6888 + The Journal of Neuroscience, August 28, 2019 - 39(35):6888 — 6904

Systems/Circuits

Robust Associative Learning Is Sufficient to Explain the
Structural and Dynamical Properties of Local Cortical
Circuits

Danke Zhang, Chi Zhang, and “Armen Stepanyants

Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115

The ability of neural networks to associate successive states of network activity lies at the basis of many cognitive functions. Hence, we
hypothesized that many ubiquitous structural and dynamical properties of local cortical networks result from associative learning. To
test this hypothesis, we trained recurrent networks of excitatory and inhibitory neurons on memories composed of varying numbers of
associations and compared the resulting network properties with those observed experimentally. We show that, when the network is
robustly loaded with near-maximum amount of associations it can support, it develops properties that are consistent with the observed
probabilities of excitatory and inhibitory connections, shapes of connection weight distributions, overexpression of specific 2- and
3-neuron motifs, distributions of connection numbers in clusters of 3— 8 neurons, sustained, irregular, and asynchronous firing activity,
and balance of excitation and inhibition. In addition, memories loaded into the network can be retrieved, even in the presence of noise
thatis comparable with the baseline variations in the postsynaptic potential. The confluence of these results suggests that many structural
and dynamical properties of local cortical networks are simply a byproduct of associative learning. We predict that overexpression of
excitatory- excitatory bidirectional connections observed in many cortical systems must be accompanied with underexpression of
bidirectionally connected inhibitory- excitatory neuron pairs.
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Many structural and dynamical properties of local cortical networks are ubiquitously present across areas and species. Because
synaptic connectivity is shaped by experience, we wondered whether continual learning, rather than genetic control, is responsible
for producing such features. To answer this question, we developed a biologically constrained recurrent network of excitatory and
inhibitory neurons capable of learning predefined sequences of network states. Embedding such associative memories into the
network revealed that, when individual neurons are robustly loaded with a near-maximum amount of memories they can support,
the network develops many properties that are consistent with experimental observations. Our findings suggest that basic struc-
tural and dynamical properties of local networks in the brain are simply a byproduct of learning and memory storage. j

ignificance Statement

Introduction

With ever-increasing amounts of data on structure and dynamics
of neural circuits, one fundamental question moves into focus: Is
there an overarching principle that can account for the multitude
of these seemingly unrelated experimental observations? For ex-
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ample, much is known about connectivity of excitatory and in-
hibitory neurons in local cortical circuits. At the level of pairwise
connectivity, it is known that the probabilities of excitatory con-
nections are generally lower than those for inhibitory. Specifi-
cally, half of the reported probabilities lies in the 0.10-0.19
interquartile range if the presynaptic cell is excitatory and in the
0.25-0.56 range for connections originating from inhibitory
neurons. It is also known that the distributions of connection
weights have stereotypic shapes with half of the measured coeffi-
cients of variation (CV) lying in the 0.85-1.1 interquartile range
for excitatory connections and slightly lower range for inhibitory
(0.78-0.96). The fractions of bidirectionally connected excit-
atory neurons in many cortical systems are reported to be higher
than expected by chance, with the overexpression ratios ranging
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from 1 to 4. At the level of connectivity within 3-neuron clusters,
several ubiquitously overexpressed connectivity motifs have been
discovered (Song et al., 2005; Perin et al., 2011; Rieubland et al.,
2014). Information becomes scarce as one considers larger
groups of neurons, but even here deviations from random
connectivity have been reported for clusters of 3-8 neurons
(Perin et al., 2011). Similarly, many universal features charac-
terize the activity of neurons in local cortical networks. For
example, individual neurons exhibit highly irregular spiking
activity, resembling Poisson processes with close to 1 CV in
interspike intervals (ISIs) (Softky and Koch, 1993; Holt et al.,
1996; Buracas et al., 1998; Shadlen and Newsome, 1998; Ste-
vens and Zador, 1998). Spike trains of nearby neurons are only
marginally correlated (0.04—0.15) (Cohen and Kohn, 2011);
and at the network level, spiking activity can be described as
sustained, irregular, and asynchronous.

Two popular models of binary McCulloch and Pitts neuron
networks (McCulloch and Pitts, 1943) can individually explain
some of the above experimental observations. The first model is
based on the idea that, to have a sustained and irregular activity,
excitatory and inhibitory inputs to individual neurons in the net-
work must be balanced (van Vreeswijk and Sompolinsky, 1996,
1998; Amit and Brunel, 1997; Brunel, 2000; Renart et al., 2010;
Deneve and Machens, 2016). This model assumes that excitatory
and inhibitory inputs are much larger than the threshold of firing,
but their sum lies below the threshold, and firing is driven by
fluctuations. The balanced model can produce realistic sustained
and irregular spiking activity; however, by taking network con-
nectivity as an input, it generally does not make predictions re-
lated to the network structure (but see Rubin et al., 2017). The
second model, which we refer to as the associative model, is based
on the idea that synaptic connectivity is a product of associative
learning (Gardner and Derrida, 1988; Brunel et al., 2004; Chape-
ton et al., 2012). This model can explain many features of local
cortical connectivity, but it does not necessarily produce sus-
tained and irregular activity. We show that there is a biologically
plausible regime, in which balanced and associative models con-
verge, and it may be possible to explain both the structural and
dynamical properties of local cortical networks within a single
framework.

With sensory information continuously impinging on the
brain, neural circuits function in a state of perpetual change,
recording some of the information in the form of long-term
memories. During the learning process, individual neurons may
be operating as independent learning units, constrained by func-
tional and metabolic considerations, such as the requirement to
store associative memories, tolerate noise during memory re-
trieval, and maintain a low cost of the underlying connections
(see Fig. 1A). In this study, we explore the structural and dynam-
ical properties of associative networks in the space of these con-
straints and show that there is a unique region of parameters that
can explain the above-described experimental observations.

Materials and Methods

Associative learning model for networks of biologically constrained excit-
atory and inhibitory neurons. We use a McCulloch and Pitts neural net-
work (McCulloch and Pitts, 1943) to model a local cortical circuit in
which N;,,;, inhibitory neurons and (N — Nj,,;,) excitatory neurons are
all-to-all potentially connected (Stepanyants and Chklovskii, 2005;
Stepanyants et al., 2008) (see Fig. 1B). Associative memory in the model
is a connected graph of successive network states (directed edges termed
associations), {X*—X'*}, in which every node has no more than one
daughter node (see Fig. 1C). Vectors X* and X'* contain binary activities
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(0 or 1) of individual neurons within an association . In general, an
associative memory can be in the form of a point attractor, an associative
sequence, a limit cycle, and an entire basin of attraction. However, be-
cause the precise format of associative memories in cortical networks is
not known, in the following, we first examine memories composed of
uncorrelated network states and then extend the analysis on a specific
class of memories with correlations. The first case excludes memories
that contain point attractors and limit cycles, which necessarily include
correlations; and aside from this restriction, the results are independent
of the specifics of memory structures. In all numerical simulations of this
case, we use memories in the form of associative sequences. In the second
case, we only consider a specific format in which a memory is composed
of pairs of correlated associative network states and vary the correlation
coefficient, C, in the 0—1 range. We note that, at C = 0, we recover the
results of the first case; and at C = 1, the associative pairs are in the form
of point attractors (Hopfield, 1982).

Learning in the network is mediated by changes in connection weights
of individual neurons, J;;, in the presence of several biologically inspired
constraints. (1) Input connection weights of each neuron are sign-
constrained to be non-negative if the presynaptic neuron is excitatory
and nonpositive if it is inhibitory (Dale’s principle) (Dale, 1935). We
note that violations of Dale’s principle have been reported in some cor-
tical systems under extreme conditions, such as prolonged seizures
(Spitzer, 2017), but there is no strong evidence to suggest that widespread
deviations from this principle occur under normal behavioral condi-
tions. (2) Input weights of each neuron are homeostatically constrained
to have a predefined /,-norm (Holtmaat et al., 2006; Bourne and Harris,
2011; Kim and Nabekura, 2011; El-Boustani et al., 2018). (3) Each neu-
ron must attempt to learn its associations robustly so that they can be
recalled correctly in the presence of a given level of postsynaptic noise.
Biological motivations and assumptions of this model have been previ-
ously described (Chapeton et al., 2015).

Each neuron in the network (e.g., neuron 7), independently from other
neurons, attempts to learn a set of input—output associations {X*—X;*},
in which a vector X* represents the neuron’s input for an association .,
and a scalar Xj*is the desired output of the neuron derived from the
subsequent network state X'* (see Fig. 1C, orange boxes). To simplify the
notation, in the following, we drop index i, replace X;* with y*, and
summarize the learning problem, such as the following:

N
0 E]jX}‘—h-i-n =y4 wu=1..,m
j=1
Jgi=0; j=1,.,N
1N
N2l =w ()
j=1
Inl =«
1—f Xt=0 1—f y*=0
Prob(Xﬁ>={f X1 Prob(y‘*)={f bl
, r= 1 :

In these expressions, 6 denotes the Heaviside step-function, / is the neu-
ron’s firing threshold, and m denotes its postsynaptic noise, which is
bounded by the robustness parameter k, i.e., [n| < k. To enforce sign
constraints on the neuron’s presynaptic connection weights, we intro-
duce aset of parameters {g;} and set g;to 1 if connection jis excitatory and
—1 if it is inhibitory. Parameter w, referred to as the average absolute
connection weight, is introduced to impose the /,-norm constraint on
the weights of these connections. Binary input and output states, X}* and
y*, are randomly drawn from the Bernoulli probability distribution: 0
with probability 1 — fand 1 with probability f.

The above network model is governed by the following parameters:
number of neurons in the network (N), fraction of inhibitory neurons
(N;,,/N), threshold of firing (h), firing probability of neurons in the
associative states ( f), average absolute connection weight (w), robust-
ness parameter (k), and memory load (o = m/N).
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The first line in Equation 1 can be rewritten as an inequality,
@ = DELJXE — h + 1) = 0, making it possible to eliminate 1
and rewrite the problem in a more concise form as follows:

N
Q=D DJXE—h| =k, p=1l..,m

j=1
J§=0, j=1,.,N
1N
N2 =w @)
=1
1—f Xt=0 1—f =0
Prob(XJ“)={f b X% Prob(y“)={f 4 =1
, = ,

Numerical solution of the model. The solution of Equation 2 can be
obtained numerically with the methods of convex optimization (Boyd
and Vandenberghe, 2004). In numerical simulations, we consider two
learning scenarios: (1) feasible load, in which associations can be learned
given the constraints of the problem; and (2) nonfeasible load, in which
the number of presented associations is so large that Equation 2 has no
solution.

In the feasible load scenario, the region of solutions is nonempty, and
one must use additional considerations to limit the results to a single,
“optimal” solution. We do this by choosing the solution that minimizes
1715, as follows:

N
arg min| > J?
o\

N
2y*—1) E]jX}‘—h =k, w=1,..,m
=1

1 N
N2l =w (3)
j=1

]]gJEO, ]: 1,...,N

In the nonfeasible scenario, similar to what is done in the formulation of
the support vector machine problem (Hastie et al., 2009), we introduce a
slack variable s* = 0 for every association to make the learning problem
feasible and choose the solution that minimizes the sum of these variables
by solving the following linear optimization problem:

m
arg min Es"
Uk \amy

N
@2y*—1) E/}X}L—h +st=k, pu=1,..,m
i=1

st=0 (4)

1 N
NZW =w
=1

Jg=0, j=1,.,N

The problems outlined in Equations 3 and 4 were solved in MATLAB in
the following sequence of steps. Given the associative memory load, a« =
m/N, we first solved the problem of Equation 4, using the linprog func-
tion, to find s*. If any of these slack variables are >0, the problem is
nonfeasible. If all s* = 0, the problem is feasible, in which case we used
the connection weights resulting from Equation 4 as a starting configu-
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ration and solved Equation 3 with the quadprog function. In running
linprog and quadprog functions, we adopted the primal-dual interior-
point algorithm (Altman and Gondzio, 1999) to find the minima of the
objective functions in Equations 3 and 4 under the linear inequality and
equality constraints. This algorithm solves the regularized optimization
problem in the dual space by using Newton’s method (Boyd and Van-
denberghe, 2004).

In addition to the convex optimization solutions described with Equa-
tions 3 and 4, we developed a more biologically plausible solution of the
associative learning problem by modifying the perceptron learning rule
(Rosenblatt, 1962). In this rule, a single not yet robustly learned associ-
ation is chosen at random and the synaptic weights of the neuron are
updated in four consecutive steps as follows:

Ji=Ji+ B2yt — XY, j=1,..,N
Ji— ]je(]jgj)
1 N
Lo+ w2l ]g (5)
j=1
Ji+J1;0(Jg)

Unlike the standard perceptron learning rule, Equation 5 enforces the
sign and homeostatic /,-norm constraints during learning. A closely re-
lated rule, in the absence of /;-norm constraint, was previously described
(Brunel et al., 2004; Clopath et al., 2012). The first update in Equation 5
isastandard perceptron learning step, in which parameter Bis referred to
as the learning rate. The second step is introduced to enforce the sign
constraints, whereas the last two steps combined implement the homeo-
static /;-norm constraint and are equivalent to the soft thresholding used
in LASSO regression (Tibshirani, 1996). We note that, although the ro-
bustness parameter k does not explicitly appear in Equation 5, the rule
implicitly depends on the value of this parameter. This is because the
update of connection weights is triggered by the presentation of not
robustly learned associations (i.e., associations violating the first in-
equality of Eq. 2), the definition of which is dependent on . In all
numerical simulations, we set 8 = 0.01 and ran the algorithm until a
solution was found or the maximum number of iterations of 107 was
reached. Figure 1D shows that the success probability and memory
storage capacity calculated based on the modified perceptron learning
rule (dots) are nearly identical to the results obtained with convex
optimization (lines).

MATLAB code for generating replica theory and numerical solutions of
the associative model is available at https:/github.com/neurogeometry/
AssociativeLearning.

Replica theory solution of the model in the N — o° limit. This section
outlines the replica theory (Edwards and Anderson, 1975; Sherrington
and Kirkpatrick, 1975) solution of Equation 2. The complete derivation
is described by Zhang et al. (2018). Solutions of related models, which
include only some of the constraints of this study and consider a specific
scaling of connection weights with N, can be found in these studies
(Gardner and Derrida, 1988; Brunel et al., 2004; Chapeton et al., 2012,
2015; Brunel, 2016; Rubin et al., 2017). In the following, we assume that
Nislarge, whereas m/Nand fare O(1) (of order 1 with respect to N). The
total postsynaptic input to the neuron can be expressed in terms of its
average over the input network states, {X"}, plus a deviation from the
average as follows:

N N
DXt —h=\ XXt~ h
=1 i=1

With this, the associative learning problem of Equation 2 can be sepa-
rated into two categories based on the value of y* as follows:
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f-NDF =k =1

j=1

(7)
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j=1

= —K;
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To guarantee O(1) capacity in the large N limit, it is necessary for the
deviation of the average postsynaptic input from the threshold,
foi Ji = h, and the robustness parameter, k, to be of the same order
as (or less than) the SD of the postsynaptic input distribution,
Tinpur = f1 — f)ZN 1]2 If not, input to the neuron will rarely cross
the threshold (if the first condltion is violated) or the robustness margins
(if the second condition is violated), and capacity for robust associative
memory storage will be close to zero. Therefore,

(8)

j=1

Equation 8 gives rise to various plausible scenarios for scaling of the
connection weights and robustness parameter with the network size as
follows:

B h ( h . . 1 -
]j = { O(N),O \W>)O( ), .. .}, ?]] = {N,\W,l, .. }]J
k= O( \/ITU,% > k= {\/lﬁ,l,\/ﬁ, .. .}Rh
9)

The normalized weights, fj, and the normalized robustness parameter, K,
in Equation 9 do not scale with N.

The first scenario (first terms in braces in Eq. 9) is usually used in
associative memory models in conjunction with the replica theory (see,
e.g., Brunel et al.,, 2004) as follows:

h h
Ji= N8 K:WR (10)

The second scaling scenario is traditionally used in balanced network
models (see, e.g., Rubin et al., 2017) as follows:

ko
]jzﬁjj; Kk = hk (11)

The third and the subsequent scenarios, in which J does not scale with N,
or ] increases with N, can be ruled out because they are biologically
unrealistic. In addition, one can see from Equation 2 that the firing
threshold in these cases can be disregarded, and the results of replica
calculation become identical to the second scaling scenario.

In all models, scaling of w is assumed to be the same as that of J; that is,

1 1
w = {—,—= wh. Substituting the normalized variables into Equation
{ N /N} g q

2, we arrive at two problems, both governed by the same set of intensive
parameters, f, K, W, g and extensive parameters m and N as follows:

N
1 K
@2y —1 == =1..,
2y ) ; W N 1 m
X
N2 = (12)
=1
f]-ngO, j=1..,N

J. Neurosci., August 28, 2019 - 39(35):6888 —6904 « 6891

foXp=0
X=1"

L=f »=0
Prob(X}) = {ﬁ Prob(y*) = {f) =1
The two formulations only differ in the threshold term (braces). We solve
the two models concurrently (Zhang et al., 2018) and obtain the neuron’s
critical (maximum) capacity, «, probabilities of excitatory and inhibitory
connections, P;,./;,;,, and probability densities of non-zero excitatory and

inhibitory connection weights, P*S7. . as follows:

(~Mf): 207 D) + (1= f)D(uy)
W NPP) T 2us + u) (FEw) + (1 — ) E(usy))

con( =, th
inh > N fp (V+)

con( Ninh
Pexc N ’f’p = E(V*) (13)
Niwn 0(—J) 7(;+)
PSP \/Z(rw
P <]‘ "N N fP) V/ZWUWE(V+)6
Ninh 6(7) <7i —v )Z
PSP 7 20w
Pes (’ " ’f”’> rowk( )

These quantities are expressed as functions of five latent variables, u .,
u_, v, v_,and o, which can be obtained by solving the following system
of equations and inequalities:

[ PG — (1= F)Fu) =
Nexc th F
F( ) + F(v,) = 7
) ‘”"Fm) {50 }V—Z
exc mh 2p2
N PN Gy (14
V207
7= 1
(uy + LL)({TJC,O}(V+ —v ) —(vy + v,)>
fF(u )+ (1 —f)Fuy)
J‘E(u )+ = f)E(uy)

\ u, +u- >0 oc>0

E(x) = %(1 + erf(x)); F 2 4+ x(1 + erf(x));

NT
D(x) = xF(x) + E(x)

We note that the distributions of inhibitory and excitatory connection
weights are composed of Gaussian functions (SD o) truncated at zero
and finite fractions of zero-weight connections. The difference between
the replica solutions of the associative and balanced models explicitly
appears only in lines 3 and 5 of Equation 14, which contain braces. The
first and second terms in these braces correspond to the associative and
balanced solutions, respectively. Equation 14 makes it clear that the so-
lution of the associative model in the high-weight limit, wf >>1,
converges to the solution of the balanced model. However, since the
value of wf estimated from experimental data is large but finite (see
Results), we also examined the agreement between the results of the two
models by solving Equations 13 and 14 numerically for different values of
w and K. Figure 2 shows that, for values of # in the 10-100 range, the
results of the two models agree within 10%, and the agreement improves
with increasing K. In addition, in the limit of high weight, the solution
depends only on &/w (Fig. 2, straight isocontour lines). Therefore, in-

stead of R, we use parameter p = , which was introduced by

wAf(1 = f)

Brunel et al. (2004) and Brunel (2016) and is referred to as the rescaled
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robustness. This parameter can serve as a proxy for the ratio of robust-
ness and SD of postsynaptic input, /0.
K

K
We note that since — = —= for both models, rescaled robustness, p,
Wl

and Equations 13 and 14 in the high-weight limit are model independent.
The fact that the solutions of the two models converge in the high-weight
regime is not surprising. In this regime, Nwf >> h, and, as a result,
mean excitatory and inhibitory inputs to the neuron are much greater
than the threshold of firing. One can show that, in this case, & in Equation
2 can be disregarded, and the solution becomes independent of scaling of
J with N. Figure 3 shows that, with increasing N, numerical solutions of
the model according to Equations 3 and 4 gradually approach the results
of the replica theory outlined in Equations 13 and 14. This agreement
serves as an independent validation of the numerical and theoretical
calculations.

Results

Network model of associative learning

We use a McCulloch and Pitts neural network (McCulloch and
Pitts, 1943) to model a local cortical circuit in which N;,,;, inhib-
itory neurons and (N — N,,;,) excitatory neurons are all-to-all
potentially connected (Stepanyants and Chklovskii, 2005; Stepa-
nyants et al., 2008) (Fig. 1B). Associative memories are loaded
into the network by modifying the weights of connections be-
tween neurons (for details, see Materials and Methods). Associa-
tive memory in the model is a connected graph of successive
network states, which in general, can be in a form of a point
attractor, an associative sequence, a limit cycle, and an entire
basin of attraction (Fig. 1C). The precise format of associative
memories in cortical networks is not known and is likely to be
area dependent. Yet, for uncorrelated network memory states
(which excludes point attractors and limit cycles), the format of
memories has no effect on network properties, and this is the case
we consider first.

During learning, individual neurons, independently from one
another, attempt to associate inputs and outputs derived from
the associative memory states (Fig. 1C). Several biologically mo-
tivated constraints are imposed on the learning process (Chape-
ton et al., 2015). First, firing thresholds of neurons, , do not
change during learning. Second, the signs of input weights, J, that
are determined by the excitatory or inhibitory identities of pre-
synaptic neurons, do not change during learning (Dale’s princi-
ple) (Dale, 1935). Third, input connections of each neuron are
homeostatically constrained to have a fixed average absolute
weight, w (Holtmaat et al., 2006; Bourne and Harris, 2011; Kim
and Nabekura, 2011). Fourth, each neuron must be able to re-
trieve the loaded associations, even in the presence of noise in its
postsynaptic potential. The maximum amount of noise a neuron
has to tolerate is referred to as robustness parameter, .

Individual neurons in the model attempt to learn the pre-
sented set of associated network states, and the probability of
successfully learning the entire set decreases with the memory
load, a (Fig. 1D). Memory load that can be successfully learned
by a neuron with the probability of 0.5 is termed the associative
memory storage capacity of the neuron, «. This capacity in-
creases with the number of neurons in the network, N, and satu-
rates in the N — o limit at a value that can be determined with
the replica theory (see Materials and Methods). Notably, this
theoretical solution shows that, in the high-weight regime
(Nwflh >> 1), the neuron’s capacity, as well as the shape of its
connection weight distribution, depend on the combination of

K
del ters in the f fp = ————— (Figs. 14,
model parameters in the form of p " liNf(l —f) (Figs

2). The meaning of this combination was elucidated by Brunel et
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al. (2004), where it was pointed out that p can be viewed as a
measure of reliability of stored associations to errors in the post-
synaptic input. Following Brunel (2016), we refer to p as the
rescaled robustness.

Motivated by this theoretical insight, we set out to explore the
possibility that local networks in the brain function in the high-
weight regime. The average absolute connection weight, w, was pre-
viously estimated based on experimental data from various cortical
systems (Chapeton et al., 2015), and the result shows that Nwf/h lies
in the range of 4-38 (95% CI) with the average of 14. A similar
estimate based on the granule to Purkinje cell connectivity in rat cere-
bellum (Brunel et al., 2004) also results in a relatively high value of this
parameter, Nwf/h = 150,000 X 0.1 mV X 0.0044/10 mV = 6.6.
Therefore, the high-weight regime may be a general attribute
of local circuits, and we show that this assumption is consis-
tent with many experimental measurements related to net-
work structure and dynamics.

As was previously inferred from experimental observations
(Chapeton et al., 2015), in the following, we set the fraction of
inhibitory neurons to N;,,/N = 0.2, the firing probability to f =
0.2, and Nwf/h = 14 (high-weight regime). In this regime, struc-
tural and dynamical properties of associative networks depend
primarily on rescaled robustness and memory load; and in the
following, we examine the network properties as functions of
these two parameters. Figure 1E shows that the memory storage
capacity of a single neuron is a decreasing function of rescaled
robustness. This is expected, as an increase in p can be thought of
as an increase in the strength of the constraint on learning (ro-
bustness, k) or as a decrease in available resources (absolute con-
nection weight, w). With increasing N, solutions gradually
approach the results of the replica theory, which serves as an
independent validation of numerical and theoretical calculations
(Fig. 3).

Statistics of synaptic connections in the brain and in
associative networks

We examined the properties of neuron-to-neuron connectivity
in associative networks at different values of rescaled robustness
and memory load. One of the most prominent features of con-
nectivity is that substantial fractions of excitatory and inhibitory
connections have zero weights (Brunel et al., 2004; Chapeton et al.,
2015); and therefore, connection probabilities are <1 (Fig. 4A). One
can intuitively explain the presence of a finite fraction of zero-weight
connections by considering a learning process during which inhibi-
tory and excitatory connections change weights. Over time, many
weights will approach zero and accumulate there, unable to pass it
due to sign constraints. The distributions of non-zero connection
weights in associative networks resemble the general shapes of uni-
tary postsynaptic potential distributions, with a notable difference in
the frequencies of very strong connections. The former have Gauss-
ian or exponential tails (Brunel et al., 2004; Chapeton et al., 2015),
whereas the tails of unitary postsynaptic potential distributions are
often much heavier (Song et al., 2005; Lefort et al., 2009). Several
amendments to the associative model have been proposed to ac-
count for this discrepancy (Brunel et al., 2004; Chapeton etal., 2012).
Here, we would like to point out that heavy tails of experimental
distributions can be reproduced within the associative model by
considering networks of neurons with heterogeneous properties
(e.g., different values of w and/or k).

To compare connection probabilities and widths of non-zero
connection weight distributions in associative networks with
those reported experimentally, we compiled experimental mea-
surements published in peer-reviewed journals since 1990.
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Figure 1.  Associative memory storage in recurrent networks of excitatory and inhibitory neurons. A, Associative learning in the brain is expected to be constrained by functional and metabolic
considerations, such as being able to store large amounts of memories, tolerate noise during memory retrieval, and have a low cost of the underlying connectivity. In the model, these three
considerations are represented with memory load, cv, robustness parameter, «, and average absolute connection weight, w. We show that, in the biologically plausible regime of high weight, results
of the model depend only on « and «/w. B, Recurrent network of various classes (color) of all-to-all potentially connected excitatory and inhibitory neurons. Arrows indicate actual (or functional)
connections. €, Associative memory in the model is a connected graph of successive network states (directed edges termed associations), { X*—>X"#}, in which every node has no more than one
daughter node. Each neuron in the network (e.g., neuron i) must learn a set of input—output associations derived from the memory (orange boxes) by modifying the strengths of its input
connections, Jj, under the constraints on connection signs and /;-norm. D, A neuron’s ability to learn a presented set of associations decreases with the number of associations in the set, m. The
memory storage capacity of the neuron, o, (e.g., red arrow for N = 800) is defined as the fraction of associations, m/N, that can be learned with success probability of 50%. The transition from perfect
learning to inability to learn the entire set of associations sharpens with increasing N and approaches the result obtained with the replica theory in the limit of N — oo (black arrow). Results shown
correspond to associative sequences of uncorrelated network states, C = 0. Numerical results for N = 200, 400, and 800 were obtained with convex optimization (lines) and the modified perceptron
learning rule (dots) (for details, see Materials and Methods). £, The capacity of a single neuron is a decreasing function of the rescaled robustness, p. Error bars indicate SDs calculated based on 100

networks.

Initially, we identified 152 articles describing a total of 856 pro-
jections. Later we limited our analyses to experiments in which
recordings were made in the neocortex, from at least 10 pairs of
neurons located in the same layer and separated laterally by <100
um. We also limited the analyses to normal, juvenile or adult
animals (no younger than P14 for mouse and rat, and older than
that for ferret, cat, monkey, and human). After imposing these

limits, the numbers of publications and projections reduced to 87
and 420, respectively (see Fig. 4-1, available at https://doi.
org/10.1523/JNEUROSCI.3218-18.2019.f4-1).

Figure 4B, C shows that the average inhibitory connection
probability (based on 38 studies, 9522 connections tested) is sig-
nificantly higher (p < 10 ~'°, two-sample ¢ test) than the average
probability for excitatory connections (67 studies, 63,020 con-


https://doi.org/10.1523/JNEUROSCI.3218-18.2019.f4-1
https://doi.org/10.1523/JNEUROSCI.3218-18.2019.f4-1

6894 - J. Neurosci., August 28,2019 - 39(35):6888 — 6904 Zhang et al. ® Learning Explains the Properties of Cortical Connectivity

Associative Balanced Absolute (relative)
model model N difference
100 = 0.05
=y |
Q
o 0.5
50 3]
p—
[+
Q
=
—
S 0 0
100 0.05
0.5
5%
50 A
0 0
100 0.05
02
S g
Y )
o 0.1
=
=0
2 g °
= 0 0.1
) =
= S
157 S
: e
Gy _
£ ) 0 | 0.0
Q
9 g
= (0]
= >
o 20 0
n
< 2 20 0.03
& Y
s =y 0.02
v ey
z g 10
g 0.01
=
0 0
20 0.1
63
X
=~
s 10 0.05
2
7]
0 0
" 0.03
¥
Z\“’ 0.02
G
S}
A 0.01
7]
0
50 10 50 100

Robustness, ¥
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13 and 14. A, Maps of critical capacity as functions of k and # for the associative (A7) and balanced (42) models. Straight isocontours confirm that the results depend only on &/+. The absolute
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nections tested), whereas CV of inhibitory
unitary postsynaptic potentials (10 stud-
ies, 503 connections recorded) is slightly
lower than that for excitatory (36 studies,
3956 connections recorded). Similar
trends are observed in associative net-
works. Figure 4D, E shows that connectiv-
ity in associative networks is sparse, with
probabilities of excitatory non-zero con-
nections lower than those for inhibitory
connections in the entire considered
range of rescaled robustness and relative
memory load. Probabilities of both con-
nection types are decreasing with increas-
ing p. This is expected because an increase
in p can be achieved by lowering w, which
is equivalent to limiting the resources
needed to make connections. Isocontours
in Figure 4D, E demarcate the interquar-
tile ranges of connection probability mea-
surements shown in Figure 4B. There is a
region in the a-p space of parameters in
which both excitatory and inhibitory con-
nection probabilities are in general agree-
ment with the experimental data. Also,
consistent with the experimental mea-
surements, CVs of excitatory weights in
associative networks are slightly larger
than those for inhibitory weights (Fig.
4F,G), and there is a wide region in the
a-p space of parameters in which these
values match the experimental data
shown in Figure 4C.

Properties of 2- and 3-neuron motifs in
associative networks

We also compared the statistics of 2-
neuron motifs in associative and cortical
networks. Figure 5A shows that the num-
bers of bidirectionally connected pairs of
excitatory neurons do not significantly
deviate from those observed in shuffled
networks, and the overexpression of bidi-
rectional connections is close to 1 in the
entire considered range of rescaled ro-
bustness and relative memory load. The
same result was reported by Brunel (2016)
for associative memories composed of
uncorrelated network states. In agree-
ment with this finding, Lefort et al. (2009)
reported no overexpression in barrel cor-
tex (8895 recorded connections in layers
2—6). However, several other studies re-
ported significantly >1 overexpression
ratios. This ratio was found to be 2 in vi-
sual cortex (340 recorded connections)
(Wang et al., 2006), 3 in somatosensory
cortex (1380 recorded connections in
layer 5) (Markram et al., 1997), 3 in visual
and somatosensory cortex (1084 recorded
connections in L2/3) (Holmgren et al,
2003), 4 in prefrontal cortex (1233 re-
corded connections) (Wang et al., 2006),
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and 4 in visual cortex (8050 recorded con-
nections in layer 5) (Song et al., 2005). We
show that the observed 1-4 range of over-
expression ratios can result from associa-
tive memories formed by correlated pairs
of network states (see Effect of correla-
tions on structure and dynamics of asso-
ciative networks).

In addition to specific properties of
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neuron-to-neuron connectivity, local
cortical circuits are known to have non-
random patterns of connections in sub-
networks of three and more neurons
(Song et al., 2005; Perin et al., 2011; Rieu-
bland et al., 2014). To determine whether
associative networks can reproduce some
of the known features of higher-order
connectivity, we first examined the statis-
tics of connectivity motifs within subnet-
works of three excitatory neurons. There
are 16 distinct types of 3-neuron motifs
(Fig. 5B, inset). Frequencies of these mo-
tifs in subnetworks of excitatory neurons,
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n;, were calculated with the Brain Connec-

tivity Toolbox (Rubinov and Sporns, F
2010) and compared with the corre-
sponding frequencies in networks in
which connections were randomly shuf-
fled in a way that preserves the numbers of
2-neuron motifs, 7"/, We used nor-
malized z scores, z/”"", as defined by Gal et
al. (2017), to characterize the degrees of
overexpression and underexpression of
motif types as follows:

R k)
2i = SD(nlghufﬂed)

Memory load, o/o..
g 5 =

=
=N

Figure 4.
(15)

Here, outer angle brackets in the first
equation denote averaging over 100 asso-
ciative networks, whereas angle brackets
in the numerator and SD in the denomi-
nator represent the average and SD calcu-
lated based on a set of 50 randomly
shuffled versions of a given associative
network. Normalized z scores lie in the range of —1 to 1 and are
negative/positive for motifs that appear less/more frequently
than what is expected by chance.

Figure 5B shows the profiles of normalized z scores in associa-
tive networks configured at the values of rescaled robustness and
relative memory load defined by the red and green asterisks from
Figure 4. Both curves show overexpression of motifs 6, 7, 13, and
14, in agreement with previous data (Song et al., 2005; Perin et al.,
2011). In particular, Perin et al. (2011) have high enough counts
to show that these specific motifs are significantly overexpressed
(p < 0.01) and have the highest z scores. To check whether
the same is true in associative networks, we calculated the average
fraction of these motifs in the top-four z score group. Figure 5C

CV of inhibitory weights G

Rescaled robustness, p

25 500 25 5

Rescaled rbbustness, p

Properties of neuron-to-neuron connectivity in associative networks. A, Distributions of weights of inhibitory and
excitatory connections for two-parameter settings (D-G, red and green asterisks). The distributions contain finite fractions of
zero-weight connections. Error bars indicate SDs (based on 100 networks). B, €, Experimentally measured connection probabilities
and CVs of connection weights for inhibitory and excitatory connections in mammals (Figure 4-1, available at https://doi.org/
10.1523/INEUR0SCI.3218-18.2019.f4-1). Each dot represents the result of a single study averaged (with weights equal to the
number of connections tested) over the number of reported projections. Maps of probabilities of inhibitory (D) and excitatory (E)
connections as functions of rescaled robustness and relative memory load (i.e., load divided by the theoretical single-neuron
capacity at N — <c). Inhibitory connection probability is higher than the probability of excitatory connections in the entire region
of considered parameters. F, G, Maps of CVs of non-zero inhibitory and excitatory connection weights as functions of rescaled
robustness and relative memory load. Isocontour lines in the maps indicate the interquartile ranges of experimentally observed
connection probabilities and CVs shown in B and €. A, D-G, Numerical results were obtained with convex optimization based on
networks of N = 800 neurons.

shows that this fraction is maximal in the parameter region near
the green asterisk. Within the region outlined by the isocontour
line, this fraction is >0.8, indicating that, in associative networks,
>3.2 motifs on average of motifs 6, 7, 13, and 14 appear in the
top-four z score group.

One can justify the overexpression of motifs 6, 7, 13, and 14,
by following the reasoning outlined by Brunel (2016) for bidirec-
tional connections. According to the perceptron learning rule, a
change in connection weight from neuron j to neuron i is driven
by a coactivation of memory states X! and X;*. As a result, con-
vergent connections onto neuron i (and divergent connections
from neuron 7) end up correlated because they are driven by a
common memory state, X;* (and X*). In general, 3-neuron mo-
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A Overexpression of 2-
neuron bidirectional motifs

z-score rank similarity for 3-
neuron motifs 6, 7, 13, and 14
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0.2 and followed the network activity until
it terminated at an attractor or a limit cy-
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0.5 networks (N = 800) is exponentially

small. Similarly, because the number of

available network states is much larger

than the number of learned states, spon-
0 taneous network activity is not expected
5 to pass through any of the learned states.
Indeed, we did not observe such an event
in any of the 10* numerical simulations
(100 networks, 100 starting points for
each network). Spontaneous dynamics of
associative networks depends strongly on
the values of rescaled robustness and rel-
ative memory load. At small values of p,
network dynamics quickly terminates at a
fixed point in which all neurons are silent
(Fig. 7A1,red). When pis high, associative
networks can have long-lasting intrinsic
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Figure5.

tifs dominated by convergent and divergent connections are ex-
pected to be overexpressed; however, the exact value of the
overexpression ratio is difficult to predict as it depends on res-
caled robustness and memory load.

Higher-order structural properties of associative networks
Deviations from random connectivity have also been detected in
subnetworks of 3—8 excitatory neurons by comparing distribu-
tions of observed connection numbers with those based on ran-
domly shuffled connectivity (Perin et al., 2011). This comparison
revealed that the experimental distributions can have heavier tails
indicative of clustered connectivity (e.g., Fig. 6F1, black line).
This trend was first reproduced by Brunel (2016) who considered
an associative network of excitatory neurons at capacity. The
same trend is present in our model in the parameter region near
the green asterisk (Fig. 6, green lines). In addition, our results
show that there is a single region of parameters « and p in which
the tails of the experimental distributions are reproduced simul-
taneously for all subnetworks from 3 to 8 neurons. We note that
there are network models that can produce nonrandom connec-
tivity, including motifs and clustering, by directly tuning param-
eters governing network structure (Vegué et al., 2017). This,
however, significantly differs from the approach described in this
study, which relates the structural features of connectivity to the
functional requirement of robust associative memory storage.

Dynamical properties of spontaneous activity in

associative networks

To quantify spontaneous dynamics in an associative network, we
initialized the network at a random state of firing probability f =

14 15 16

Two- and three-neuron structural motifs in associative networks. A, Map of the overexpression ratios for bidirectional
excitatory 2-neuron motifs shows no significant deviation from 1 in the entire range of the considered rescaled robustness and
relative memory load. B, Normalized z scores of 16 3-neuron motifs in excitatory subnetworks indicate overexpression and
underexpression of these structures compared with the chance levels. Red and green curves indicate the results for the parameter
settings specified by the red and green asterisks in A. Error bars indicate SDs. €, Average fraction of excitatory 3-neuron motifs 6, 7,
13,and 14 appearing in associative networks among the top four z score motifs. Isocontour line, indicating the region of reasonably
good solutions, is drawn as a guide to the eye. Results were generated based on 100 networks of N = 800 neurons.

activity, often ending up in a limit cycle of
non-zero length. To quantify this behav-
ior, we measured the average number of
steps taken by the network to reach a limit
cycle or a fixed point (Fig. 7A2). The re-
sults show that the duration of transient
dynamics increases exponentially with
rescaled robustness and memory load.
Even for moderate values of these param-
eters, the average length of transient activ-
ity can be of the order of network size, N (Fig. 7A2, contour).

Individual neurons in associative networks can produce irreg-
ular spiking activity, the degree of which can be quantified with a
CV of ISIs (Fig. 7B). According to this measure, neurons exhibit
greater irregular activity when rescaled robustness and memory
load are high, with a CV of ISI values saturating at ~0.9. This is
consistent with the range of CV of ISI values reported for differ-
ent cortical systems (0.7-1.1) (Softky and Koch, 1993; Holt et al.,
1996; Buracas et al., 1998; Shadlen and Newsome, 1998; Stevens
and Zador, 1998). To examine the extent of synchrony in neuron
activity, we calculated spike train cross-correlation coefficients
for pairs of neurons (Fig. 7C). The results show that increase in p
leads to a more asynchronous activity, which can be explained by
the reduction in connection probability (Fig. 4D, E) and, conse-
quently, reduction in the amount of common input to the neu-
rons. For p > 2.5, the cross-correlation values are consistent with
experimental data (0.04—0.15; interquartile range derived from
26 studies) (Cohen and Kohn, 2011).

An irregular, asynchronous activity can result from a balance
of excitation and inhibition (van Vreeswijk and Sompolinsky,
1996, 1998). In the balanced state, the magnitudes of excitatory
and inhibitory postsynaptic inputs to a neuron are typically much
greater than the threshold of firing; and due to a high degree of
correlation in these inputs, firing is driven by fluctuations. Con-
sistent with this, the average excitatory and inhibitory postsynap-
tic inputs in the associative model are much greater than the
firing threshold and are tightly anticorrelated (Fig. 7D). The de-
gree of anticorrelation decreases with rescaled robustness as the
network connectivity becomes sparser. Experimentally, it is dif-
ficult to measure anticorrelations of excitatory and inhibitory
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Distributions of non-zero connection numbersin clusters of 3— 8 excitatory neuronsin associative networks. A7-F1, Solid red and green lines indicate distributions obtained in associative networks

forthe parameter settings indicated by the red and green asterisks. Solid black curves indicate the corresponding results for local cortical networks based on electrophysiological measurements (Perin etal., 2011).
Dashed lines indicate distributions in randomly shuffled networks. Distributions of non-zero connection numbers in clusters of 3— 8 excitatory neurons in associative networks are significantly different from the
corresponding distributions in randomly shuffled networks (20,000 subnetworks, two-sample Kolmogorov—Smirnov test, p << 10 ~7). A2-F2, Maps of /, distances between the logarithms of connection
number probabilities in associative and cortical subnetworks of 3— 8 neurons. Numerical results were generated based on 100 networks of N = 800 neurons.

postsynaptic inputs within a given cell, but such measurements
have been performed in nearby cells. The resulting anticorrela-
tions (~0.4) (Okun and Lampl, 2008; Graupner and Reyes, 2013)
are somewhat below the values observed in associative networks.
However, this is expected, as between-cell anticorrelations are
likely to be weaker than within-cell anticorrelations.

Cortical circuits are loaded with associative memories close to
capacity and can tolerate noise comparable with the baseline
variations in postsynaptic input during memory retrieval
Parameter regions described in Figures 4—7 lead to structural and
dynamical properties consistent with the experimental observa-
tions (with a possible exception of overexpression of bidirec-
tional connections) and have a nonempty intersection. In this

biologically plausible region of parameters, associative networks
behave qualitatively similar to local cortical circuits. Figure 8A shows
the intersection of parameter regions (green dashed line) for the
excitatory and inhibitory connection probabilities (red), 3-neuron
motifs (green), connections in 3—8 neuron clusters (blue), and du-
ration of transient activity (cyan). The remaining features, that is, CV
of connection weights, CV of ISI, spike cross-correlation coefficient,
and excitatory—inhibitory balance, are not shown in Figure 8A both
to avoid clutter and because they do not impose additional restric-
tions on the intersection region. In the biologically plausible region
of parameters, individual neurons are loaded with relatively large
numbers of associations (0.2 N for Fig. 84, green asterisk), yet it is
not clear whether the associations learned by individual neurons
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Figure 7.  Dynamical properties of spontaneous activity in associative networks. A7, Two examples of spike rasters for
associative networks parametrized as indicated by the red and green asterisks from A2. Dynamics at low values of rescaled
robustness (red) quickly terminates at a quiescent state. A2, Map of the duration of transient dynamics as a function of
rescaled robustness and relative memory load. At high levels of rescaled robustness and memory load, associative networks
have long-lasting, transient activity. Isocontour line is drawn as a guide to the eye. B, Distributions of CV in ISIs for the two
parameter settings. The average CV value increases with p. B2, Map of the average CV of ISI as a function of rescaled
robustness and relative memory load. Isocontour line indicates a region of high CV values that are in general agreement
with experimental measurements. €, Same for cross-correlation coefficients of neuron spike trains. D, Same for the
anticorrelation coefficient of excitatory and inhibitory postsynaptic inputs received by a neuron. The inputs are normalized
by the firing threshold. For the selected parameter configurations, excitatory and inhibitory inputs are tightly balanced
(large anticorrelation) despite large fluctuations. A2, B2, €2, D2, Maps were generated based on networks of N = 800
neurons by averaging the results over 100 networks and 100 random initial states for each network and parameter
setting.
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assemble into memories that can be success-
fully retrieved at the network level.

This question was analyzed by using
memories in the form single associative
sequences (Fig. 1C), retrieval of which is
more challenging compared with other
memory formats due to propagation and
accumulation of errors over the duration
of memory playout. We first tested the re-
trieval of associative sequences in the ab-
sence of noise. For this, we initialized the
network state at the beginning of the
loaded sequence and monitored playout
of the memory. The sequence is said to be
retrieved successfully if the network states
during the retrieval do not deviate sub-
stantially from the loaded states (Fig. 8B).
In practice, there is no need to precisely
define the threshold amount of deviation.
This is because, for large networks, for ex-
ample, N = 800, the Hamming distance
between the loaded and retrieved se-
quences either remains within ~ \/N or
diverges to ~N. Figure 8C shows the
probability of successful memory retrieval
in the absence of noise as a function of
rescaled robustness and relative memory
load. The transition from successful mem-
ory retrieval to inability to retrieve the en-
tire loaded sequence is relatively sharp,
making it possible to define network ca-
pacity, analogously to the single-neuron
capacity, as the sequence length for which
the success rate in memory retrieval
equals 0.5 (Fig. 8C, blue line). Network
capacity can differ from single-neuron ca-
pacity, but this difference is expected to
decrease with network size. Interestingly,
the biologically plausible region of param-
eters overlaps with the single-neuron ca-
pacity curve, implying that individual
neurons in the brain are loaded with asso-
ciations close to their capacity. In addi-
tion, the biologically plausible region of
parameters lies mostly below the network
capacity curve, indicating that loaded
memory sequences can be retrieved with
high probability in the absence of noise.

To assess the degree of robustness of
the memory retrieval process, we moni-
tored memory playout in the presence of
postsynaptic noise. In this experiment,
random Gaussian noise of zero mean and
SD 0,5 were added independently to all
neurons at every step of the retrieval pro-
cess. Network tolerance to noise is defined
as O that results in the retrieval prob-
ability of 0.5, normalized by the baseline
variations in postsynaptic input, 0y,p
(Fig. 8D). The latter represents the SD of
postsynaptic input in the absence of noise
(see Materials and Methods). The map of
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noise tolerance (Fig. 8E) shows that the
biologically plausible region identified on
the basis of structural and dynamical
properties of cortical networks (Fig. 8E,
green contour) has a non-zero overlap
with the area in which memory retrieval is
robust to noise. In this domain, the net-
work can tolerate high noise-to-input ra-
tios (up to 0.5), which serves as an
independent validation of the associative
model in terms of the hypothesized net-
work function.

Effects of correlations on structure and
dynamics of associative networks

To assess the effects of correlations in as-
sociative memory states on the above de-
scribed structural and dynamical network
properties, we loaded the network, config-
ured at the green asterisk of Figure 4, with
memories in the form of associative pairs
and varied the value of the correlation coef-
ficient between the associative states, C, in
the 0—1 range. At C = 0, the network is
loaded with uncorrelated memory states,
which is the case considered above; whereas
at the other end of the range, C = 1, the
network is loaded with memories in the
form of point attractors. Figure 9A—E shows
that, with the exception of overexpression of
bidirectional 2-neuron motifs (Fig. 9C),
structural network properties are not signif-
icantly affected by correlations. The overex-
pression ratio of bidirectionally connected
excitatory pairs increases monotonically
from 1 at C=0to ~4at C = 1 in agreement
with values predicted in Brunel (2016) and
the range of experimentally reported mea-
surements. We also find that the overex-
pression ratio of bidirectionally connected
inhibitory—excitatory pairs monotonically
decreases with C, whereas this ratio for in-
hibitory—inhibitory pairs monotonically in-
creases with C. Therefore, we predict that
cortical systems with significant overexpres-
sion of bidirectionally connected excitato-
ry—excitatory neuron pairs must have
significant underexpression of inhibitory—
excitatory connections. In such systems, in-
hibitory—inhibitory connections are slightly
overexpressed, with the overexpression ra-
tio not exceeding 1.6. Dynamical properties
of associative memory networks can depend
on correlations (Fig. 9F-I ); but with the ex-
ception of very high C (C > 0.8), they re-
main consistent with the experimental
measurements (Fig. 7, contours).

Discussion
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identified parameter region, the network can tolerate noise that is comparable with the SDin postsynapticinput, &,

Our results suggest that local circuits of the mammalian brain
operate in a high-weight regime in which individual neurons are
loaded with associative memories close to their capacity (Fig. 8C)
and the network can tolerate a relatively large amount of postsyn-

aptic noise during memory retrieval. In this regime, many struc-
tural and dynamical properties of associative networks are in
general agreement with the experimental measurements from
various species and brain regions. It is important to point out
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toaneuron (/). Error bars in all panels indicate SDs calculated based on 100 networks.

that, due to large uncertainties in the reported measurements, we
did not attempt to quantitatively fit the associative model to the
data. The uncertainties originate from natural variability of net-
work features across individuals, brain areas, and species, and are
confounded by experimental biases and measurement errors. In-
stead, we rely on a large body of qualitative evidence to support
our conclusions. This evidence includes the following: (1) sparse
connectivity, with the probability of excitatory connections being
lower than that for inhibitory connections; (2) distributions of
non-zero connection weights with the CVs of excitatory and in-

hibitory weights being close to 1; (3) overexpression ratios in
bidirectionally connected excitatory 2-neuron motifs; (4) over-
expression of specific 3-neuron motifs; (5) distributions of con-
nection numbers in subnetworks of 3-8 neurons showing
clustering behavior; (6) sustained, irregular, and asynchronous
firing activity with close to 1 CV of ISI and small positive cross-
correlation in neuron activity; and (7) balance of EPSPs and
IPSPs. Many of these features have been separately reported in
various formulations of the associative model (Gardner and Der-
rida, 1988; Brunel et al., 2004; Chapeton et al., 2012, 2015; Brunel,
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2016). Here, we show that, with a single set of model parameters,
itis possible to account for these features collectively. In addition,
the identified set of model parameters overlaps with the region in
which loaded memories can be successfully recalled, even in the
presence of postsynaptic noise (Fig. 8E), providing an indepen-
dent functional validation of the theory.

We note that, in the absence of temporal correlations, C = 0,
results of this study are independent of the format of associative
memories (for examples, see Fig. 1C) which is not known and
is likely to be area dependent. Therefore, this case provides a
baseline for structural and dynamical properties in primary and
association areas, which may use different memory formats.
Correlations in memory states (C > 0) can, in general, affect
the network properties, but as it is illustrated for one specific
memory format in Figure 9, many of the described properties
remain unaffected. A notable exception is that the overexpres-
sion of bidirectional connections increases with C. This effect
was previously examined by Brunel (2016) for the extreme
cases of storing uncorrelated patterns and point attractors.
Here, we extended the analysis on temporal correlations of
arbitrary strength and on multiple connection types. In
particular, we predict that, if temporal correlations are re-
sponsible for the overexpression of bidirectional excitatory
connections, then bidirectional inhibitory—excitatory con-
nections must be greatly underexpressed (Fig. 9C).

The McCulloch and Pitts neuron model is often used in
computational studies because of its simplicity, but is it bio-
logically realistic enough for modeling associative learning in
the brain? This question was explored in the work of Mem-
mesheimer et al. (2014) who have shown that Leaky Integrate-
and-Fire neurons, which are somewhat more realistic, can also
be used to learn spike sequences, and the results of the two
models are in good agreement so long as the firing probability
is sufficiently low (e.g., f = 0.2). In addition, the methods of
convex optimization were used in this study to load memories
into networks. These methods are fast and accurate but are not
biologically plausible. Thus, we developed a perceptron-type
learning rule, Equations 3 and 4, that can match the accuracy
of convex optimization (Fig. 1D) and can be used to reproduce
the results of this study.

Although the considered model of an all-to-all potentially
connected network of two generic neuron classes, inhibitory and
excitatory, reproduces many experimentally observed network
properties, this is an indisputably simplistic depiction of cortical
networks. A more realistic model could be built by loading asso-
ciative memories into a potentially connected network (e.g., a
cortical column) constructed by putting together reconstructed
morphologies of axonal and dendritic arbors of multiple neuron
classes. Functional connectivity in such a network is constrained
by neuron class-specific densities and morphologies, and it
would be interesting to see whether these structural constraints
are sufficient to give rise to the cell-type-dependent features of
cortical connectivity and dynamics.

Because local cortical circuits function in the high-weight
regime, Nwf >> h, the average excitatory and inhibitory
postsynaptic inputs are significantly greater than the thresh-
old of firing (Fig. 10). In the identified region of rescaled
robustness and memory load (e.g., for the green asterisk of Fig.
4), these potentials in magnitude exceed the threshold of firing
by factors of 6.3 and 7.8, respectively (Table 1). In this regime,
excitatory and inhibitory potentials are strongly anticorre-
lated (Fig. 7D2), which is reminiscent of the balanced state
described by many authors (Shu et al., 2003; Wehr and Zador,
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Figure 10.  Excitatory and inhibitory inputs in relation to the firing threshold and ro-
bustness. Left and right halves of the figure are based on the data from Table 1 and
correspond to the red and green asterisks from Figure 4. The average excitatory and
inhibitory inputs are much larger than the threshold of firing. However, the total input lies
within 1 SD from the firing threshold due to a partial cancellation of its excitatory and
inhibitory components.

Table 1. Input and output model parameters corresponding to the red and green
asterisks of Figure 4

Parameter name Red asterisk Green asterisk
Input parameters  Number of neurons, N 800 800
Inhibitory neuron fraction, N,,,/N 0.20 0.20
Firing probability, f 0.20 0.20
Threshold of firing, h 20mV 20mV
Scaled average absolute connection 14 14
weight, Nwf/h
Relative memory load, o/cx, 0.90 0.90
Rescaled robustness, p 1.25 3.25
Output parameters ~ Memory load, o 0.38 0.20
Robustness parameter, k 25mV 64mV
Excitatory connection probability, P5o.! 0.26 0.14
Inhibitory connection probability, P;; 0.66 0.46
(V of excitatory connection weights 0.89 0.9
(V ofinhibitory connection weights 0.75 0.86
Average number of steps to limit cycle 32 23X 10*
CVofIsl 0.67 0.88
Spike cross-correlation coefficient 0.24 0.09
EPSP (mean == SD) 133 £ 14mV 125 = 38mV
IPSP (mean = SD) —144 = 35mV  —155 + 48 mV
Total postsynaptic potential (mean =SD) ~ —11+=38mV ~ —30 = 60mV
Excitatory-inhibitory input correlation —0.96 —0.79
coefficient
Sequence retrieval probability 0.08 1
Noise tolerance, &,/ 0ye 0 035

2003; Haider et al., 2006; Okun and Lampl, 2008; Graupner
and Reyes, 2013; Xue et al., 2014; Denéve and Machens, 2016).
We note, however, that there is a difference in how the balance
of excitatory and inhibitory potentials is realized in the asso-
ciative versus balanced networks. The difference originates
from the scaling of synaptic weight with network size. In asso-
ciative networks, synaptic weight is inversely proportional to
N; whereas in balanced networks, inverse proportionality
to \,N is assumed. In the former model, the average excitatory
and inhibitory postsynaptic inputs to a neuron remain un-
changed as the network size increases, and balance is the conse-
quence of the high-weight regime; whereas in the latter model,
balance emerges with increasing N as postsynaptic potentials di-
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verge, which may be unsettling. On the other hand, Rubin et al.
(2017) argue that, due to the above scaling difference, synaptic
connections in the associative model are weaker, and the network
is unstable to large, O(h), noise arising from processes within
neurons (e.g., threshold fluctuations). We agree that the suscep-
tibility of associative networks to this type of noise is a concern
for infinitely large systems. However, there are no biological
data on the scaling of noise with network size, and having O(h)
noise may be unrealistic. More importantly, since local brain
networks are finite, robustness to this type of noise can always
be achieved by increasing w (i.e., in the high-weight regime).
For example, an associative network of N = 800 neurons,
configured at the green asterisk of Figure 4, can tolerate CVsin
threshold fluctuations up to 1.1. Aside from the issue of ro-
bustness to O(h) noise, we show that, in the high-weight re-
gime, results of the balanced and associative models become
independent of scaling details and converge to the same solu-
tion (see Materials and Methods; Fig. 2). Therefore, associa-
tive learning in both models will lead to networks with
identical structural and dynamical properties.
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