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Emotion perception is fundamental to affective and cognitive development and is thought to involve distributed brain circuits. Efforts to
chart neurodevelopmental changes in emotion have been severely hampered by narrowly focused approaches centered on activation of
individual brain regions and small sample sizes. Here we investigate the maturation of human functional brain circuits associated with
identification of fearful, angry, sad, happy, and neutral faces using a large sample of 759 children, adolescents, and adults (ages 8 –23;
female/male � 419/340). Network analysis of emotion-related brain circuits revealed three functional modules, encompassing lateral
frontoparietal, medial prefrontal-posterior cingulate, and subcortical-posterior insular cortices, with hubs in medial prefrontal, but not
posterior cingulate, cortex. This overall network architecture was stable by age 8, and it anchored maturation of circuits important for
salience detection and cognitive control, as well as dissociable circuit patterns across distinct emotion categories. Our findings point to
similarities and differences in functional circuits associated with identification of fearful, angry, sad, happy, and neutral faces, and reveal
aspects of brain circuit organization underlying emotion perception that are stable over development as well as features that change with
age. Reliability analyses demonstrated the robustness of our findings and highlighted the importance of large samples for probing
functional brain circuit development. Our study emphasizes a need to focus beyond amygdala circuits and provides a robust neurode-
velopmental template for investigating emotion perception and identification in psychopathology.
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Introduction
Identification of distinct facial expressions, which is fundamental
to recognizing the emotional state of others, begins in infancy and

continues to develop throughout childhood and adolescence
(Batty and Taylor, 2006; Thomas et al., 2007; Rodger et al., 2015;
Leitzke and Pollak, 2016; Theurel et al., 2016). How emotions are
identified and categorized in the developing brain remains a fun-
damental open question. Analysis of task-evoked brain circuits
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Significance Statement

Emotion perception is fundamental to cognitive and affective development. However, efforts to chart neurodevelopmental
changes in emotion perception have been hampered by narrowly focused approaches centered on the amygdala and prefrontal
cortex and small sample sizes. Using a large sample of 759 children, adolescents, and adults and a multipronged analytical strategy,
we investigated the development of brain network organization underlying identification and categorization of fearful, happy,
angry, sad, and neutral facial expressions. Results revealed a developmentally stable modular architecture that anchored robust
age-related and emotion category-related changes in brain connectivity across multiple brain systems that extend far beyond
amygdala circuits and provide a new template for investigation of emotion processing in the developing brain.
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using a “Big-Data” approach has the potential to accelerate foun-
dational knowledge of emotion perception circuit development
and provides robust templates for understanding miswiring of
functional circuits in developmental psychopathologies. Here,
we leverage the Philadelphia Neurodevelopmental Cohort (PNC)
(Satterthwaite et al., 2014) to address critical gaps in our knowl-
edge regarding the functional circuits of emotion perception and
their development.

Meta-analyses of neuroimaging studies in adults have identi-
fied widely distributed, and overlapping functional systems
engaged by distinct emotion categories (Kober et al., 2008; Fusar-
Poli et al., 2009). In particular, brain regions associated with three
large-scale functional brain networks are relevant for emotion
processing based on their extensive role in integrating salient cues
across cortical and limbic systems. The “salience network” facil-
itates rapid detection of personally relevant and salient emotional
cues in the environment (Seeley et al., 2007; Menon and Uddin,
2010; Menon, 2011), the “default mode network” is important
for mentalizing and inferring the emotional states of others (Gre-
icius et al., 2003; Blakemore, 2008), and the frontoparietal (FP)
“central executive network” is involved in attention, reappraisal,
and regulation of reactivity to emotional stimuli (Dosenbach et
al., 2007; Gyurak et al., 2011; Tupak et al., 2014; Braunstein et al.,
2017; Sperduti et al., 2017). However, previous neurodevelop-
mental studies of emotion perception have focused almost exclu-
sively on the amygdala and its connectivity with the mPFC (Gee
et al., 2013; Vink et al., 2014; Kujawa et al., 2016; Wolf and Her-
ringa, 2016; Wu et al., 2016), with inconsistent findings (for a
summary, see Table 1). While some studies found no age-related
changes (Kujawa et al., 2016; Wolf and Herringa, 2016; Wu et al.,
2016), others have reported increases (Vink et al., 2014; Wolf and
Herringa, 2016) or decreases with age (Gee et al., 2013; Kujawa et
al., 2016; Wu et al., 2016) in amygdala activation or connectivity
with the mPFC. In contrast, intrinsic functional connectivity

studies have highlighted protracted developmental changes in
distributed brain networks (Power et al., 2010; Menon, 2013),
including developmental changes in amygdala connectivity with
subcortical, paralimbic, and limbic structures, polymodal associ-
ation, and ventromedial prefrontal cortex (vmPFC) (Qin et al.,
2012). These findings highlight a critical need for characterizing
the development of task-evoked functional brain circuits and
network organization underlying emotion perception (Barrett
and Satpute, 2013).

Here, we characterize the neurodevelopment of emotion per-
ception circuits leveraging high-quality data (N � 759) from the
emotion-identification fMRI task in the PNC, an unprecedented
Big-Data initiative for charting brain development in a large
community sample (Satterthwaite et al., 2014) (Fig. 1). We first
used meta-analysis and community detection methods to identify
and characterize the modular architecture of brain circuits associ-
ated with perception and identification of fearful, angry, sad, happy,
and neutral faces. We then investigated aspects of brain circuit orga-
nization that are stable over development in addition to aspects that
changed with age. Last, given the challenges of small sample sizes
(Button et al., 2013; Szucs and Ioannidis, 2017; Turner et al., 2018),
high false-positive rates (Eklund et al., 2016; Szucs and Ioannidis,
2017), and lack of replicability in neuroimaging research (Ioannidis,
2005; Eklund et al., 2016; Szucs and Ioannidis, 2017), we evaluated
the reliability of our age-related findings on randomly subsampled
independent datasets across a wide range of sample sizes (Fig. 1d)
and assessed the replicability of previously reported findings. Our
findings advance a new understanding of emotion circuit develop-
ment in the human brain.

Materials and Methods
Participants
Participants were selected from the PNC 8 –23 years of age (N � 1495).
Data were excluded based on the following criteria: (1) lack of complete

Table 1. Studies that examined age-related changes in amygdala activity and connectivity underlying emotion perceptiona

Study Sample size Age (yr) Contrast and no. of trials Task Findings

Gee et al. (2013) 45 (19F) 4 –22 Fearful face versus fixation (no.
of trials � 24)

Participants viewed fearful faces
interspersed with neutral
faces in one run, and viewed
happy faces interspersed with
neutral faces in the other run

Amygdala activity decreased with
age; amygdala-vmPFC connec-
tivity decreased with age

Kujawa et al. (2016) 61 (35F) TD 7–25 Emotional faces (happy, angry,
or fearful) versus shapes
(no. of trials per emotion
category � 12)

Participants were instructed to
match emotion (happy, an-
gry, or fearful) of the target
face in face blocks and match
shapes in shape blocks

No age-related effect in amygdala
activity; amygdala-dACC con-
nectivity decreased with age in
TD but increased with age in
AD for all emotions

57 (34F) AD

Wu et al. (2016) 61 (35F) 7–25 Emotional faces (angry, fearful,
or happy) versus shapes
(no. of trials per emotion
category � 12)

Participants were instructed to
match emotion (angry, fear-
ful, or happy) of the target
face in face blocks and match
shapes in shape blocks

No age-related effect in amygdala
activity; amygdala-ACC/mPFC
connectivity decreased with
age for all emotions

Vink et al. (2014) 60 (28F) 10 –24 Positive versus neutral (no. of
trials � 32), negative ver-
sus neutral (no. of trials �
32)

Participants viewed each picture
selected from the IAPS and
label the valence (negative,
neutral, or positive)

Amygdala activity decreased with
age; amygdala-mOFC connec-
tivity increased with age

Wolf and Herringa (2016) 24 (13F) TD 8 –18 Threat versus neutral (no. of
trials � 16)

Participants viewed threat and
neutral images selected from
the IAPS and label the valence

No age-related effect in amygdala
activity; amygdala-mOFC
connectivity increased with
age in TD but decreased with
age in PTSD

24 (16F) PTSD

aIf not specified, healthy individuals were recruited in the listed studies. Functional connectivity was measured by PPI in Gee et al. (2013), Vink et al. (2014), and Wolf and Herringa (2016) and by gPPI in Kujawa et al. (2016) and Wu et al.
(2016). AD, Anxiety disorder; IAPS, International Affective Picture System; PPI, psychophysiological interaction; PTSD, post-traumatic stress disorder; TD, typically developing. For MNI coordinates of amygdala and PFC regions used in these
studies, see Table 4. For results of replication analysis, see Tables 5–7.
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Figure 1. Schematic view of participant selection procedure and main analysis steps. a, From the original 1495 participants, 157 were excluded due to incomplete data, medical problems, poor
brain coverage, or not being able to perform the task. A total of 567 participants were excluded due to excess head motion, and 12 participants were excluded due to low task accuracy. A total of 759
participants 8 –23 years of age survived these exclusion criteria. b, Brain ROIs involved in emotion perception were identified using meta-analysis implemented in Neurosynth (Yarkoni et al., 2011).
They included the following: vmPFC, dmPFC, vlPFC, dlPFC, lOFC, IPL, SPL, sgACC, pgACC, dACC, PCC, pre-SMA, BLA, vAI, dAI, PI, hippocampus (Hipp), and FFG. Subcortical ROIs, including CMA, BNST,
and NAc, were identified using anatomical atlases (see also Table 3). ROIs were overlaid on a reference brain surface using BrainNet Viewer (Xia et al., 2013). c, Network analysis steps used to
investigate development of the affective circuits. ci, ROI � series were derived from each task condition (fear, anger, sad, happy, or neutral) for each individual. cii, Functional connectivity matrices
were computed for each individual. ciii, Functional connectivity matrices were fed into a community detection algorithm to determine community structure of the ROIs. civ, ROI nodal degree was
computed over a wide range of sparsity (10% � sparsity � 40% with an interval of 5%), and then an integrated metric of nodal degree was obtained by computing the area under the curve. cv,
Intramodule and intermodule interactions were computed. cvi, Deviation of individual community structure from template community structure was measured as the Jaccard overlap between the
two. cvii, ROIs were further categorized into hubs or nonhubs, and then the probability of an ROI to be a hub within each age year was calculated. Permutation test was used to assess hub significance.
cviii, These resulting brain metrics were further fed into linear mixed-effect models to assess age, emotion, and age � emotion effects. d, Reliability analyses assessed the robustness of age-related
findings and the effect of sample size. Briefly, we randomly drew N (sample size) participants from the full sample and assessed age-related changes in the subsample. This was repeated 1000 times
across a wide range of sample sizes (50 � N � 400, increased by 50). Correlation between age effects from a subsample and that from the full sample was calculated and then averaged across
subsamples for each sample size. The resulting average correlation was used to measure reliability.
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emotion task fMRI data; (2) high in-scanner motion (mean scan-to-scan
displacement � 0.2 mm or maximum scan-to-scan displace � 1 mm or
maximum displacement � 3 mm); (3) missing brain coverage; (4) med-
ical rating � 2 (i.e., having significant or major medical problems); and
(5) overall task performance (accuracy) � 70%. A total of 759 partici-
pants (fMRI sample) survived these exclusion criteria and were included
in further behavioral and neuroimaging analyses (Fig. 1a; Table 2). Ad-
ditional behavioral analysis was performed to investigate age-related ef-
fects on emotion categorization accuracy and reaction time (RT) in a
larger sample of 1338 participants (behavioral sample) who had valid
behavioral data. A total of 157 participants with medical issues or incom-
plete data or were unable to perform the task were excluded from any
analysis. All study procedures were approved by the institutional review
boards of both the University of Pennsylvania and the Children’s Hospi-
tal of Philadelphia (Satterthwaite et al., 2014).

Behavioral and demographic differences between the
neuroimaging and excluded samples
We examined whether participants in the fMRI (N � 759) and excluded
(N � 579) samples are similar cross-sections of the overall population
in terms of age, sex, and behavioral performance (accuracy and RT).
The excluded sample included participants who did not meet our
criteria for inclusion in fMRI data analysis but were included in the
behavioral analysis.

PNC emotion identification fMRI task
Participants were presented with faces and were required to categorize
them as one of five emotion categories: neutral, fear, anger, sadness, or
happiness. Each face was presented for 5.5 s followed by a jittered inter-
stimulus interval ranging between 0.5 and 18.5 s, during which a complex
crosshair that matched perceptual qualities of the face was displayed.
There were 12 faces per emotion category, resulting in 60 total trials
(Satterthwaite et al., 2014).

Neuroimaging data acquisition and preprocessing
Images were acquired using a 3T Siemens TIM Trio scanner (32 channel
head coil), with a single-shot, interleaved multislice, gradient-echo, EPI
sequence (TR/TE � 3000/32 ms, flip angle � 90°, FOV � 192 � 192
mm 2, matrix � 64 � 64, slice thickness � 3 mm). fMRI data were
preprocessed and analyzed using Statistical Parametric Mapping soft-
ware SPM8 (Wellcome Trust Department of Cognitive Neurology, Lon-
don). Images were slice-time corrected, motion-corrected, resampled to
3 mm � 3 mm � 3 mm isotropic voxels, normalized to MNI space,
spatially smoothed with a 6 mm FWHM Gaussian filter, and temporally
filtered using a high-pass filter with a cutoff frequency of 1/128 Hz.

Head motion
Participants with mean scan-to-scan displacement �0.2 mm and maxi-
mum scan-to-scan displace �1 mm and maximum displacement �3

mm were included in further analysis. In addition to correction for mo-
tion correction at the whole-brain level during fMRI preprocessing (as
described above), to rule out any potential residual effects of motion,
mean scan-to-scan displacement was included as a nuisance covariate in
all our analyses.

Network analysis
Network nodes. To overcome limitations of extant neurodevelopmental
studies of emotion perception and categorization, which have predomi-
nantly focused on the amygdala (Gee et al., 2013; Vink et al., 2014;
Kujawa et al., 2016; Wolf and Herringa, 2016; Wu et al., 2016), we con-
ducted a meta-analysis to identify cortical and subcortical brain regions
that are consistently involved in emotion-related processes. Specifically,
using the meta-analysis toolbox Neurosynth (Yarkoni et al., 2011) and
the search term “emotion,” we identified local peaks (at least 8 mm apart)
within each cluster in the forward and reverse inference maps. We se-
lected peaks in frontal, parietal, medial temporal, limbic, and subcortical
areas. ROIs were defined as a 6 mm sphere with an identified peak as center.
If a unilateral peak was detected at a specific region, we included its contralat-
eral counterpart by flipping the peak coordinate along the x axis.

Together, nodes encompassed the vmPFC, dorsomedial PFC (dmPFC),
ventrolateral PFC (vlPFC), and dorsolateral PFC (dlPFC), lateral orbito-
frontal cortex (lOFC), inferior parietal lobule (IPL), and superior parietal
lobule (SPL), subgenual ACC (sgACC), pregenual ACC (pgACC), dorsal
ACC (dACC), and posterior cingulate cortex (PCC), presupplementary
motor area (pre-SMA), BLA, dorsal anterior insula (dAI), posterior in-
sula (PI), hippocampus (Hipp), and fusiform gyrus (FFG). An additional
pair of dorsolateral prefrontal ROIs superior to the pair identified by
Neurosynth were included based on two recent emotion-regulation
meta-analyses (Buhle et al., 2014; Kohn et al., 2014). We also included
nodes in the ventral anterior insula (vAI), centromedial amygdala
(CMA), bed nucleus stria terminalis (BNST), and nucleus accumbens
(NAc) based on their well-known roles in perception of negative and
positive emotions (LeDoux, 2007; Deen et al., 2011; Chang et al., 2013;
Floresco, 2015; Lebow and Chen, 2016; Namkung et al., 2017). The vAI
node was identified using Neurosynth and search term “anxiety” (Paulus
and Stein, 2006; Etkin, 2010; Menon, 2011; Blackford and Pine, 2012;
Qin et al., 2014), the CMA was identified based on its cytoarchitectoni-
cally defined probabilistic map using the Anatomy toolbox (Eickhoff et
al., 2005), the BNST node was based on the meta-analysis by Avery et al.
(2014), and NAc was identified based on the Harvard-Oxford atlas dis-
tributed with FSL (http://www.fmrib.ox.ac.uk/fsl/). These procedures
identified 50 ROIs consistently associated with emotion processing (Fig.
1b; Table 3). Finally, we further verified that the activation maps of
emotion-related topics encompassed the maps reported in a large meta-
analytic database of fMRI studies (Rubin et al., 2017).

Emotion-related node-level activity. Task-related brain activation was
identified using a GLM implemented in SPM8. At individual level, brain
activation representing correct trials for each emotion task condition
(neutral, fear, anger, sad, or happy) was modeled using boxcar functions
convolved with a canonical hemodynamic response function and a tem-
poral derivative to account for voxelwise latency differences in hemody-
namic response. An error regressor was also included in the model to
account for the influence of incorrect trials. Additionally, six head move-
ment parameters generated from the realignment procedure were in-
cluded as regressors of no interest. Serial correlations were accounted for
by modeling the fMRI time series as a first-degree autoregressive process.
For each emotion task condition, ROI activity was obtained by averaging
the estimated � values across voxels within that ROI.

Emotion-related internode connectivity. Functional connectivity was
assessed using a � series analysis approach (Rissman et al., 2004). At
individual level, brain activation related to each trial was modeled using
boxcar functions convolved with a canonical hemodynamic response
function. Six head movement parameters were included as regressors of
no interest. Serial correlations were accounted for by modeling the fMRI
time series as a first-degree autoregressive process. Trialwise ROI activity
was obtained by averaging the estimated � values across voxels within
that ROI. A � series was derived for each ROI each emotion condition by
concatenating trialwise ROI activity belonging to the same emotion con-

Table 2. Participant characteristics and task performance

Characteristic Mean � SD (n � 759)

Age (yr) 16.20 � 3.27
Sex (female/male) 419/340
Race (Caucasian/other) 408/351
Motion (mm) 0.073 � 0.03
Fluid intelligencea 12.62 � 3.97
Fear accuracy 0.89 � 0.11
Anger accuracy 0.92 � 0.09
Sad accuracy 0.88 � 0.11
Neutral accuracy 0.91 � 0.09
Happy accuracy 0.99 � 0.03
Fear RT (s) 2.65 � 0.46
Anger RT (s) 2.48 � 0.44
Sad RT (s) 2.68 � 0.46
Happy RT (s) 2.09 � 0.40
Neutral RT (s) 2.34 � 0.44
aFluid intelligence is measured by Penn Matrix Reasoning Test scores (i.e., total correct responses for all test trials).
RT, Response time (median). For age distribution, see also Figure 1a.
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dition. Only ROI activity corresponding to correct trials was used to
construct � series. Conditionwise � series were demeaned and used to
calculate Pearson correlation between all pairs of ROIs. Pearson correla-
tion coefficients were Fisher Z-transformed and used to index functional
connectivity strength and form emotion-related networks in each partic-
ipant (Fig. 1c).

Emotion-related network structure. To determine common patterns of
community structure across all participants, we used a consensus-based
approach for identifying functional modules (Lancichinetti and Fortu-
nato, 2012; Dwyer et al., 2014) associated with each emotion. In each
participant, the Louvain algorithm (Blondel et al., 2008), as implemented
in the Brain Connectivity Toolbox (Rubinov and Sporns, 2010), was used
to first determine the modular structure of the signed, weighted connec-
tivity matrix (Newman, 2004, 2006). To handle potential degeneracy of
community assignments, we repeated this procedure 1000 times in each

participant (Lancichinetti and Fortunato, 2012; Dwyer et al., 2014). In
each iteration, we generated a co-classification matrix in which each
element contained 1 if two nodes were part of the same module and 0
otherwise. The resulting 1000 co-classification matrices were averaged to
generate a co-occurrence matrix indicating the probability of two nodes
being in the same module across 1000 iterations. Co-occurrence matrices
were then averaged across participants to produce a positive, weighted
group consistency matrix, with higher weight in elements of this matrix
indicating that two nodes were more frequently classified in the same
module across participants. This group consistency matrix was used to
determine a consensus partition (Lancichinetti and Fortunato, 2012). To
evaluate the influence of resolution parameter gamma, which tunes the
size and number of communities obtained from modularity maximiza-
tion (Fortunato and Barthélemy, 2007; Sporns and Betzel, 2016), the
above consensus-based approach was repeated at gamma values ranging
from 0.1 to 2.0 in increments of 0.1.

To assess the significance of the modular structure, we compared the
actual Q to the Q derived from null networks. Specifically, the group
consistency matrix was used to create 1000 null networks with preserved
weight and degree distributions. For each null network, weak edges
with weight �0.1 were first set to 0 and Q was calculated 1000 times
and used to establish an empirical null distribution of Q. Q was
considered significant if it was larger than the 95th percentile of the
empirical null distribution.

Emotion-related hubs. To identify hubs in the affective circuits and
their development with age, we first computed nodal degree for each
individual and each emotion category. Degree of a node i is defined as the
number of edges connected to that node as follows:

ki � �
j�n, j�i

eij

where eij is the connection status (0 or 1) between node i and node j, and
n is the total number of nodes (Rubinov and Sporns, 2010). Because the
functional matrix is fully connected, a sparsity condition, based on the
ratio of the actual edge number to the maximum possible edge number in
a network, was applied to the connectivity matrix before computing
nodal degree. To minimize the impact of setting an arbitrary level of
sparsity, we calculated degree over a wide range of sparsity (i.e., 10% �
sparsity � 40% with an interval of 5%) and then computed area under
the curve, to obtain an integrated metric of node degree as in previous
studies examining functional circuits (Yan et al., 2013; Lv et al., 2016). A
node with high degree indicates high interconnectivity with other brain
nodes. Hub nodes were defined as nodes with integrated degree metric at
least 1 SD above the mean across all nodes.

Generalization of ROIs to the Brainnetome atlas. We used the Brain-
netome atlas to determine robustness and generalizability of findings
from the 50 emotion-related meta-analysis-derived ROIs. An advantage
of the Brainnetome atlas, compared with many other functional brain
parcellations, is that it includes both cortical and subcortical clusters with
appropriate anatomical labels (Fan et al., 2016). Specifically, we identi-
fied Brainnetome clusters in which each of the 50 ROIs was located;
because 2 ROI pairs were located in the same Brainnetome cluster, this
procedure yielded 46 matching clusters. We then repeated all our analy-
ses using these spatially extended clusters.

Statistical analysis
Linear versus nonlinear age models. The remainder of our analyses involved
assessing age-related changes in task performance, regional activity, re-
gional connectivity, and intramodule and intermodule connectivity. For
task performance, we analyzed both the fMRI (N � 759) and behavioral
(N � 1338) samples. We examined three models (linear, quadratic, and
cubic spline) to test for linear and nonlinear age-related effects, and used
Bayesian Information Criteria to determine the best model. The vast
majority of the analyses indicated that nonlinear models did not fit the
data better than linear models. Where appropriate, we report nonlinear
age effects that survived FDR correction for multiple comparisons.

Linear mixed-effect model. To examine main effects of age, emotion,
and age � emotion interactions on task performance and brain mea-
sures, we used R package lme4 (Bates et al., 2015) to perform a linear

Table 3. Anatomical location and MNI coordinates of emotion circuit-related nodes

Region/abbreviation

MNI coordinates

Brodmann areax y z

Left BLA (BLA.L) �20 �6 �20
Right BLA (BLA.R) 26 �4 �20
Left CMA (CMA.L) �24 �9 9
Right CMA (CMA.R) 27 �10 �9
Left sgACC (sgACC.L) �2 14 �16 BA 25
Right sgACC (sgACC.R) 6 20 �12 BA 25
Left pgACC (pgACC.L) �2 42 6 BA 32
Right pgACC (pgACC.R) 2 42 8 BA 32
Left dACC (dACC.L) �4 22 30 BA 32
Right dACC (dACC.R) 4 22 30 BA 32
Left PCC (PCC.L) �2 �54 28 BA 31
Right PCC (PCC.R) 4 �54 28 BA 31
Left vmPFC (vmPFC.L) �8 50 �4 BA 10
Right vmPFC (vmPFC.R) 8 50 �4 BA 10
Left vmPFC (vmPFC.L) �2 50 �12 BA 32
Right vmPFC (vmPFC.R) 4 50 �12 BA 32
Left vmPFC (vmPFC.L) �4 38 �10 BA 32
Right vmPFC (vmPFC.R) 4 38 �10 BA 32
Left dmPFC (dmPFC.L) �2 58 20 BA 9
Right dmPFC (dmPFC.R) 2 58 20 BA 9
Left pre-SMA (preSMA.L) �2 18 46 BA 6
Right pre-SMA (preSMA.R) 6 24 38 BA 32
Left lOFC (lOFC.L) �46 26 �6 BA 47
Right lOFC (lOFC.R) 46 26 �4 BA 47
Left lOFC (lOFC.L) �28 18 �16 BA 47
Right lOFC (lOFC.R) 26 22 �18 BA 47
Left vlPFC (vlPFC.L) �48 28 10 BA 45
Right vlPFC (vlPFC.R) 48 28 10 BA 45
Left dlPFC (dlPFC.L) �46 8 30 BA 9
Right dlPFC (dlPFC.R) 46 8 30 BA 9
Left dlPFC (dlPFC.L) �41 22 43 BA 8
Right dlPFC (dlPFC.R) 41 22 43 BA 8
Left IPL (IPL.L) �54 �50 44 BA 40
Right IPL (IPL.R) 46 �48 44 BA 40
Left SPL (SPL.L) �30 �56 44 BA 7
Right SPL (SPL.R) 38 �50 52 BA 7
Left FFG (FFG.L) �42 �48 �20 BA 37
Right FFG (FFG.R) 42 �48 �20 BA 37
Left dAI (dAI.L) �34 22 0 BA 13
Right dAI (dAI.R) 38 22 �4 BA 13
Left vAI (vAI.L) �38 �2 �10 BA 13
Right vAI (vAI.R) 44 6 �10 BA 13
Left PI (PI.L) �38 �18 14 BA 13
Right PI (PI.R) 38 �14 16 BA 13
Left BNST (BNST.L) �6 2 0
Right BNST (BNST.R) 6 2 0
Left NAc (NAc.L) �10 12 �8
Right NAc (NAc.R) 10 12 �8
Left hippocampus (Hipp.L) �34 �18 �16
Right hippocampus (Hipp.R) 32 �14 �16
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mixed-effect analysis. As fixed effects, we entered age, emotion, and
age � emotion interactions (regressors of interest) as well as sex, race,
and head movement (regressors of no interest) into the model. As ran-
dom effects, we had intercepts for participants. Significance of regressor
coefficients were obtained by F tests.

Multiple linear regression of age-related changes. For significant age �
emotion interactions, we performed additional analyses to examine age-
related changes in each emotion category. Specifically, we used multiple
linear regression models, with behavioral or brain measure as dependent
variable, age as a covariate of interest, and sex, race, and head movement
as covariates of no interest.

Development of emotion circuits
Development of emotion-related network structure. To determine how net-
work structure changes with age, we first determined community struc-
ture for each participant and each group as described above. We then
computed the Jaccard index between individual and group consensus
community structures. Specifically, overlap in community structure was
computed using a co-occurrence matrix, with 1 indicating two nodes
belonging to the same module and 0 indicating two nodes belonging to
different modules. The Jaccard index is defined as the ratio of the inter-
section between two matrices divided by their union, ranging from 0 (no
overlap) to 1 (full overlap). A linear mixed-effect model was then applied
to the Jaccard index to determine main effects of age, emotion, and age �
emotion interactions. We also examined community structure in three
distinct age groups, children (8 –12 years), adolescents (13–17 years), and
adults (18 –23 years), to provide additional insights into the development
of emotion circuits.

Development of emotion-related intramodule and intermodule connec-
tivity. To examine main effect of age, emotion, and age � emotion inter-
actions on functional interactions between the module, we assessed the
intramodule connectivity, by computing the mean strength of all con-
nectional weights within a module, and intermodule interaction, by
computing the mean strength of connectional weights between modules,
for each individual and each emotion category.

Development of emotion-related hubs. To investigate the development
of hub nodes, we first computed the probability of an ROI being a hub in
a 1 year age window, separately for each emotion category. Specifically,
for each participant and each emotion category, we identified hubs (see
above) and counted, for each node, how many times it functioned as hub
across participants under a specific emotion category. This count was
divided by the total number of participants within that specific age win-
dow to derive a node’s hub probability. To assess the significance of hub
probability, we constructed an empirical null distribution for each region
and each age window under each emotion category. Specifically, we first
permuted hub identity across all nodes within each individual, by ran-
domly designating which nodes were hubs while keeping the total
number of hubs constant over 1000 iterations, and then calculated the
probability of a brain region being a hub node within each age window
for all permutations. Only nodes with a probability above the 95th per-
centile of its empirical null distribution were considered as a significant
hub.

Classification analysis
We used a nonlinear support vector machine classification algorithm
with 10-fold cross-validation to assess the discriminability of regional
connectivity measures between all pairs of emotion categories. The py-
thon scikit-learn package (https://scikit-learn.org/stable/) was used to
perform this analysis. Permutation test was used to assess the perfor-
mance of the classifier. Specifically, for each pair of emotion categories,
data were divided into 10 folds, with those belonging to the same partic-
ipant included in the same fold. A nonlinear support vector machine
classifier was trained using nine folds, leaving out one fold. The samples
in the left-out fold were then predicted using this classifier, and an accu-
racy was derived by calculating the percentage of correct predictions.
This procedure was repeated 10 times, and a final classification accuracy
was derived by calculating the mean of the 10 left-out accuracy, which
was used as a measure of model performance. Next, the statistical signif-
icance of the model was assessed using permutation test. In each permu-

tation, emotion category labels (e.g., neutral vs fear) were randomly
exchanged with a probability of 0.5 for each participant. A classifier was
trained, and a classification accuracy was derived using the same scheme
described above. Classification accuracy from 100 permutations was
used to construct the empirical null distribution from which a p value
was computed.

Reliability analysis
Behavior. We examined the reliability of our developmental findings and
assessed the effect of sample size on reliability for each emotion category.
First, we randomly drew N (sample size) participants (50 � N � 700,
incremented by 50) from either the fMRI (N � 759), or behavioral (N �
1338), sample without replacement and with the proportion of children
(ages 8 –12 years), adolescents (ages 13–17 years), and adults (ages 18 –23
years) in each subsample being matched to the fMRI, or behavioral,
sample. Second, we assessed developmental changes in the subsample
using multiple linear regression models. Third, we repeated the first two
steps 1000 times at each sample size. Finally, we calculated the probability
of observing a significant age effect with the same direction as the one
revealed in the full sample across 1000 runs for each sample size, which
was used as the measure of reliability. We defined findings with reliability
�0.7 as reliable because it is unlikely ( p � 2.2e-16) to observe a signifi-
cant effect �700 times of 1000 runs, assuming equal probability to ob-
serve a significant or null effect in a run.

Brain networks. We randomly drew N participants from the fMRI
sample (N � 759) and assessed age-related changes in the subsample
using linear mixed-effect model. This was repeated 1000 times at each
sample size across a wide range of sample sizes (50 � N � 400). Next,
correlation between age effects in regional activity or connectivity across
all brain regions from a subsample and that from the full sample was
calculated and then averaged across subsamples at each sample size. The
resulting average correlation was used as the measure of network-level
reliability of overall developmental pattern across all brain regions. We
defined reliable findings as those with correlation �0.7 (i.e., R 2 � 0.5),
the point at which the model explains more variance than is unexplained.
Finally, we also constructed empirical null distributions for reliability
measured as average correlation, using the same approach described
above, with an additional step that age was permuted in each subsample
before assessing developmental changes. Average correlation above the
95th percentile of its empirical null distribution was considered as signif-
icantly different from null.

Replication analysis of previous developmental findings related to
amygdala circuitry
We examined the development of amygdala activity and connectivity in
the current PNC cohort using coordinates reported in three published
task-fMRI studies using similar emotion face perception tasks, contrasts,
and age range as the PNC (Gee et al., 2013; Kujawa et al., 2016; Wu et al.,
2016). Tables 1 and 4 provide details of the studies and coordinates used.
Moreover, we performed additional generalized psychophysiological
interaction (gPPI) analysis to establish amygdala-mPFC connectivity
and examine age-related changes as a similar method (gPPI or PPI)
was used in the three published studies. Specifically, the gPPI model
included one regressor of seed time series, five regressors of task
conditions (neutral, fear, anger, sadness, or happiness), and their
interaction with seed time series, one regressor of error trials and its
interaction with seed time series, six regressors of head movement,
and one regressor of constant. Replication analysis was then applied
to amygdala-mPFC gPPI connectivity.

Data and code availability
Raw data associated with this work are available through dbGaP (https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id�phs000607.v2.p2).

All data analysis scripts used in the study will be made publicly avail-
able upon publication.

Results
Behavioral maturation of emotion identification
We first examined the main effects of age, emotion, and age �
emotion interactions on accuracy (i.e., proportion of correct re-
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sponses) and median RT of emotion identification in the fMRI
sample (N � 759), which included participants who had valid
behavioral and neuroimaging data.

Accuracy versus age
Our analysis revealed no main effect of age (p � 0.1) but a sig-
nificant effect of emotion (F(4,3028) � 187.156, p � 2.2e-16) and
age � emotion interactions (F(4,3028) � 5.370, p � 0.0003). Fur-
ther analysis revealed that accuracy increased with age for fear
(r � 0.151, p � 4.71e-05) and anger (r � 0.152, p � 3.83e-05)
conditions (Fig. 2ai), but not for sad (r � �0.028, p � 0.457),
happy (r � 0.064, p � 0.084), or neutral (r � 0.055, p � 0.144)
conditions.

RT versus age
Results revealed a significant age effect (F(1,1785) � 5.370, p �
1.15e-07), showing that median RT decreased with age such that
older participants were faster at identifying emotions. Moreover,
there is a significant effect of emotion (F (4, 3028) � 397.167, p �
2.2e-16) and age � emotion interactions (F(4,3028) � 4.023, p �
0.003). Further analysis revealed that median RT decreased with
age for all five emotions (Fig. 2aii): fear (r � �0.230, p � 4.62e-
10), anger (r � �0.173, p � 3.11e-6), sad (r � �0.111, p �
0.003), happy (r � �0.235, p � 1.75e-10), and neutral (r �
�0.207, p � 2.01e-08). The significant age � emotion interac-
tion was characterized by differences in slope between the sad and
fear conditions and between the sad and happy conditions.

Reliability of age-related changes
We examined the reliability of age-related changes in relation to
sample size. For each emotion category, we used multiple linear
regression model to assess age-accuracy and age-RT associations
across a wide range of sample sizes (50 � N � 700, increased by
50) with the proportion of children (ages 8 –12 years), adoles-
cents (ages 13–17 years), and adults (ages 18 –23 years) in each
subsample matched to the full sample (1000 times per sample
size). Reliability was measured as probability of observing a sig-
nificant correlation between age and accuracy or RT with the
same direction as the one revealed in the full sample. For fear and
anger, the two emotion categories that showed a significant age-
related increase in accuracy in the full sample, reliability in-
creased with sample size (Fig. 2ci). Reliability of negative age-RT

associations increased with sample size across all five emotion
categories (Fig. 2cii). In general, a sample size of 300 –350 was
needed to identify reliable age-accuracy associations, and a sam-
ple size of 200 –300 was needed to identify reliable age-RT asso-
ciation. Results also demonstrate that age-related improvements
in emotion identification were strongest for fear and anger, the
two high arousal-negative emotions.

Behavioral maturation of emotion identification assessed
using the full behavioral sample
Most developmental neuroimaging studies typically restrict anal-
ysis of fMRI-task behavioral data to participants with high levels
of accuracy and low head movement during scanning, as noted
above. The large PNC dataset allowed us to investigate potential
biases in age-related effects in a robust manner using a larger
sample of 1338 participants.

Accuracy versus age
Results revealed significant main effect of age (F(1,4515) � 53.814,
p � 2.6e-13), showing that accuracy increased with age such that
older participants were better at identifying emotions. Moreover,
there was a significant main effect of emotion (F(4,5344) �
344.866, p � 1.86e-264) and age � emotion interactions (F(4,5344)

� 10.434, p � 2.04e-08). Further analysis revealed that accuracy
increased with age for neutral (r � 0.078, p � 0.006), fear (r �
0.150, p � 9.32– 08), anger (r � 0.129, p � 6.43e-06), and happy
(r � 0.058, p � 0.044) conditions, but not for the sad condition
(r � 0.036, p � 0.203) (Fig. 2bi). Additional analysis revealed that
the age � emotion interaction was driven by slope differences
between fear and each of the other four conditions, between an-
ger and happy conditions, and between neutral and happy con-
ditions. While all significant findings revealed in the fMRI sample
were replicated in the larger behavioral sample, we also noted a
few additional significant effects in the behavioral sample, in-
cluding a main effect of age as well as associations between accu-
racy and age under neutral and happy conditions. However, these
additional age-related effects during neutral and happy condi-
tions were weaker than those during fear and anger.

RT versus age
Results revealed a significant main age effect (F(1,3091) � 139.818,
p � 1.38e-31), showing that median RT decreased with age such
that older participants were faster at identifying emotions. More-
over, there was a significant main effect of emotion (F(4,5344) �
594.997, p � 0.000) and age � emotion interactions (F(4,5344) �
9.162, p � 2.25e-07). Further analysis revealed that median RT
decreased with age for all five emotions (Fig. 2bii): neutral (r �
�0.300, p � 9.57e-28), fear (r � �0.146, p � 1.85e-21), anger
(r � �0.221, p � 4.76e-15), sad (r � �0.185, p � 4.84e-11), and
happy (r � �0.260, p � 5.66e-21). Additional analysis revealed
that age � emotion interaction was driven by slope differences
between fear and anger/sad/happy conditions and between neu-
tral and anger/sad/happy conditions. Notably, all significant
findings revealed in 759 participants were replicated in this larger
behavioral sample.

Reliability of age-related changes
Reliability of age-related changes as a function of sample size were
conducted using the same procedures as ones used above for the
fMRI sample. For fear and anger, the two emotion categories that
showed a significant age-related increase in accuracy in both the
fMRI and the full behavioral samples, reliability increased with
sample size; and in general, a sample size of 300 –350 was needed
to identify reliable age-accuracy associations (Fig. 2ci). This find-

Table 4. MNI coordinates of amygdala and PFC regions used in previous
developmental studies of face emotion perceptiona

Study
Amygdala Connectivity
(x, y, z) Seed (x, y, z) and target (x, y, z)

Gee et al. (2013) (32, �1, �16) Right amygdala (32, �1, �16)
and right vmPFC (2, 32, 8)

Kujawa et al. (2016) (�20, �2, �20),
(24, �2, �22)

Left amygdala (AAL) and left dACC
(�4, 30, 16)

Right amygdala (AAL) and right dACC
(2, 34, 14)

Wu et al. (2016) Left and right amygdala
from AAL atlas

Left amygdala (AAL) and left ACC/mPFC
(�6, 34, 16)

Right amygdala (AAL) and left ACC/mPFC
(�4, 36, 14)

Left amygdala (AAL) and left ACC
(�8, 28, 18)

Right amygdala (AAL) and right ACC
(6, 36, 12)

aAAL, Automated anatomical labeling. While no age-related effects were revealed in amygdala activity in Kujawa et
al. (2016) and Wu et al. (2016), we created amygdala ROI based on coordinates showing significant main effect of
emotion category in Kujawa et al. (2016) or used amygdala AAL atlas, which was a seed region in connectivity
analysis in Wu et al. (2016), to examine age-related effects of amygdala activity in our PNC cohort.
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ing is not surprising given that the effect size during fear and
anger conditions was comparable across the two samples. More-
over, for sad and happy, the two emotion categories that showed
a significant age effect only in the full behavioral sample, reliabil-
ity increased with sample size but remained low (�0.5), even at a
sample size of 700, reflecting the small effect size under these two

conditions. In addition, reliability of negative age-RT associations
increased with sample size across all five emotion categories; and in
general, a sample size of 150–200 was needed to identify reliable
age-RT associations (Fig. 2cii). Results also demonstrate that age-
related improvements in emotion identification were strongest for
fear and anger, the two high arousal-negative emotions.

Figure 2. Developmental changes in behavior and reliability. Accuracy: The ability to correctly identify high arousal-negative (threat-related) emotions (fear and anger) improved with
age in both the fMRI (ai) and full behavioral samples (bi). Only reliability of significant effects was assessed. RT: Time to identify an emotion decreased with age across all five emotion
categories in both the fMRI (aii) and full behavioral samples (bii). c, Reliability was measured as the probability of observing a significant correlation between accuracy and age or that
between RT and age. ci, Accuracy: Reliability of age-accuracy associations increased as sample size increased for conditions that showed significant age-related changes in accuracy in the
fMRI (solid line) and the full behavioral (dashed line) samples. cii, RT: Reliability of age-RT associations increased as sample size increased for all five emotion categories in the fMRI (solid
line) and the full behavioral (dashed line) samples. In general, a sample size of 300 –350 was needed to identify reliable (reliability � 0.7) age-accuracy association and that of 200 was
needed to identify reliable age-RT association.
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Behavioral and demographic differences between the
neuroimaging and excluded samples
Finally, we examined whether participants in the fMRI (N � 759)
and excluded (N � 579) samples are similar cross-sections of the
overall population in terms of age, sex, and behavioral perfor-
mance (accuracy and RT). The excluded sample included partic-
ipants who did not meet our criteria for inclusion in fMRI data
analysis but were included in the behavioral analysis. We found a
significant difference in age between the fMRI and excluded sam-
ples (t(1186) � 11.68, p � 2.2e-16), with participants in the fMRI
sample (age: 16.20 � 3.27 years) older than participants in the
excluded sample (age: 13.99 � 3.56 years). Moreover, sex and
exclusion/inclusion were not independent (� 2

(1) � 6.52, p �
0.011), with higher female/male ratio in the fMRI sample (F/M �
419/340) than that in the excluded sample (F/M � 278/301). Last,
we found significant differences in accuracy (t(781) � 8.83, p �
2.2e-16) and RT (t(998) � �8.87, p � 2.2e-16) between the two
samples, with participants in the fMRI sample showing higher
accuracy and faster response (accuracy: 0.92 � 0.05; RT: 2.29 �
0.36) than participants in the excluded sample (accuracy: 0.88 �
0.10; RT: 2.51 � 0.51). These findings are not surprising as chil-
dren; and boys, in particular, usually tend to move more in the
scanner (Yuan et al., 2009; Dosenbach et al., 2017; Engelhardt et
al., 2017), so the excluded sample includes more boys and
younger participants, leading to age and performance differences
between the neuroimaging and excluded samples.

Meta-analysis of brain areas involved in emotion
To take a broad and inclusive view of cortical and subcortical
brain regions involved in emotion perception, we proceeded in a
two-step manner. First, we used the meta-analysis toolbox Neu-
rosynth (Yarkoni et al., 2011) and the search term “emotion” to
identify the most consistently reported cortical and subcortical
regions implicated in emotion processing, including vmPFC,
dmPFC, vlPFC, dlPFC, lOFC, IPL, SPL, sgACC, pgACC, dACC,
PCC, pre-SMA, BLA, vAI, dAI, PI, hippocampus, and FFG (Fig.
1b; Table 3). Second, given recent theoretical focus on the sa-
lience network (Menon, 2011), specifically the subdivisions of the
insula and the amygdala, we identified additional distinct func-
tional subdivisions of the anterior insula (vAI) and amygdala
(CMA) and additional subcortical regions, including the BNST
and the NAc, thought to play distinct functional roles in emotion
processing (LeDoux, 2007; Deen et al., 2011; Chang et al., 2013;
Floresco, 2015; Lebow and Chen, 2016; Namkung et al., 2017).
The brain areas identified by this analysis showed strong overlap
with salience, central executive, and default mode networks (See-
ley et al., 2007; Menon, 2011).

Modular structure of emotion-related circuits is established
in childhood and remains developmentally stable
To investigate how the functional organization of emotion per-
ception circuits change with age, we first identified the modular
structure of interregional connectivity, computed using � series
correlation (Rissman et al., 2004), for each emotion task condi-
tion. Next, we determined common patterns of modular struc-
ture across all participants for each emotion condition, which was
used as a template for further analysis. Across all five emotion
categories, we observed three consistent network modules corre-
sponding to a FP module, a mPFC/PCC module, and an subcor-
tical/posterior insula (SPI) module (Fig. 3a). This 3-module
structure was stable across emotion categories for all values of
gamma � 0.5; results are reported here for gamma � 1, the most
commonly used value in most fMRI studies. The modularity

value Q for gamma � 1 was highly significant compared with
empirical null networks with preserved weight and degree distri-
butions (p � 0.001).

Next, we assessed main effects of age, emotion, and age �
emotion interactions on the Jaccard overlap between individual
and template modular structure. Results revealed a significant
emotion effect (F(4,3028) � 3.656, p � 0.006) but no significant
effect of age or age � emotion interactions (p values �0.1), in-
dicating that the overall modular structure for all emotion con-
ditions was stable with age. Additional analysis using the Jaccard
overlap between individual and adult-group modular structure
revealed similar results. This was further confirmed by findings of
modular structure within distinct age groups: children (8 –12
years), adolescents (13–17 years), and adults (18 –23 years) (Fig.
3b). Notably, this modular architecture maps closely onto the
triple-network model (Menon, 2011). Finally, a similar 3-module
structure was observed when using the 46 spatially extended clus-
ters, demonstrating the robustness and generalizability of our
finding with respect to Brainnetome functional brain parcella-
tions (Fan et al., 2016).

Development of hubs underlying emotion perception
We next identified which nodes served as hubs and examined
whether these change with age. Briefly, we identified hub regions
for each individual, computed the probability of a brain region
being a hub within a 1 year age window for each emotion cate-
gory, and assessed the significance of hub probability by permu-
tation. We found that hubs resided in the medial prefrontal nodes
(pgACC, vmPFC, and dmPFC) of the mPFC/PCC module (Fig.
4a) and were stable over age across all five emotion categories
(Fig. 4b,c).

Developmental changes in intramodule and
intermodule connectivity
We examined main effects of age, emotion, and age � emotion
interactions on intramodule and intermodule connectivity. Re-
sults revealed a significant main effect of age for intra-FP connec-
tivity (F(1,2692) � 7.015, p � 0.008) and for connectivity between
FP and SPI (F(1,2766) � 5.253, p � 0.022; Fig. 3c), indicating that
intra-FP and FP-SPI connectivity increased with age. Results re-
vealed a significant emotion effect in intra-FP (F(4,3028) � 7.487,
p � 5.35e-06), intra-SPI (F(4,3028) � 4.184, p � 0.002), between
FP and mPFC/PCC (F(4,3028) � 10.546, p � 1.75e-08), between
FP and SPI (F(4,3028) � 3.980, p � 0.003), and between mPFC/
PCC and SPI (F(4,3028) � 5.531, p � 1.9e-04) connectivity (Fig.
3c,d). Age � emotion interactions are significant for intra-
mPFC/PCC connectivity (F(4,3028) � 2.724, p � 0.028). Further
analysis revealed that intra-mPFC/PCC connectivity increased
with age under fear (F(1,754) � 3.910, p � 0.048) and anger
(F(1,754) � 4.579, p � 0.033) but not the other three emotion
categories (p values � 0.1).

Developmental changes in interregional connectivity
Using the modular architecture identified in the previous sec-
tions, we examined main effects of age, emotion, and age � emo-
tion interactions on interregional connectivity. All results are
reported at q � 0.05, FDR corrected for multiple comparisons.

Main effect of age
We found age-related increases within FP and SPI modules, be-
tween FP and SPI modules, and between mPFC/PCC and SPI
modules, including left dlPFC connectivity with right dAI, right
vAI connectivity with right sgACC and bilateral PI, right BNST
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connectivity with right IPL and SPL, and right BLA connectivity
with left PI (Fig. 5a). We found age-related decreases within mPFC/
PCC and SPI modules, including right sgACC connectivity with left
vmPFC and left CMA connectivity with right CMA and left PI. In
addition, we found two links (left NAc connectivity with bilateral
dACC), which showed significant quadratic age effects, consistent
with findings in the literature regarding enhanced sensitivity of do-
paminergic reward circuits in adolescence (Padmanabhan et al.,
2011; Padmanabhan and Luna, 2014).

Main effect of emotion
We found widespread emotion effect, especially within FP mod-
ule, between FP and mPFC/PCC modules, between FP and SPI
modules, and between mPFC/PCC and SPI modules (Fig. 5a).
Classification analysis revealed that it was sufficient to discrimi-
nate all pairs of emotion categories using all interregional links
(Fig. 5c), with classification accuracy ranging from 56.2% to
67.2% and significantly higher than chance level (p values �
0.01) as assessed by permutation test.

Figure 3. Main effects of age and emotion on modular organization and connectivity. ai, Three functional modules were identified across all participants: the FP module (red), mPFC/PCC module
(green), and SPI module (yellow). aii, As shown in the group consistency matrix, the FP module (red border) includes bilateral dlPFC, vlPFC, dACC, pre-SMA, IPL, SPL, and FFG. The mPFC/PCC module
(blue border) includes bilateral NAc, sgACC, pgACC, PCC, vmPFC, and dmPFC. The SPI module (yellow border) includes BLA, CMA, vAI, PI, BNST, and hippocampus (Hipp). Color bar represents the
probability of two nodes being classified in the same module across participants. b, As shown in the group consistency matrices, overall modular structure is stable across all five emotion categories
and age groups (children 8 –12 years, adolescents 13–17 years, adults 18 –23 years). c, Intra-FP connectivity and FP-SPI connectivity increased with age; intra-FP, intra-SPI, and all intermodule
connectivity measures varied across emotions; age-related changes in intra-mPFC/PCC connectivity were modulated by emotion category. d, Intramodule and intermodule connectivity varied across
emotions. Data are mean � SEM.
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Age � emotion interactions
No age � emotion interactions were found.

Reliability of age-related changes
To examine the robustness of our age-related changes and the
effect of sample size on reliability, we performed reliability anal-

ysis (Fig. 1d). Briefly, we randomly drew N (sample size) partic-
ipants from the full sample and assessed age-related changes in
the subsample using linear mixed-effect model. This was re-
peated 1000 times at each sample size across a wide range of
sample sizes (50 � N � 400, increased by 50). Correlation be-

Figure 4. Developmentally stable hubs in mPFC. a, ROI nodal degree for each emotion category. Node size is in proportion to integrated nodal degree measure. b, Probability measures averaged
across all regions within each module at each age year. Overall, the mPFC/PCC module has a higher probability to be a functional hub across age than the FP and SPI modules. Data are mean � SEM.
c, Multiple regions of the mPFC/PCC module, including pgACC, vmPFC, and dmPFC of the mPFC/PCC module were identified as functional hub regions for all five emotion categories and were stable
over development. Here, probability matrices are masked by the 95th percentile of empirical null distribution at each region and age year, with probability values �95th percentile set as 0. An age
year includes all participants whose age was larger than or equal to the current age year and less than the next age year (e.g., age 8 includes all participants with age �8 and �9).
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tween age effects from a subsample and that from the full sample
was calculated and then averaged across subsamples at each sam-
ple size. The resulting average correlation was used to measure
the reliability of overall developmental patterns across all inter-
regional links. We found that reliability increased with sample
size, that a minimum sample size of 50 was sufficient for reliabil-
ity to surpass the 95th percentile of its corresponding empirical
null distribution, and that a minimum sample size of 200 –250
was needed to identify reliable (reliability � 0.7) age-related

changes (Fig. 5b). These results highlight the robustness of our
main age-related effects and indicate that large samples are
needed to produce reliable findings.

Amygdala responses are invariant with age, whereas FP node
responses decrease with age
We examined main effects of age, emotion, and age � emotion
interactions on regional brain activity in each of the ROIs. All results
reported here at q � 0.05, FDR corrected for multiple comparisons.

Figure 5. Main effects of age and emotion on regional connectivity. a, Connectivity within FP and SPI modules, between FP and SPI modules, and between mPFC/PCC and SPI modules increased
with age, including left dlPFC connectivity with right dAI, right vAI connectivity with right sgACC and bilateral PI, right BNST connectivity with right IPL and SPL, and right BLA connectivity with left
PI. Connectivity within mPFC/PCC and SPI modules decreased with age, including right sgACC connectivity with left vmPFC and left CMA connectivity with right CMA and left PI. Emotion effects are
widespread, especially within FP module, between FP and mPFC/PCC modules, between FP and SPI modules, and between mPFC/PCC and SPI modules. b, Reliability of age-related changes in
regional connectivity across all brain regions increased with sample size. A sample size of 50 is sufficient for reliability to surpass the 95th percentile of its corresponding empirical null distribution
(dashed line), and a minimum sample size of 200 –250 was needed to identify reliable age-related changes. c, Classification analysis showed that it was sufficient to discriminate all pairs of emotion
categories using all interregional links, with classification accuracy ranging from 56.2% to 67.2% and significantly higher than chance level as assessed by permutation test.
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Main effect of age
We found significant age-related decreases in cognitive control
regions, including bilateral pre-SMA, dACC and dlPFC, left SPL,
right IPL, and right lOFC (Fig. 6ai).

Main effect of emotion
We found a significant emotion effect in all ROIs, except bilateral
BNST (Fig. 6b).

Age � emotion interactions
No age � emotion interactions were found.

Reliability of age-related changes
We performed reliability analysis using the procedure same to
that described in Developmental changes in interregional con-
nectivity (Fig. 1d). We found that reliability increased with sam-
ple size, that a minimum sample size of 50 –100 was sufficient for
reliability to surpass the 95th percentile of its corresponding em-
pirical null distribution, and that a minimum sample size of 150 –
200 was needed to identify reliable (reliability � 0.7) age-related
changes (Fig. 6aii). These results highlight the robustness of our
main age-related effects and indicate that large samples are
needed to produce reliable findings.

Replicability of previous developmental findings related to
amygdala circuitry
Given the inconsistencies with regards to developmental changes
in amygdala recruitment and connectivity in the extant literature,
we further examined age-related changes in the current large
sample using precise anatomical coordinates reported in three
previously published studies with similar emotion face recogni-
tion tasks, experimental contrasts, and age ranges (Table 4) (Gee
et al., 2013; Kujawa et al., 2016; Wu et al., 2016).

Amygdala activity
Gee et al. (2013) reported age-related decreases in right amygdala
activity during fearful face processing. We first included all five
emotion categories in our linear mixed-effect model and did not
identify age effect or age � emotion interactions in their reported
amygdala region in the current PNC sample (F values � 2, p
values � 0.1). We further examined age-related changes for each
of the five emotion categories and still did not identify any age-
related changes (Table 5). Kujawa et al. (2016) and Wu et al.
(2016) reported no age-related changes in amygdala activity dur-
ing identification of happy, fearful, and angry faces. When we
included all five emotion categories in our linear mixed-effect
model, we found no age-related changes or age � emotion inter-
actions (F values � 1, p values � 0.1). When we included only
fear, anger, and happy, the three emotion categories used in Ku-
jawa et al. (2016) and Wu et al. (2016) studies, we found signifi-
cant age-related increases (F(1,1886) � 4.357, p � 0.037, effect
size � 0.076) and age � emotion interactions (F(2,1514) � 5.804,
p � 0.003) in left amygdala using coordinates reported by Kujawa
et al. (2016), and significant age-related increases (F(1,1681) �
4.962, p � 0.026, effect size � 0.081) in right amygdala using
coordinates reported by Wu et al. (2016). We further examined
age-related changes for each of the five emotion categories. Age-
related increases were found in the left amygdala under fear, sad,
and happy using coordinates reported by Kujawa et al. (2016)
and in bilateral amygdala under fear, sad, and/or happy using
coordinates reported by Wu et al. (2016) (Table 5). In summary,
our replication results from the large sample are partially consis-
tent with Kujawa et al. (2016) and Wu et al. (2016) findings and
inconsistent with Gee et al. (2013) findings (see Table 7).

Amygdala connectivity
Gee et al. (2013) reported age-related decreases in the right
amygdala-vmPFC connectivity during fearful face processing.
We included five emotion categories in our linear mixed-effect
model and did not identify age effect or age � emotion interac-
tions in their reported amygdala-vmPFC regions in the current
PNC sample (F values � 1, p values � 0.1). We further examined
age-related changes for each of the five emotion categories and
did not identify any age-related changes (Table 6). Kujawa et al.
(2016) reported age-related decreases in bilateral amygdala-
dACC connectivity during happy, angry, and fearful face identi-
fication in typically developing individuals. When we included
five emotion categories in linear mixed-effect model, we found
no age-related changes or age � emotion interactions using the
reported coordinates (F values � 1, p values � 0.1). When we
included only fear, anger, and happy, the three emotion catego-
ries used in the Kujawa et al. (2016) study, we found a significant
age-related increases in right amygdala-dACC connectivity
(F(1,2011) � 8.250, p � 0.004, effect size � 0.104). We further
examined age-related changes for each of the five emotion cate-
gories. Age-related increases were found in left amygdala-dACC
under fear and happy and in right amygdala-dACC under fear,
anger, and sad (Table 6). Finally, Wu et al. (2016) reported age-
related decreases in bilateral amygdala-mPFC/ACC during iden-
tification of fearful, angry, and happy faces. When we included all
five emotion categories in linear mixed-effect model, we found
no age effect or age � emotion interactions (F values � 2, p
values � 0.1). When we included only fear, anger, and happy, the
three emotion categories used in the Wu et al. (2016) study, we
found significant age-related increases in right amygdala connec-
tivity with left mPFC (F(1,2041) � 8.046, p � 0.005, effect size �
0.103) and right ACC (F(1,2037) � 6.749, p � 0.009, effect size �
0.094). We further examined age-related changes for each of the
five emotion categories and found age-related increases in bilat-
eral amygdala-mPFC/ACC connectivity under fear and/or anger
(Table 6).

Amygdala connectivity (gPPI analysis)
Because previous developmental studies of amygdala connectiv-
ity have used PPI (Gee et al., 2013) or gPPI techniques (Kujawa et
al., 2016; Wu et al., 2016), we conducted additional analyses using
a similar approach. When we included the five emotion catego-
ries in linear mixed-effect model, we did not find a main effect of
age, or age � emotion interactions in analyses using coordinates
from the three studies (F values � 1.5, p values � 0.1). When we
included only fear, anger and happy in linear mixed-effect model,
we did not identify age effect or age � emotion interactions in any
of the amygdala connectivity using coordinates from Kujawa et
al. (2016) and Wu et al. (2016) studies (F values � 2.2, p values �
0.1). Finally, we examined age-related changes for each emotion
category. Results revealed no age effect using coordinates re-
ported in Gee et al. (2013) study (F values � 2, p values � 0.1) but
significant age-related increases in bilateral amygdala-dACC
connectivity under fear (left: F(1,754) � 5.602, p � 0.018, effect
size � 0.088; right: F(1,754) � 4.605, p � 0.032, effect size � 0.080)
using coordinates reported by Kujawa et al. (2016) as well as in
left amygdala-mPFC connectivity under fear (F(1,754) � 7.041,
p � 0.008, effect size � 0.099) using coordinates reported by Wu
et al. (2016). These results are consistent with those derived using
� time series analysis, as described in Amygdala connectivity.

Together, these results point to poor replicability of previous
developmental findings on amygdala connectivity associated
with emotion processing (Table 7).
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Figure 6. Main effects of age and emotion on regional activity. ai, Brain regions showing age-related changes. Activity in cognitive control regions, including bilateral pre-SMA, dACC, dlPFC, left
SPM, right IPL, and right lOFC, decreased with age. Node size was scaled to present effect size of age-related decrease. aii, Reliability of age-related changes across all brain regions. A minimum
sample size of 50 –100 was needed for reliability to surpass the 95th percentile of its corresponding empirical null distribution (dashed line), and a minimum sample size of 50 –100 was needed to
identify reliable (correlation � 0.7) age-related changes. bi, Brain regions showing emotion effects. Node size was scaled to present F value of emotion effect. bii, Activity in all brain regions, except
bilateral BNST, varied across emotion category.
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Discussion
A large sample of children, adolescents, and young adults with
high quality emotion perception task fMRI data from the PNC
(Satterthwaite et al., 2014) afforded us an unprecedented oppor-
tunity to address critical gaps in our knowledge regarding the
development of human emotion identification circuits. We used
a multipronged analytical strategy to investigate the development
of functional circuits associated with perception and identifica-
tion of five distinct emotion categories: fear, anger, sadness,
happiness, and neutral. Our analysis disentangled aspects of
emotion-related brain circuitry that were stable over develop-
ment and those that changed with age. We found a developmen-
tally stable modular architecture anchored in the salience, default
mode, and central executive networks, with hubs in the mPFC
and emotion-related reconfiguration of the salience network.
Developmental changes were most prominent in FP circuits im-
portant for salience detection and cognitive control. Crucially,
reliability analyses provided quantitative evidence for the robust-
ness of our findings. Our findings provide a new template for
investigation of emotion processing in the developing brain.

Maturation of emotion identification and specificity with
respect to high arousal-negative emotions
Behaviorally, facial emotion identification emerges early in in-
fancy with continued improvements through childhood and ad-
olescence (Batty and Taylor, 2006; Thomas et al., 2007; Rodger et
al., 2015; Leitzke and Pollak, 2016; Theurel et al., 2016). We
found that, although emotion identification accuracy was high
for all five emotion categories, even in the youngest individuals
(age 8), identification of fear and anger emotion categories im-
proved significantly with age, consistent with previous reports
(Gee et al., 2013; Kujawa et al., 2016; Wu et al., 2016). These

findings suggest that high arousal-negative (“threat-related”)
emotions show more prominent differentiation, allowing for fur-
ther sharpening of emotion concepts with age (Widen, 2013;
Nook et al., 2017).

Architecture and developmental stability of emotion circuitry
Network analysis of interregional connectivity provided novel
evidence for a developmentally stable architecture of emotion-
related circuitry. We found three distinct communities (FP,
mPFC/PCC, and SPI) that shared similarities with canonical in-
trinsic salience, central executive, and default mode networks
(Menon, 2011), with some key differences.

We found significant reconfiguration of the salience network
during emotion identification, including segregation of individ-
ual insula subdivisions, amygdala, and dACC, into separate
modules. The dorsal AI and the dACC grouped with the FP com-
munity of cognitive control systems, whereas the ventral AI, PI,
and amygdala grouped with the SPI module of subcortical/limbic
systems. This is noteworthy because the dorsal, ventral, anterior,
and posterior subdivisions of the insula play distinct and integra-
tive roles in cognitive-affective aspects of emotion perception
(Craig, 2009; Menon and Uddin, 2010; Uddin et al., 2014).
Findings provide novel evidence that the overall functional archi-

Table 5. Age-related changes in amygdala activity in the PNC sample using
coordinates from previous studiesa

Region Emotion F(1,754) p Effect size

Right amygdala in Gee et al. (2013)2 Neutral 1.121 0.290 �0.040
Fear 0.228 0.633 0.018
Anger 0.174 0.677 �0.016
Sad 1.965 0.161 0.052
Happy 0.109 0.741 �0.012

Left amygdala in Kujawa et al. (2016)b Neutral 0.953 0.329 0.036
Fear 12.617 0.0004 0.132
Anger 1.844 0.175 0.051
Sad 15.140 0.0001 0.144
Happy 9.020 0.003 0.111

Right amygdala in Kujawa et al. (2016)b Neutral 0.566 0.452 0.028
Fear 2.650 0.104 0.061
Anger 0.123 0.726 0.013
Sad 2.801 0.095 0.063
Happy 0.726 0.394 0.032

Left amygdala (AAL) in Wu et al. (2016)b Neutral 1.583 0.209 0.047
Fear 15.796 7.73e-05 0.147
Anger 4.571 0.033 0.080
Sad 20.755 6.08e-06 0.168
Happy 10.009 0.002 0.117

Right amygdala (AAL) in Wu et al. (2016)b Neutral 0.277 0.599 0.020
Fear 5.741 0.017 0.089
Anger 1.946 0.163 0.052
Sad 5.784 0.016 0.089
Happy 1.553 0.213 0.046

aEffect size is measured by the standardized partial coefficient of the age term. AAL, Automated anatomical labeling;
2, developmental decreases in amygdala with mPFC was reported in the cited study. AAL indicates that the
amygdala ROI was derived based on AAL atlas.
bNo significant developmental changes were found in the cited study.

Table 6. Age-related changes in amygdala connectivity in the PNC sample using
coordinates from previous studiesa

Connectivity Emotion F(1,754) p Effect size

AMY.R-vmPFC.R in Gee et al. (2013)2 Neutral 0.210 0.647 0.017
Fear 3.497 0.062 0.069
Anger 1.880 0.171 0.051
Sad 0.963 0.327 0.036
Happy 0.288 0.591 0.020

AMY.L-dACC.L in Kujawa et al. (2016)2 Neutral 0.008 0.929 �0.003
Fear 8.921 0.003 0.109
Anger 2.569 0.109 0.059
Sad 0.388 0.533 0.023
Happy 4.596 0.032 0.079

AMY.R-dACC.R in Kujawa et al. (2016)2 Neutral 0.214 0.644 0.017
Fear 6.602 0.010 0.094
Anger 7.661 0.006 0.101
Sad 4.420 0.036 0.077
Happy 3.232 0.073 0.066

AMY.L-mPFC.L in Wu et al. (2016)2 Neutral 0.012 0.914 �0.004
Fear 4.139 0.042 0.075
Anger 1.198 0.274 0.040
Sad 0.003 0.958 0.002
Happy 1.199 0.274 0.040

AMY.R-mPFC.L in Wu et al. (2016)2 Neutral 0.334 0.563 0.021
Fear 3.712 0.054 0.071
Anger 7.566 0.006 0.101
Sad 1.333 0.249 0.004
Happy 2.743 0.098 0.061

AMY.L-ACC.L in Wu et al. (2016)2 Neutral 0.019 0.890 0.005
Fear 4.351 0.037 0.076
Anger 3.000 0.084 0.064
Sad 0.602 0.438 0.028
Happy 2.769 0.097 0.061

AMY.R-ACC.R in Wu et al. (2016)2 Neutral 0.013 0.909 0.004
Fear 4.551 0.033 0.078
Anger 5.901 0.015 0.089
Sad 4.496 0.034 0.078
Happy 1.261 0.262 0.041

aEffect size is measured by the standardized partial coefficient of age term. 2, Developmental decrease in
amygdala-mPFC connectivity (reported in the cited study).
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tecture of emotion identification is largely stable across develop-
ment and different categories of emotion.

Multiple mPFC regions form a developmentally stable core of
emotion circuitry
Network analysis also revealed developmentally stable hubs in
mPFC regions pgACC, vmPFC, and dmPFC across all five emo-
tion categories. These regions play central roles in socioemo-
tional processing (Phillips et al., 2003; Ochsner et al., 2004; Peelen
et al., 2010) The vmPFC and dmPFC are thought to be important
for self-referential processing and mentalizing (Ochsner et al.,
2012; Dixon et al., 2017), whereas the pgACC is important for
awareness of one’s own emotions (Lane et al., 2015; Dixon et al.,
2017). Last, our results are in line with the theoretical framework
that the mPFC plays a central role in emotion categorization by
tuning other brain systems to distinct emotion categories (He-
berlein et al., 2008; Roy et al., 2012; Barrett and Satpute, 2013;
Satpute et al., 2013, 2016).

Surprisingly, while the PCC was part of the same module as the
mPFC, it was not a hub region, despite being consistently identified
as hub in intrinsic functional connectivity studies (Buckner et al.,
2008; Fransson and Marrelec, 2008; Greicius et al., 2009; Andrews-
Hanna et al., 2010). These key differences between intrinsic and task-
based network organization argue for the critical importance of
characterizing task-dependent brain circuits.

Modular and regional connectivity changes are largely driven
by emotion category and are stable with age
Anchored on a stable modular architecture, we found significant
differences in intramodule and intermodule and regional con-
nectivity associated with emotion category, and to a lesser degree
age. Prominent differences between emotion categories provide
evidence that distinct emotions, although anchored in a common
modular architecture, may be represented differently in the brain
at the network level (Kragel and LaBar, 2015; Saarimäki et al.,
2016). Our support vector machine-based classification pro-
vides evidence of unique brain connectivity patterns elicited
by each emotion category and indicate differential patterns of
distributed network connectivity patterns involving the same
regions (Barrett, 2017).

While module connectivity was largely developmentally sta-
ble, two findings of age-related changes are noteworthy. First,
significant age-related increases in FP intramodule connectivity
point to continued maturation of FP control systems underlying
emotion categorization over development (Ahmed et al., 2015;
Guyer et al., 2016). Second, age-related increases in mPFC/PCC
intramodule connectivity during identification of fearful and an-
gry faces suggest that maturation of midline DMN systems un-
derlie continued developmental improvements in perception of
threat and high emotion-arousal emotions. Last, significant devel-
opmental changes in regional connectivity centered predominantly
on the insula, a core node of the salience network, highlighting a
central and previously underrecognized role of the insula in the de-
velopment of emotion perception and identification.

Developmental changes in amygdala reactivity and
amygdala-PFC circuits
Surprisingly, we did not detect developmental changes in the
amygdala and its functional circuity, given that amygdala and its
connectivity with the mPFC have been the focus of developmen-
tal studies of emotion processing, but with contradictory findings
(for a summary, see Table 1). To address these discrepancies, we
examined amygdala activity and amygdala-mPFC connectivity in
our PNC cohort using specific amygdala seed and mPFC target
regions from three published studies with similar emotion face
recognition tasks, experimental contrasts, and age ranges (Gee et
al., 2013; Kujawa et al., 2016; Wu et al., 2016). We were unable to
replicate the findings of these previous studies, suggesting that
small samples, and not differences in amygdala and mPFC coor-
dinates, are a major contributor to the discrepancies between the
current and previous studies. These findings suggest that a nar-
row focus on amygdala-mPFC connectivity has precluded char-
acterization of other important brain regions, most notably the
insula and other PFC regions, underlying the development of
emotion perception and categorization.

Further studies are needed to determine the extent to which
differences in experimental design contributed to inconsistent
patterns of developmental changes in amygdala activity and con-
nectivity reported in previous studies. Critically, addressing this
question will require much larger developmental samples than
used in previous studies, along with stability and reliability anal-
yses as in the present study.

Neutral faces engage emotion circuitry in the context of
emotion identification
Another surprising finding of our study was that neutral faces
showed distributed and strong levels of activity and connectivity
across the three modules. Disambiguation of neural faces from other
emotions would require perception, evaluation, and decision-
making and, as our data indicate, engage emotion perception and
categorization circuits. Moreover, the classification rates for neutral
faces were no different from those between the other emotions.
These findings suggest that previous findings with neutral faces as a
control condition in emotion identification tasks should be reas-
sessed and interpreted with caution. This is also an important con-
sideration for future studies of emotion identification.

Reliability analyses highlight robustness of findings
Lack of replication arising from small sample sizes is a significant
problem in neuroscience research (Button et al., 2013; Szucs and
Ioannidis, 2017). We examined the robustness of our findings by
assessing reliability of findings at different sample sizes (Schaer et al.,
2015; Moser et al., 2018; Turner et al., 2018). We found that sample
sizes of 	200–300 allowed us to achieve a reliability of �0.70, pro-
viding strong evidence for the role of sample size in generating po-
tentially reproducible findings and that the modest sample sizes of
25–65 used in previous studies have low reliability (�0.5).

It is also important to note that logistical challenges often
preclude individual research groups from collecting large sam-

Table 7. Replicability of previous developmental findings in amygdala activity and connectivity underlying face emotion perception

Replicability

Study Findings Amygdala activity Amygdala connectivity

Gee et al. (2013) Amygdala activity decreased with age; amygdala-vmPFC connectivity decreased with age No No
Kujawa et al. (2016) No age-related effect in amygdala activity; amygdala-dACC connectivity decreased with age in TD but increased with age

in AD for all emotions
Partially yes No

Wu et al. (2016) No age-related effect in amygdala activity; amygdala-ACC/mPFC connectivity decreased with age for all emotions Partially yes No
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ples of data, which can significantly impede scientific progress
(Nee, 2019). The recent curation and sharing of large-scale neu-
rodevelopmental datasets, such as the PNC, provide a promising
solution to this challenge and afford the opportunity to begin
reconciliation of mixed findings in the extant literature.

In conclusion, emotion identification and categorization are
fundamental to affective and cognitive development and involve
integration of multiple widely distributed brain systems. We used
quantitatively rigorous procedures that span multiple levels of
regional, circuit, and network analysis and provide robust evi-
dence for shared, unique, stable, and changing neural finger-
prints of emotion perception development from childhood to
adulthood. We stress the importance of large sample sizes and a
systems-wide brain networks approach for understanding the
development of human emotion perception.
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