role of
MAP?7 in branch maturation, we used live-
cell imaging to obtain more detailed analysis
of nascent branch dynamics (Fig. 2E-G).

Time-lapse movies (every 5 min for 10-18 h) showed that
nascent branches >10 wm often undergo growth and retrac-
tion from the axon (Fig. 2E-G, yellow and red arrows). We
quantified the growth and retraction events and found that
WT DRG neurons produced 0.35 =
branches every hour (Fig. 2H ) with some of them retracting at
arate of 0.11 = 0.03 event/h (Fig. 2I).

Live-cell imaging also allows us to distinguish two modes of
branching: bifurcation and collateral branch formation. Bifurca-

0.05 new nascent
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Figure 3.

MAP7 maintains stable microtubules at branch regions. A, Schematic of the use of the CtrlF or NocF method in neurons. Treatment of neurons with nocodazole before fixation removes

dynamic microtubules (pink) leaving behind only stable microtubules (red). B, Schematic of different regions of the neuron analyzed. The axonal region is shown in yellow and the branch region in
blue. C, Fluorescence intensity images of axon or branch regions labeled for tubulin (tub, red hot) and NF (cyan hot) after CtrIF or NocF. D, Fluorescence intensity of axonal regions with (right) or
without (left) MAP7 (magenta hot) that are labeled for tubulin (tub, red hot) and NF (cyan hot) after CtrlF or NocF. E, Comparison of the neurofilament labeling after CtrIF or NocF (p = 0.8670,n =
39 for CtrlF and n = 41 for NocF, unpaired ¢ test). F, G, Quantification of the fluorescence signal ratio of tubulin over NF in axon regions (F; p = 0.019, n = 25 for CtrIF and n = 27 for NocF, unpaired
ttest) or branch regions (G; p = 0.529, n = 40 for CtrlF and n = 24 for NocF, unpaired t test). H, I, Quantification of the fluorescence signal ratio of tubulin/NF in axonal regions with (H; p = 0.4015,
n = 32for CtrlF and n = 25 for NocF, Mann—Whitney test) or without MAP7 (/; p = 0.0175, n = 33 for CtrlF and n = 26 for NocF, unpaired ¢ test). Data are reported as mean == SEM. *p << 0.05; ns, not

significant. Scale bars, 20 um.

tion occurs only at the axonal terminal when growth cones split
into two equal sized branches (Acebes and Ferras, 2000). Collat-
eral branches often form along main axons interstitially (Gallo,
2011; Kalil and Dent, 2014); however, they sometimes form near
axonal terminals where they emerge as short protrusions that are
behind the axonal growth cone and shorter than the axonal tip
(Szebenyi et al., 1998; Davenport et al., 1999). In WT neurons,
bifurcations occurred at a rate of 0.15 = 0.03 event/h and re-
tracted at 0.05 *= 0.02 event/h, whereas collateral branches oc-
curred at 0.20 £ 0.04 event/h and retracted at 0.07 £ 0.02
event/h.

Map7 '~ neurons were able to extend branches at a rate of
0.60 = 0.10 event/h, a 71% increase compared with WT neurons
(Fig. 2H), with a 53% increase in bifurcation (0.23 * 0.05
event/h) and 85% increase in collateral branch formation (0.37 =
0.08 event/h). However, the frequency of overall branch retrac-
tion was increased dramatically by 309% and reached 0.34 = 0.08
total event/h in neurons lacking MAP7 (Fig. 2I), with a signifi-
cant increase (>270%) in both bifurcations (0.14 * 0.04
event/h) and collateral branches (0.19 = 0.05 event/h).

Furthermore, nascent branches in WT neurons reached
23.9 £ 2.3 uwm in length before retraction (29.6 = 5.0 um for
bifurcation and 20.6 = 1.6 wm for collateral) and had a lifetime of
141 * 18 min (189 = 39 min for bifurcation and 120 * 16 min
for collateral; Fig. 2],K). These two parameters showed no sig-

nificant change in Map7 ~'~ neurons, as the length of all nascent
branches reached 20.8 * 2.1 um (Fig. 2J; 23.3 = 4.2 um for
bifurcations and 19.1 = 2.0 um for collateral) before retraction
and their lifetime was 144 * 24 min (Fig. 2K; 162 £ 46 min for
bifurcations and 134 * 28 min for collateral). Together, the anal-
ysis of Map7 knock-out neurons suggests that MAP7 promotes
axonal branch maturation mainly by reducing retraction of
newly formed branches.

MAP?7 is both necessary and sufficient to generate stable
microtubules in DRG axons

To understand the mechanism of the MAP7 function in pro-
moting branch maturation, we examined MAP7 regulation of
microtubule stability in different axonal regions. Because mi-
crotubules are bundled together in neurons, we used a previously
described nocodazole treatment method (Baas and Black, 1990)
to obtain an approximation of the level of stable and dynamic
microtubules. We first tested this method by dissociating E17 rat
DRG neurons to high concentrations of nocodazole (6.6 um) for
15 min before methanol extraction and fixation. This method
(denoted as NocF) removes dynamic microtubules and leaves
only stable microtubules (Baas and Black, 1990; Fig. 3A). For
comparison, we also fixed neurons without nocodazole treat-
ment (CtrlF), which preserved both dynamic and stable micro-
tubules in axons. In both cases, we measured the level of
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contrast, regions with no or low levels of en-
dogenous MAP7 showed a 13% decrease in
the microtubule level between CtrlF and
NocF (Fig. 3I). Such correlation suggests a
role for endogenous MAP7 in protecting
microtubules from depolymerization and
hence increasing stable microtubules in ax-
ons and especially at branch junctions.
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tubule level in axons after NocF (Fig.
4A,C) but the difference was greater in
Map7 '~ neurons, in which the microtu-
bules level was reduced by 61% after NocF
(Fig. 4B, C). For comparison, the NF level
remained unaffected in CtrlF and NocF-
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not shown), similar to that in rat neurons.
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Figure 4.

a-tubulin (red; Fig. 3C) and normalized them to the level of NF,
which remains unaffected by nocodazole treatments (Fig. 3E)
and serves as an internal control to account for variations in
axonal calibers. The difference between the normalized levels of
stable microtubules after NocF and total microtubules after
CtrlF, which represents the level of dynamic microtubules, was
compared in two axonal regions (Fig. 3B, C). In the axon shaft,
the level of microtubules after NocF was ~10% lower than the
total microtubules after CtrlF (Fig. 3F). However, at the branch
junctions, the total microtubules had no significant difference
between NocF and CtrlF (Fig. 3G). These results show that mi-
crotubules at mature branch junctions are mostly stable and re-

MAP7 tau

Loss or overexpression of MAP7 affects axonal microtubule stability. 4, B, Fluorescence intensity images of WT and
Map7 ~'~ neurons labeled for tubulin (tub, red hot) and NF (cyan hot) in axon or branch regions after CtrlF or NocF. , D, Analysis
of tubulin/NF fluorescence signal ratios between WT and Map7 ~/= (—/—) neurons after CtrlF and NocF in axon (€) or branch (D)
regions. E, F, Quantification of tubulin/NF fluorescence signal ratios in axons (E) or branch (F) regions of DRG neurons expressing
control (ctrl), MAP7 or tau. All comparisons were done by unpaired t tests. , WT,p = 0.0029, n = 13 for CtrlF, and n = 21 for NocF;
—/—,p=10.0001,n = 19for CtrlF,and n = 21 for NocF; D, WT, p = 0.1397, n = 24 for CtrlF, and n = 28 for NocF;, —/—,p=
0.0001, n = 34 for CtrlF; n = 22 for NocF; E, Ctrl, p = 0.0238, n = 20 for CtrIF, and n = 21 for NocF; MAP7, p = 0.6780,n = 10
for CtrlF, and n = 18 for NocF; Tau, p = 0.8018, n = 12 for CtrlF, and n = 13 for NocF; F, Ctrl, p = 0.5822, n = 11 for CtrIF, and
n = 16 for NocF; MAP7, p = 0.3004, n = 15 for CtrlF and n = 8 for NocF; and Tau, p = 0.6715, n = 16 for CtrlF and n = 14 for
NocF. Data are reported as mean == SEM. *p << 0.05; **p < 0.01; ****p << 0.0007; ns, not significant. Scale bar, 20 m.

Moreover, analysis by CtrlF and NocF
shows that branch junctions contain
mostly stable microtubules in WT neu-
rons (Fig. 4A,B,D) but lose 35% stable
microtubules in neurons lacking MAP7
(Fig. 4D). These data thus support the role
of MAP7 in maintaining stable microtu-
bules in neurons.

To further support this role of MAP7
in axons, we analyzed stable microtubules
in E17 rat DRG neurons overexpressing
MAP7-EGFP, which closely mimicked the
localization of endogenous MAP7 and were enriched at branch
junctions as previously shown (Tymanskyj et al., 2018). Overex-
pression increased the levels of MAP7 by 37% at branch junctions
[160 = 8 a.u. (Ctrl) vs 219 £ 19 a.u. (MAP7), p = 0.0065, ¢ test]
and 26% within limited axonal regions [116 * 0.3 a.u. (Ctrl) vs
147 = 11 a.u. (MAP7),p = 0.0111, t test] based on MAP7-specific
antibody staining. Consistent with the analysis above, nontrans-
fected neurons showed a 26% decrease in microtubules after
NocF only in axons but not in branch junctions (Fig. 4E, F). In
contrast, overexpression of MAP7-EGFP within the axon was
able to prevent the loss of microtubules after NocF (Fig. 4E).
Furthermore, MAP7-EGFP did not alter the levels of microtu-
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Figure5. MAP7regulates stable microtubulesin nascent branches. A, Fluorescence images of nascent branches (arrows) emerging from an axon (asterisks) labeled for ce-tubulin (red), acetylated

tubulin (green), and tyrosinated tubulin (magenta) in WT and Map7 ~/~ neurons. B, Schematic of axonal regionsanalyzed: branch (blue) and axon (yellow). (—L, Comparison of fluorescence signals
in nascent branches (C~G) or axons (H—L) of WT and Map7 ~/~ (—/—) neurons for total cc-tubulin (C,H), acetylated (acetyl)- tubulin (D,/) and tyrosinated (tyros)- tubulin (EJ), as well as their
ratios (F,G,K,L). Data are reported as mean = SEM. Mann—Whitney tests: C,p = 0.0002; D, p < 0.0001; E, p = 0.0894; F,p = 0.0181; G,p << 0.0001; H,p = 0.4092; 1, p = 0.2519;J,p = 0.2519;

K,p = 0.9763;L,p = 0.0034; for branches,n = 27 (WT) orn = 26 (—/—); foraxons,n = 23 (WT)andn = 26 (—

Scale bar, 20 um.

bules between CtrlF and NocF at branch junctions, consistent
with the endogenous MAP7 localization (Fig. 4F). Interestingly,
the total tubulin levels normalized to NF increased in both axons
(by 32%) and branch junctions (by 50%) in MAP7-expressing
neurons when compared with control cells, suggesting a long-
term effect of increased MAP7 expression on stable microtubules
(Fig. 4E, F). For comparison, tau-EGFP, which was suggested to
bind dynamic microtubules in axons (Qiang et al., 2018), be-
haved the same way as MAP7-EGFP, increasing stable and total
microtubules in both axons and branch junctions (Fig. 4E, F).
Thus, these experiments provide strong evidence that MAP7 is
both necessary and sufficient to preserve microtubules against
depolymerization by increasing microtubule stability in neurons.

Loss of MAP7 reduces total and stable microtubules but
increases dynamic microtubules in nascent branches

As MAP7 was able to increase stable microtubules in localized
regions of axons, we next asked how this function contributes to
branch formation by analyzing stable and dynamic microtubules
in nascent branches (defined as those between 5 and 20 um),
which can potentially grow into mature branch. Because NocF
induces retraction of nascent branches, we examined microtu-

/=).%p <<0.05;**p << 0.01;***p < 0.001; ****p < 0.0001; ns, not significant.

bule stability by immunostaining of a-tubulin for total microtu-
bules, acetylated tubulin, a marker for long-lived and likely stable
microtubules (Webster and Borisy, 1989; Garnham and Roll-
Mecak, 2012), and tyrosinated tubulin, which is associated with
newly assembled and dynamic ends of microtubules (Webster et
al., 1987; Ahmad et al., 1993; Fig. 5A, B).

We analyzed and compared these markers between WT and
Map7 ~/~ mouse neurons. Based on the a-tubulin level, we found
that Map7 ~'~ neurons had a decreased level of total microtu-
bules within the nascent branch (24% decrease; Fig. 5C). We also
found a 9% decrease in the level of acetylated tubulin (Fig. 5D),
but interestingly, the acetylation density is increased by 19% as
shown by the ratio of acetylated- and a-tubulin (Fig. 5F), likely
because of the compensation of other MAPs (see Discussion). For
comparison, the levels of a-tubulin and acetylated tubulin as well
as the acetylation density in the axon directly below the branch
showed no difference between WT and Map7 '~ axons (Fig.
5H, LK), suggesting that the decreases seen are specific to nascent
branches, likely those attempting to transition from initiation to
maturation. Finally, the total level of tyrosinated-tubulin, based
on staining with a specific antibody (YL1/2; Baas and Black,
1990), showed no significant difference between WT and
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Map7 '~ neurons in both branches and axonal regions (Fig.
5E,]) but the relative level normalized to total a-tubulin has a
significantly increase (42%) in Map7 '~ neurons (Fig. 5G,L),
indicating an increase in the proportion of dynamic microtu-
bules when MAP7 is lost. Together, these results suggest that
MAP?7 influences the level of total and stable microtubules as well
as dynamic microtubules in nascent branches.

MAP?7 binds the stable region of microtubules and generates
an anti-depolymerization boundary

To understand the spatial relationship between MAP7 and acety-
lated or tyrosinated microtubules, we analyzed MAP7 localiza-
tion in COS cells, in which individual microtubules can be readily
resolved. In nontransfected or EGFP-transfected control cells, we
found that 78 = 14% of individual microtubules were composed
of regions of acetylated tubulin, often localized more centrally,
and regions of tyrosinated tubulin, which were present on the
entire length of microtubules but enriched at the growing end
(Fig. 6A,B), similar to the distribution described previously in
neurons (Baas and Black, 1990; Brown et al., 1993). Interestingly,
in MAP7-EGFP-expressing COS cells labeled for a-tubulin,
MAP7-EGFP was not present along the entire length of microtu-
bules and was absent from the distal end as shown by a line scan
across the length of microtubules (Fig. 6C,D). Colabeling re-
vealed that the MAP7 signal colocalizes precisely with the acety-
lated region of microtubules and avoids the distal highly
tyrosinated region, as shown by 46 * 13% of microtubules in
transfected cells (Fig. 6E-H ). These results suggest that MAP7 is
highly associated with the acetylated region but absent from the
dynamic region of microtubules.

To further demonstrate this spatial relationship of MAP7 with
tyrosinated and acetylated or dynamic and stable regions of
microtubules, we cotransfected MAP7 with the plus-end marker
EB3-mCherry, which allowed us to follow the dynamic microtu-
bule ends. EB3-labeled growing ends appeared as comets
(Akhmanova and Steinmetz, 2010) that could be seen emerging
from the tip of the MAP7-bound region of microtubules (Fig.
7A). The EB3 comets then moved away, reflecting microtubule
growth, but the MAP7 signal remained stationary, creating a gap
between the two labels (Fig. 7A). This gap, representing the
MAP7-free end, can be illustrated by the separation of two signals
in the kymograph (Fig. 7B), supporting the idea that MAP7 does
not bind to the dynamic region of microtubules.

Such a gap is dependent on full-length (FL) MAP7, as the
amino-terminal microtubule binding domain (N) (Tymanskyj et
al., 2018) decorated the entire length of microtubules and fol-
lowed the EB3-labeled microtubule end, leaving no gap between
both signals (Fig. 7A,B). It is also unique to MAP7-FL, as tau-
EGFP behaved the same way as N-EGFP, showing no microtu-
bule binding preference. This can be demonstrated by the
measurement of the number of microtubules containing the gap
(Fig. 7C). In the presence of MAP7-FL, nearly 57 = 2.8% of
EB3-containig microtubules contain a gap whereas no gap was
found in microtubules bound by MAP7-N or tau (Fig. 7C). Thus,
these results reveal a unique property of MAP7 that binds to the
stable region of microtubules and is absent from the dynamic
growing region of the plus end.

To understand the functional role of microtubule-bound
MAP7 in microtubule dynamics, we followed microtubule be-
haviors for a period of 2.4 min by kymographs (Fig. 7D) that
covered multiple phases of dynamic instability. Such behavior
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can be visualized by the emergence, movement, and disappear-
ance of EB3 comets, which represent rescue, growth, and catas-
trophe/disassembly of microtubules, respectively (Stepanova et
al., 2003). We found that as shown above, the appearance of EB3
comets started from the MAP7-bound microtubule end and
moved away from this boundary to create a gap in between. In-
terestingly, after its disappearance (Fig. 7D, asterisk), EB3 reap-
peared at the end of the MAP7-bound region that remained
stationary. This behavior suggests that MAP7 creates a boundary
between stable and dynamic regions of microtubules, where it
prevents depolymerization and rescues polymerization. As a
comparison, EB3 comets appear at the end of microtubules
bound by N-EGFP or tau-EGFP, which always followed EB3
comets (Fig. 7D). Unlike MAP7-FL-EGFP that was restricted to
the same region over time, N-EGFP or tau-EGFP expanded
along the growing microtubules, leaving no gap between EB3
and EGFP signals. After EB3 comets disappeared, the N-EGFP
or tau-EGFP signal also retreated along with shrinking micro-
tubules and had no obvious effect on preventing depolymer-
ization. Thus, these control proteins closely followed growing
and shrinking microtubules. Finally, MAP7-FL does not affect
microtubule assembly, as comparisons of EB3 speed and
growth length showed no significant difference between the
three conditions (Fig. 7E,F). Because the dynamic region of
microtubules can grow and shrink repeatedly with little or no
shrinkage of MAP7-bound microtubules, our data indicate
that MAP7 can serve as a unique microtubule stabilizer that
stops depolymerization and rescues polymerization.

To further demonstrate the anti-depolymerization and rescue
function, we examined microtubules in cells treated with
nocodazole (6.6 uM, for 10 min; Fig. 8A). Co-staining revealed
that the distal MAP7-free region disappeared, but the MAP7-
bound region was resistant to nocodazole, as illustrated by line
scans along individual microtubules (Fig. 8B, arrow). Labeling
for both acetylated- and tyrosinated-tubulin after nocodazole
treatment shows the loss of tyrosinated-only/acetylation-free tips
of microtubules and the colocalization of both signals (Fig. 8C,D,
arrows). We further characterized this feature by live imaging of
EB3 comet behaviors after a brief nocodazole treatment followed
by washout. Before nocodazole addition, MAP7-bound microtu-
bules were rarely associated with EB3 comets (Fig. 8E, Pre), often
displaying a gap between EB3 and MAP7-bound microtubules, as
shown in the previous section. Addition of nocodazole (15 um)
for 5 min completely removed EB3 comets, but the majority of
MAP7-bound microtubules remained intact, again suggesting that
MAP7-bound microtubules are stable and resist nocodazole-
induced depolymerization (Fig. 8E). For comparison, microtu-
bules bound by N-EGFP or tau-EGFP often shrank after
nocodazole treatment along with the disappearance of EB3 com-
ets (Fig. 8E). Interestingly, after nocodazole washout, 89 = 6%
EB3 comets reemerged from the tip of MAP7-bound microtu-
bules (Fig. 8E, Washout). As a comparison, only 47 * 13% of EB3
comets (Fig. 8F) were associated with MAP7-bound microtu-
bules at a given time before nocodazole treatment. This was in
contrast to both N-EGFP and tau-EGFP, which were always as-
sociated with EB3 both before nocodazole treatment and after
nocodazole washout (Fig. 8E,F). These data further demonstrate
that MAP7-protected microtubules can rescue polymerization at
the MAP7-bound boundary. Together, our data suggest that
MAP7-bound microtubules reduce the extent of depolymeriza-
tion and preserve microtubules for regrowth.
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Figure 6.  MAP7 binds to the acetylated region of microtubules. A, Fluorescence and merged images of a region of a control COS cell transfected with EGFP and labeled for acetylated (acetyl; red)
and tyrosinated (tyros; magenta) microtubules (arrows). B, Line scan along a single microtubule comparing acetylated and tyrosinated tubulin levels in (4). C, Fluorescence or merged images of a
region of a COS cell expressing MAP7 (green) and labeled for ce-tubulin (cyan). Arrows identify microtubule regions lacking MAP7-EGFP. D, Line scans of MAP7 and cx-tubulin signals along a single
microtubule from (C). E, Fluorescence (top rows) or merged (bottom rows) images of a region of a COS cell transfected with MAP7-EGFP (green) and labeled for acetylated (acetyl; red) and tyrosinated
(tyros; magenta) tubulin. Arrows point to regions of microtubules positive for tyrosinated tubulin but lacking both MAP7-EGFP and acetylated-tubulin signals. F-H, Line scans along a single
microtubule comparing the spatial relationship of fluorescent signals between MAP7-EGFP and acetylated (F) or tyrosinated tubulin (G) or between acetylated and tyrosinated tubulin (H). Scale

bars: 5 pm.

MAP7 affects branch retraction caused by injury

or nocodazole

The ability to stabilize microtubules can allow MAP7 to promote
branch stability and prevent branch retraction during develop-
ment. To further test this role, we asked whether MAP7 could
prevent mature branch retraction after laser-induced severing

(Hammarlund et al., 2009; Yan et al., 2009). We cut a branch
30—40 wm away from the branch junction in E17 rat DRG neu-
rons expressing EGFP, and then followed the behavior of the
injured branches by time-lapse imaging (Fig. 9A). After severing,
EGFP-expressing control branches initially formed a retraction
bulb (red arrows), and then rapidly retracted back to the main
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Figure 7.  MAP7 creates a stable microtubule region that prevents depolymerization and rescues polymerization. A, Sequential fluorescence images (f1-f10) of live COS cells expressing

EB3-mCherry (red) with EGFP fusions (green) of MAP7-FL (FL), MAP7-N (N), or tau. Images were compressed at the Y-axis by 1.4X, and the time interval between images is 7.4s (FL) or 3.7s (N and
tau). B, Kymographs of EGFP and mCherry signals from A. A gap between FL-EGFP and EB3 is indicated by a line with double arrows. €, Quantification of the number of times EB3-mCherry comets
are associated with MAP7-FL-EGFP, MAP7-N-EGFP, or tau-EGFP decorated microtubules (FL-N; p = 0.0011; FL-tau; p = 0.0016, N-tau; p = 0.9899, n = 13 for FL, n = 5for Nand n = 6 for tau,
Kruskal-Wallis test). D, Kymographs of EB3-mCherry (red) with EGFP fusions (green) of FL, N and tau showing growth and shrinkage of microtubules. Catastrophe events are marked by asterisks.
E, F, Comparisons of EB3 speed (E; FL-N: p = 0.5475; FL-tau: p = 0.8967; N-tau: p = 0.3692, n = 20 for FL,n = 8for N, n = 16 for tau, One-way ANOVA) and growth length (F; FL-N: p = 0.9983;
FL-tau:p = 0.6752; N-tau: p = 0.7314,n = 20for FL,n = 8for N, n = 8 for tau, one-way ANOVA) of polymerizing microtubules in transfected cells. Data are reported as mean = SEM. **p < 0.01;

ns, not significant. Scale bars, 5 wm.

axon with a retraction rate of 0.82 = 0.11 wm/min. We next
examined the retraction response in neurons expressing MAP7-
EGFP and focused on branches with MAP7 concentrated at
branch junctions. This revealed that expression of MAP7 greatly
decreased the speed of retraction or die-back of the damaged
branch to 0.17 * 0.04 wm/min (Fig. 9B). In many cases, the
injured branch often showed little retraction after 80 min of im-
aging whereas the majority of EGFP neurons had undergone
complete retraction by this point. As a comparison, DRG neu-
rons expressing tau-EGFP, which was uniformly localized in the
axons and branches, were able to reduce the retraction rate of
injured axons (0.49 = 0.14 um/min; Fig. 9A-C), but not to the
same extent as MAP7. These results support that the anti-
depolymerization and rescue functions of MAP7 may contribute
to preventing axon retraction after injury.

To further test the effect of MAP7-mediated microtubule sta-
bility to branch retraction, we examined retraction induced by
high doses of nocodazole that depolymerize microtubules. First,
WT and Map7 '~ neurons were treated with 15 pm nocodazole,
which was sufficient to induce retraction in the majority of axonal
branches. Immediately after treatment, we recorded the retrac-
tion response from branch terminals by time-lapse imaging and
plotted the retraction distance over time (Fig. 9D). In WT neu-
rons, the branch retraction rate was 0.26 * 0.05 wm/min (Fig.
9E); however, in mutant neurons, the rate was increased by 2.3-
fold to 0.59 * 0.09 wm/min, suggesting that microtubule stability
exerted by MAP7 is important for preventing retraction. We next
examined whether overexpression of MAP7 in rat DRG neurons
could reduce the extent of nocodazole-induced retraction. Simi-
lar to that seen in the injury analysis, we found that the retraction
rate in branches with MAP7 overexpression was decreased by

twofold compared with EGFP (EGFP: 0.28 * 0.04 wm/min;
MAP7: 0.14 * 0.02 wm/min; Fig. 9F,G). As a control, overex-
pression of tau did not significantly reduce the retraction rate
(0.24 = 0.06 wm/min). These data thus support the notion that
MAP7 is both necessary and sufficient to prevent branch re-
traction by counteracting nocodazole-induced microtubule
depolymerization.

Discussion

Axonal branch development requires reorganization of the cyto-
skeleton in nascent branches that undergo growth and retraction
(Gallo, 2011). Here we demonstrate a key role for MAP7 in pro-
moting branch maturation by reducing branch retraction. We
show that MAP7 achieves this by stabilizing microtubules within
branch junctions. We further demonstrate that MAP7 binding to
microtubules creates a boundary and preserves a stable microtu-
bule region to prevent depolymerization and rescue polymeriza-
tion. This binding property provides a unique mechanism to
regulate branch morphogenesis.

MAP?7 localized at branch junctions is required for branch
maturation by preventing branch retraction

Axon branching involves multiple steps, including initiation and
maturation (Gallo, 2011; Gibson and Ma, 2011; Kalil and Dent,
2014). Previous cell biological analysis suggests that MAP7 is not
involved in branch initiation, but rather promotes branch matu-
ration (Tymanskyj et al., 2017, 2018). Our study of Map7 knock-
out neurons supports this function and reveals a new role of
MAP?7 in this step (Figs. 1,2). Consistent with overexpression
studies (Tymanskyj et al., 2017), live cell imaging analysis re-
vealed that the absence of MAP7 does not alter branch initiation
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a (0S cell transfected with MAP7-EGFP and treated with nocodazole (6.6 wm). B, Line scans along a single microtubule in (4) reveal that the MAP7 signal terminates at the end (arrow) of the
microtubule. €, Fluorescence images of a region of a COS cell transfected with EGFP or MAP7-EGFP and stained for ce-tubulin (-tub) and acetylated-tubulin (actyl). D, Line scans along single
microtubules in (€) show that tyrosinated (tyros) microtubules colocalize with acetylated regions after nocodazole treatment. Arrows indicate the end of microtubules. E, Snap shots of COS cell
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point to EB3-containing growing microtubule ends. F, Quantification of FL, N, and tau-bound microtubules associated with EB3 positive tips pre-nocodazole treatment and post-nocodazole washout
(pre; N-FL; p = 0.0297; N-tau; p = 0.999, FL-tau; p = 0.0297; post; N-FL; p = 0.3685; N-tau; p = 0.9999, FL-tau; p = 0.3685, n = 4 for all constructs, Kruskal-Wallis test). Data are reported as

mean = SEM. *p < 0.05; ns, not significant. Scale bars, 5 pm.

but affects nascent branch maturation (Fig. 2). Interestingly,
Map7 '~ neurons produced an increase of branch growth but
a much larger increase of branch retraction, leading to a net
decrease in nascent branch maturation. Further analysis
shows that such changes apply to different modes of branching
(Fig. 2), suggesting a broader role MAP7 plays during branch
morphogenesis. Although it is intriguing that MAP7 deletion
also affects nascent branch growth, which could result from
the increase of dynamic microtubules (see the next section),
the larger effect on branch retraction in Map7 '~ neurons
reveals a critical role MAP7 plays during branch maturation.
Importantly, this role is distinct from other MAPs, such as
MAP1B, which has been implicated in branch initiation (Ket-
schek et al., 2015).

MAP7 promotes stable microtubules in mature and

nascent branches

How does MAP7 prevent branch retraction? Here, we show that
its ability to stabilize microtubules at the branch junctions is the
key. Previous work has suggested that different axonal regions are
composed of microtubules with different stability properties,
with the distal region of the axon often being composed of more
dynamic microtubules and the proximal region being more sta-
ble (Song and Brady, 2015). Here, we used a nocodazole fixation
method (Baas et al., 1993) to show that microtubules present at
mature branch junctions are highly stable compared with other
regions of the axon (Fig. 3). We found that axonal regions with
stable microtubules were correlated with high levels of endoge-
nous MAP7; neurons cultured from Map7 knock-out mice had a
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large decrease in the level of stable microtubules at branch junc-
tions; and conversely overexpression of MAP7 was able to sta-
blilize microtubules in axonal regions that are normally more
dynamic (Figs. 3,4). These data strongly suggest that MAP7 is
a microtubule stabilizer in axons, espeically at mature branch
junctions. Furthermore, the increase in stable microtubules by
tau overexpression suggests that high levels of tau have different
effects from endogenous tau shown by the recent knockdown
study (Qiang et al., 2018). It is worth noting that although MAP7
and tau overexpression has similar effects on microtubule stabil-
ity, Map7 knock-out reduces stable microtubules but tau knock-
down increases them (Qiang et al., 2018), an intriguing difference
that may reflect their unique interactions with microtubules.
Our analysis of total microtubules as well as posttranslational
modifications of microtubules further support this function of
MAP7 during branch maturation. We found that MAP7 is re-
quired for maintaining the level of total and acetylated microtu-
bules in nascent branches (Fig. 5). Acetylation of microtubules,
often associated with long-lived and likely stable microtubules

(Portran et al., 2017), has been shown to increase the resilience
and ensure persistence of microtubules (Xu etal., 2017). It is thus
possible that these properties from acetylated microtubules are
critical for branch stability, and without MAP7, stable microtu-
bules are reduced in nascent branches, thereby increasing the
chance of retraction.

Moreover, in nascent branches of Map7 '~ neurons, we
found that the number of tyrosinated microtubules, which rep-
resent dynamic microtubules, did not change, suggesting an
alteration of the balance between acetylated/tyrosinated micro-
tubules. Thus, MAP7 may be also required to control the ratio
of stable and dynamic microtubules during branch matura-
tion. This interpretation is consistent with a recent study dem-
onstrating that tau is responsible for preserving the labile
domains of microtubules (Qiang et al., 2018) as well as an-
other recent study showing that MAP7 is able to evict and
replace tau from binding along microtubules (Monroy et al.,
2018). As tau has a uniform distribution within axons (Dotti et
al., 1987) and MAP7 is enriched at branch junctions, these
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proteins may coordinate to regulate microtubule stability.
Once MAP7 enters nascent branches, it replaces tau bound to
dynamic microtubules and makes them more stable, thereby
creating stable microtubule arrays to prevent branch retrac-
tion. Thus, MAP7 is likely a key MAP that stabilizes microtu-
bules during branch maturation.

MAP7 is associated with the stable region of microtubules
and serves as an anti-depolymerization factor

Individual microtubules are composed of a stable region, located
proximal to the minus end, and a dynamic/labile region at the
plus end (Baas et al., 2016). Detailed analysis of MAP7 localiza-
tion along individual microtubules revealed that MAP7 binding
is restricted to specific regions, which are also acetylated and
corresponded with the stable region of a microtubule. Interest-
ingly, such a binding property creates a MAP7-free end that is
highly tyrosinated and sensitive to nocodazole. We demonstrate
such regional distinctions with EB3 labeling and found that
MAP?7 does not follow or associate with the dynamic plus ends.
Further analysis of microtubule dynamics has revealed that the
MAP7-bound microtubule region creates an anti-depolymeri-
zation boundary to rescue microtubule polymerization (Figs.
7,8). Although further investigation is needed to understand the
underlying mechanism, this feature of MAP7 is likely responsible
for stopping dynamic microtubules from complete disassembly
and thereby preventing retraction of nascent branches. As MAP7
is able to decrease the extent of depolymerization, this will in-
crease the life of microtubules and thus increase the likelihood of
acetylation. As far as we are aware, this unique binding has not
been observed for other MAPs. Indeed, tau, a known microtubule
stabilizer, binds to the entire length of microtubules and does not
create a similar tau-free gap or stop microtubule depolymeriza-
tion. Thus, this unique microtubule binding property of MAP7,
likely mediated by peptides outside the N domain, provides a
novel mechanism to regulate microtubule stability in neurons. As
recent work (Hooikaas et al., 2019; Pan et al., 2019) reported
diverse functions of mammalian MAP7 homologs, it would thus
be interesting to determine whether these homologs have similar
microtubule binding properties as MAP7.

MAP?7 expressed at branch junctions reduces branch
retraction after laser-induced severing

In addition to promoting branch maturation, our study also
demonstrates that the increased microtubule stability exerted by
MAP?7 plays a role in established branches (Fig. 9A-C). Laser-
induced injury to mature branches produced rapid retraction or
die-back of the injured branch back to the main axon (Hammar-
lund et al., 2009; Yan et al., 2009). However, expression of MAP7
was able to greatly decrease or inhibit retraction. Using a nocoda-
zole retraction assay to examine the effects of microtubule
depolymerization yielded similar results, as loss of MAP7 en-
hanced the branch retraction rate whereas MAP7 overexpression
reduced it (Fig. 9D-G). This suggests that manipulation of MAP7
expression or activity could potentially reduce the retraction dis-
tance of an injured axonal branch and decrease the distance
needed to regrow. As DRG axons often retract up to 300 wm away
from the site of injury (Kerschensteiner et al., 2005), reducing
retraction distance will likely aid functional recovery of regener-
ating branches. The importance of stabilizing microtubules in
regeneration has been demonstrated previously in injured adult
axons, where the addition of the microtubule stabilizing drug
Taxol promotes regeneration of axons in the spinal cord (Hellal
et al., 2011; Sengottuvel et al., 2011; Bradke et al., 2012). Our
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study comparing MAP7 and tau shows that different microtubule
stabilization mechanisms have different impacts on branch re-
generation. Thus, manipulating MAP7 could potentially provide
a new way to promote branch regeneration after nerve injury
(Tuszynski and Steward, 2012).

In summary, we have demonstrated a function of MAP7 in
preventing branch retraction by increasing microtubule stability
at branch junctions. This function is based on its unique interac-
tion with microtubules, which is likely conferred by two micro-
tubule binding sites (Tymanskyj et al., 2018). In addition to
preventing branch retraction, the ability of MAP7 to stabilize
microtubules could also promote branch growth by directly re-
cruiting the motor protein kinesin-1 (Bulinski and Bossler, 1994;
Sung et al., 2008; Barlan et al., 2013; Monroy et al., 2018; Tyman-
skyj et al., 2018) and providing a stable microtubule track for
kinesin-mediated transport (Nakata and Hirokawa, 2003; Jacob-
son et al., 2006; Konishi and Setou, 2009). Thus, MAP7 repre-
sents a new class of MAPs that play critical roles in branch
morphogenesis during axonal development.
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