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Abstract

Purpose of the review: This review article discusses recent advances in the mechanism of 

dipeptidyl peptidase-4 (DPP-4) actions in renal diseases, especially diabetic kidney fibrosis, and 

summarizes anti-fibrotic functions of various DPP-4 inhibitors in diabetic nephropathy (DN).

Recent findings: DN is a common complication of diabetes and is a leading cause of the end-

stage renal disease (ESRD). DPP-4 is a member of serine proteases, and more than 30 substrates 

have identified that act via several biochemical messengers in a variety of tissues including kidney. 

Intriguingly, DPP-4 actions on the diabetic kidney is a complex mechanism, and a variety of 

pathways are involved including increasing GLP-1/SDF-1, disrupting AGE-RAGE pathways, and 

integrin-β- and TGF-β-Smad-mediated signalling pathways that finally lead to endothelial to 

mesenchymal transition. Interestingly, an array of DPP-4 inhibitors is well recognized as oral 

drugs to treat type 2 diabetic (T2D) patients, which promote better glycemic control. Furthermore, 

recent experimental and preclinical data reveal that DPP-4 inhibitors may also exhibit protective 

effects in renal disease progression including anti-fibrotic effects in the diabetic kidney by 

attenuating above signalling cascade(s), either singly or as a combinatorial effect. In this review, 

we discussed the anti-fibrotic effects of DPP-4 inhibitors based on recent reports along with the 

possible mechanism of actions and future perspectives to underscore the beneficial effects of 

DPP-4 inhibitors in DN.

Summary: With recent experimental, preclinical, and clinical evidence, we summarized DPP-4 

activities and its mechanism of actions in diabetic kidney diseases. A knowledge gap of DPP-4 

inhibition in controlling renal fibrosis in DN has also been postulated in this review for future 

research perspectives.
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1. Background:

Diabetes mellitus (DM) has become a global concern due to associated health and economic 

burden. According to The International Diabetes Federation, approximately 451 million 

patients were affected by diabetes and diabetes-associated diseases in 2017 and is expected 

to increase to 693 million by 2045 [1]. Diabetic nephropathy (DN) is one of the major 

devastating complications of both type 1 (T1D) and type 2 diabetic (T2D) patients [2]. 

Almost 50% of patients suffering from T2D have chronic kidney diseases that include 

glomerulosclerosis and tubulointerstitial fibrosis [3, 4].

Fibrosis is initially a tissue repair process, which becomes a common complication during 

all progressive kidney diseases. Fibrosis develops as a consequence of disrupted normal 

wound-healing mechanism [5]. The mechanism(s) of kidney fibrosis is a multifactorial and 

complex process as several cell types such as kidney fibroblasts, tubular epithelial cells, 

mesangial cells, podocytes, pericytes, vascular smooth muscle cells, and endothelial cells are 

involved in producing excess extracellular matrix [6, 7].

Dipeptidyl peptidase (DPP) is a member of the serine peptidase that is classified under EC 

3.4.14. [8]. There are 9 types of DPPs, DPP-1, −2, and DPP-3, −4, and −6 to −10. DPP-1, 

also known as Cathepsin C, is a lysosomal exo-cysteine protease belonging to the peptidase 

C1 family that acts as a central coordinator for the activation of many serine proteases in 

immune/inflammatory cells [9]. DPP II is suggested to have a role in cellular differentiation 

and degradation of extracellular matrix (ECM) protein, including collagen [10]. DPP-3 is a 

cytoplasmic zinc-binding metallopeptidase, and its activity is associated with protein 

metabolism, blood pressure regulation and pain modulation [11]. DPP-4 cleaves a wide 

range of substrates, including growth factors, chemokines, and peptides in addition to its 

major role in glucose metabolism [12]. DPP-6 is a membrane protein that binds to specific 

voltage-gated potassium channels and maintains different biophysical properties of the cell 

[13, 14]. DPP-7 is reported to inhibit coagulation and thus may trigger haemorrhage and 

immune invasion [15]. DPP-8 plays an essential role in T cell activation and in the immune 

system [16], whereas DPP-9 represses inflammasome and protects against auto-

inflammatory diseases [17]. DPP-10 is a membrane protein with no detected protease 

activity. However, it is reported that it binds to voltage-gated potassium channels in the 

nervous system, regulates their expression and electrophysiological properties [18].

DPP-4 inhibitors represent a relatively new class of glucose-lowering drugs that may also 

have renoprotective properties independent of blood pressure- and glucose-lowering effects 

[19]. Several studies have reported that renoprotective effects of DPP-4 inhibitors are 

mediated partly by an increased half-life of its substrates, such as glucagon-like peptide-1 

(GLP-1) and glucose-dependent insulinotropic peptide or gastric inhibitory peptide (GIP) 

[19–21]. The underlying mechanisms of renoprotection are, however, far from clear. The 
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purpose of this review is to highlight the reported mechanisms of DPP-4 actions in diabetes-

related kidney disease progression. Additionally, in light of the current literature, we mainly 

focus on the pro-fibrotic effects of DPP-4 in the kidney by analysing several recent 

experimental, preclinical, and clinical findings on anti-fibrotic reno-protection by different 

DPP-4 inhibitors and their mechanisms of action.

2. Structure and biological function of DPP-4:

When discovered more than 50 years ago, exopeptidase DPP-4 was characterized as a T-cell 

surface marker (CD26) containing 110 kDa type 2 membrane protein which is anchored to 

lipid bilayer by a single hydrophobic segment [22]. Human DPP-4 is 766 amino acids (aa) 

long containing a short cytoplasmic domain of 1–6 aa, a transmembrane domain of 7–28 aa, 

and an extracellular domain of 29–766 aa with dipeptidyl peptidase activity, connected by a 

flexible stalk of 29–39 aa. The removal of the transmembrane or intracellular domain leads 

to the formation of 727aa long soluble DPP-4 (sDPP-4) [23], which can be detected in 

peripheral blood, urine, and other body fluids including thoracic and seminal fluid [23, 24]. 

Lamers et al. observed that insulin and TNF-α increased the release of sDPP-4 [25], and 

sDPP-4 can form tetramers with two soluble and two trans-membrane DPP-4 protein to 

enhance cell-cell communication [26]. Generally, the sDPP-4 level is higher in obese and in 

T2D patients [27, 28], and there are different ligand binding sites within the extracellular 

domain of sDPP-4. For example, caveolin I, anti-CD-26 antibodies, and adenosine 

deaminase (ADA) bind to the glycosylation-rich domain (101–350 aa); while matrix protein 

collagens and fibronectin can bind to a cysteine-rich region (55–100 aa and 351–497 aa) [8, 

23].

DPP-4 circulates through the gut, liver, lungs, as well as through the kidney [29, 30]. 

Interestingly, DPP-4 exhibits several ‘pleiotropic effects’ by enzymatic as well as non-

enzymatic pathways upon binding with extracellular matrix protein [31]. Enzymatically, 

DPP-4 has a high selectivity for peptides with a proline or alanine at the second position and 

cleaves off dipeptides at the NH2- terminus of such peptides (NH2- Xaa-Pro). It has the 

highest preference for proline with gradually weaker preferences for alanine and then for 

glycine [8, 32]. In a diverse biological processes, complex interaction of DPP-4 with several 

proteins including CD45 tyrosine phosphatase, sodium-hydrogen exchanger 3 (NHE3), C-X-

C chemokine receptor 4 (CXCR4), caveolin I, fibronectin, collagen, insulin-like growth 

factor II (IGF II) or mannose-6-phosphatase have been reported [23, 33, 34]. DPP-4 also 

cleaves glucagon-like peptide-1 (GLP-1) and a glucose-dependent insulinotropic peptide that 

finally affects β-cells of the pancreas and leads to decreased insulin secretion; thus DPP-4 

inhibitors prevent GLP-1 breakdown and restore normal insulin secretion [35].

In 2006, DPP-4 inhibitor was used for the first time as a diabetic drug, and since then, 

different types of DPP- 4 inhibitors have been approved to treat hyperglycemia [36]. DPP-4 

inhibitors lower blood sugar by inhibiting the degradation of glucagon-like peptide-1 and −2 

(GLP-1 and −2), and activating glucose-dependant insulinotropic peptide (GIP) and its 

function on pancreatic β cells to produce more insulin [27, 37–39]. DPP-4 inhibitors have 

also been shown to reduce chronic or acute kidney injury in several mammalian 

experimental models [40–44]. Recently, DPP-4 and its association with matrix biology are 
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being elucidated in renal fibrotic diseases with the functional non-enzymatic activity of this 

protein [31].

3. DPP-4 and diabetes:

In T2D patients, insulin resistance leads to higher blood glucose levels and a higher level of 

activated incretins may reverse the increased glucose level in blood. Incretins are a group of 

metabolic hormones, which decrease blood glucose levels by inducing insulin hormone 

production from pancreatic β cells and inhibiting glucagon secretion. Glucagon-like 

peptide-1 and −2 (GLP-1 and −2), and glucose-dependent insulinotropic peptide (GIP) are 

examples of incretins [45]. By 1990s, DPP-4 and its association with diabetes came into the 

light where it was observed that DPP-4 is involved in initial degradation of incretins and thus 

the proposition to block DPP-4 activity to restore incretin functions become evident [46]. 

Deacon et al. observed that DPP-4 was a major, if not the only, route for the regulation of 

GLP-1as DPP-4 inhibitor valine-pyrrolidine treatment could not completely but partially 

prevented degradation of exogenous GLP-1 in pig [47]. The same group of scientists also 

noted a similar finding for GIP [48]. Administration of another DPP-4 inhibitor, ile-

thiazolidide increased circulating incretins as well as insulin secretion in rats [49]. These 

studies together establish some preclinical bases of the hypothesis that inhibiting DPP-4 

activity leads to increased circulating GLP-1 that can restore insulin secretion and regulate 

blood glucose levels in T2D patients. After several years of the initial hypothesis was 

launched [47], a 4-weeks clinical trial was conducted, and the results of this short-term 

administration of DPP-4 inhibitor was published for the first time in 2002 [50]. 

Subsequently, a clinical trial spanning one year was performed, and the anti-diabetic effects 

of sustained DPP-4 inhibitor vildagliptin were suggested [51].

Those early results were soon followed by numerous experimental as well as clinical studies. 

In 2006, DPP-4 inhibitor sitagliptin was approved as a drug to control blood glucose level in 

T2D patients. Nowadays, DPP-4 inhibitors are well-recognized medicines that are used to 

reduce hyperglycemia in T2D patients, and two types of DPP-4 inhibitors are used clinically 

worldwide. There are DPP-4 structure mimetic and non-peptidomimetics. In 2006, the FDA 

approved the very first type of DPP-4 inhibitors, which are structural mimetics. Sitagliptin, 

vildagliptin, and saxagliptin are examples of this first type of inhibitors. FDA approved first 

non-peptidomimetic inhibitors in 2011. Alogliptin and linagliptin are examples of the 

second type of DPP-4 inhibitors, non-peptidomimetics. Almost all clinical studies have 

shown reduced glycated haemoglobin % (HbA1c%) and fasting blood glucose (FBG) level 

in T2D patients with different types of DPP-4 inhibitors administration such as sitagliptin 

[52, 53], vildagliptin [54, 55], linagliptin [56], saxagliptin [57, 58].

4. DPP-4 and the kidney:

DPP-4 is present in a variety of tissues and organs [23, 33], but the highest amount of 

activity of this enzyme per gram tissue was found in the rat kidney [59, 60]. In rats, DPP-4 is 

abundantly expressed in glomerular podocytes, S1-S3 segment of the proximal tubule and 

descending limb of Henle’s loop [61, 62]; however, the functional role of this protein in non-

proximal tubular regions is yet to be determined. In humans, DPP-4 expression, as well as 
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activity, was found in glomerular podocytes of the diseased kidney [63–65]. In healthy 

human kidneys, DPP-4 was also detected with nominal expression at the luminal side of the 

brush border membrane of proximal tubular cells [66, 67]. In addition, the expression of 

DPP-4 was found to be increased in humans and rodents glomerular epithelial cells in vitro 

when cultured with interferon-γ, an inflammatory cytokine [68, 69]. Exposure of exogenous 

glucose at the high dose in cultured human glomerular endothelial cells in vitro showed 

induction of DPP-4 mRNA and enzymatic activity [70]. Additionally, urinary DPP-4 activity 

was increased in patients of T2D with albuminuria [71]. Thus, some researchers have 

interpreted high DPP-4 activity in the kidney or urine as a good marker of human glomerular 

disease [71–73].

Girardi et al. found that transmembrane DPP-4 in rat renal proximal tubules of the kidney 

can form a complex with sodium–hydrogen exchanger 3 (NHE3) that can modulate Na+/H+ 

exchange, and DPP-4 inhibition increases urine output [74]. In high a fat diet-induced 

diabetic rat model, the expression of DPP-4 was upregulated in the kidney [75], and using 

Zucker obese rat animal model Nistala et al. reported that DPP-4 inhibition induced megalin 

receptor protein which is important for tubular endocytosis, and in turn, increased uptake of 

albumin and other lower-mass proteins in kidney proximal tubule [43]. DPP-4 expression in 

the rodent kidney was also upregulated in hypoxic conditions [41, 76], and DPP-4 deficiency 

lead to reno-protection in acute ischemia-reperfusion injury in the rat kidney suggesting the 

role of this enzyme in ischemia-perfusion renal injury [77, 78]. Moreover, in CKD patients, 

a high serum level of soluble DPP-4 exhibited lower estimated glomerular filtration rate 

(eGFR) [79]. Notably, DPP-4 has two forms, one is 766 amino acid (aa) long type II 

transmembrane protein, and another is a slightly smaller soluble form of DPP-4 (sDPP-4) 

(727 aa) lacking membrane-bound portion [33]. The sDPP-4 is found in the blood as well as 

almost all organs [23, 33]. High insulin level induces shedding of sDPP-4, but there may be 

other different factors responsible for shedding, which is still a matter of conjecture [25]. 

Surprisingly, although DPP-4 was discovered more than 50 years ago, the precise source of 

sDPP-4 and differential functions of transmembrane DPP-4 and sDPP-4 has yet to be fully 

delineated [23, 27].

These above experimental and clinical findings suggest that upregulated DPP-4 is an 

important modulator of kidney malfunction, and inhibition of DPP-4 is a possible 

renoprotective target in diabetic and other CKD conditions. Nevertheless, further 

investigations are warranted to delineate a clear relationship of the degree of DPP-4 

inhibition and extent of renoprotection in order for us to precisely using DPP-4 inhibitor 

drugs to obtain desired outcomes in diabetic CKD.

5. DPP-4 inhibition and reno-protection in diabetes:

5.1. Incretin mediated pathways:

Incretins are a group of peptide hormones that are secreted from the gut after nutrient intake. 

These peptises decrease blood glucose levels by augmenting insulin secretion from 

pancreatic beta cells. Two incretins that are recognized as blood glucose-lowering peptides 

are glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP). GLP-1 is released 

by a post-translational proteolytic cleavage of proglucagon that also releases GLP-2, 
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although GLP-2 it is not an incretin. Below, we have mainly focused our review on DPP-4-

dependent GLP-1 regulation and its effect on diabetic kidney disease.

DPP-4 degrade incretins such as GLP-1; thus, DPP-4 inhibition restores GLP-1 signalling 

pathways [19, 80]. GLP-1 and its receptor-mediated signalling in the kidney are important 

for renal-homeostasis [80], and GLP-1 receptor stimulation can regulate atrial natriuretic 

peptide (ANP) and the renin-angiotensin system (RAS), two probable pathways of GLP-1 

mediated reno-protection [81]. Estimated glomerular filtration rate (eGFR), sodium 

excretion, as well as the urinary flow, has been shown to increase by chronic infusion of 

GLP-1 in Dahl-salt sensitive rats [82]. GLP-1 signalling is much more complex than only 

DPP-4 regulation depending on type neurotransmitters. Moreno et al. reported that GLP-1 

mediated increased eGFR was not observed in denervated rats [83]. GLP-1 mediated 

vasodilation caused more eGFR with increased blood flow in glomerular capillaries even in 

healthy rodents, but these effects were minimal in humans even after pharmacological 

GLP-1 administration. In human GLP-1 administration increased reabsorption and 

hydrostatic pressure in the proximal tubule, leading to reduced GFR due to decreased 

glomerular hydrostatic pressure compared to proximal tubule [84]. GLP-1 receptor 

activation attenuated Na+/H+ exchanger isoform 3 (NH3) expression in pig LLC-PK1 cells 

through a protein kinase A (PKA) dependent pathway and thus can be useful to reverse 

natriuresis condition [85]. GLP-1 has also been shown to significantly decrease 

inflammation as well as reactive oxygen species (ROS) generation in the diseased mouse 

kidney in vivo and mesangial cells in vitro [86, 87]. Exogenous GLP-1 inhibits cell damage 

by blocking angiotensin II-induced superoxide formation, increased levels of intercellular 

adhesion molecule - 1 (ICAM-1), plasminogen activator inhibitors, attenuating NF-kβ by 

PKA pathway in cultured human mesangial cells [87]. These above-mentioned reports 

suggest that GLP-1 is an important renoprotective molecule to preserve normal GFR, and 

DPP-4 inhibition may have direct ameliorative effects in diabetic kidney diseases.

5.2. Non-incretin mediated pathways:

DPP-4 can cleave many peptide substrates other than GLP-1, and DPP-4 inhibition may 

affect diabetic as well as non-diabetic CKD in different pathways [88, 89]. In a non-diabetic 

5/6 nephrectomy rat model treated with DPP-4 inhibitor linagliptin renal fibrosis markers 

collagen type III, TGF β1, and phosphor smad2 to total smad ratio have been decreased 

significantly and restored kidney function [90]. Linagliptin also showed anti-fibrotic and 

renoprotective effects in non-diabetic CKD by upregulating collagenase activity, thymosin 

β4 and nuclease-sensitive element-binding protein 1 (YB1) in GLP-1 knockout mouse, 

proving renoprotection without involving GLP1/GLP1R-mediated pathways [91].

DPP-4 targets stromal cell-derived factor-1α (SDF-1α), peptide YY (PYY), neuropeptide Y 

(NPY), and a family member of natriuretic peptides (NPs) [88, 92]. The peptides, atrial 

natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are the key regulators of 

kidney and other organ function in causing a reduction in expanded extracellular fluid (ECF) 

volume by increasing renal sodium excretion. While DPP-4 knockout mice exhibited 

increased expression of ANP [93], it is unknown to our knowledge whether this peptide is 

also a DPP-4 substrate. Notably, ANP is a 28-amino acid peptide that is synthesized and 
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released by atrial myocytes in response to various stimuli such as atrial distension, 

angiotensin II, endothelin, pulmonary hypertension, myocardial infarction, alpha- and beta-

adrenergic stimulation, a few to name [94]. Whereas, BNP is a 32-amino acid peptide that is 

synthesized mostly by the ventricular myocytes as well as in the brain [95]. DPP-4 cleaves 

N-terminal serine-proline dipeptide from BNP1–32 in the blood to produce faster degradable 

BNP3–32 and BNP5–32 [95, 96]. The mechanism of release and physiological actions of 

BNP is similar to that of ANP. The only species difference between these two peptides in 

relation to DPP-4 is that while BNP can be regulated by DPP-4, ANP is not, at least to our 

knowledge.

Contrary to ANP or BNP, NPY and PYY promote vasoconstriction. SDF-1α has a role in 

angiogenesis in the kidney and protect injured kidney tissues from ischemia [97]. Thus, 

being a modulator of those peptides, DPP-4 may participate in the modulation of blood 

pressure, natriuresis, angiogenesis, and tissue repair in the kidney [89]. NPY is an agonist of 

the Y1 receptor, which maintains peripheral vasoconstriction and gliptins, or DPP-4 

inhibitors actively inhibit NPY cleavage and contribute to increase arterial blood pressure 

via Y1 receptor provided that sympathetic nervous system is functional [98]. In 

spontaneously hypertensive rats, DPP-4 checks angiotensin II-mediated renal 

vasoconstriction [99], but this finding was not observed in wild-type rats [100].

DPP-4 is also essential for TGF-β receptor hetero-dimerization and signalling. Shi et al. 

have reported that TGF-β2 induced TGF-βR1/2 heterodimer formation, which was 

attenuated by DPP-4 siRNA in transfected human dermal microvascular endothelial cells 

(HMVECs) [101]. In unilateral ureteral obstruction (UUO) mouse model, a DPP-4 inhibitor 

LC15–0444 reduced expression of TGF-β1, toll-like receptor-4 (TLR-4), high mobility 

group protein 1 (HMBG1), NADPH oxidase 4, NFᶄ-β, and phosphorylated Smad-2/3, 

which are all fibrotic and inflammatory factors [102]. These recent data suggest activation of 

DPP-4 in the kidney has its role in renal inflammation and fibrosis. Therefore, inhibition of 

DPP-4 may offer beneficial effects to manage progressive renal diseases such as 

inflammation and fibrosis.

5.3. AGE-RAGE and glucose-independent pathways:

Diabetes is associated with advanced glycation end-products (AGEs) that are proteins or 

lipids, glycated by exposure to high levels of glucose or other saccharides. AGEs crosslink 

with ECM proteins and may cause chronic kidney disease in diabetic patients [103]. 

Activation of receptors of AGEs (RAGE) leads to oxidative stress as well as inflammation in 

CKD with or without diabetes [104]. Soluble DPP-4 (sDPP-4) increases oxidative stress and 

induce RAGEs via binding of the cation-independent mannose-6-phosphate receptor 

(CIM6PR) in T2D [73], and this stress can be reversed by DPP-4 inhibitor linagliptin [105]. 

This interaction is described schematically in fig 1. Linagliptin also blocks AGE-RAGE 

signalling pathways, and therefore reduces oxidative stress in the T1D kidney of a murine 

model [106]. Thus, a probable network of AGE-RAGE signalling along with the DPP-4/

incretin system is highly possible. Contrarily, although the antioxidant property of linagliptin 

is observed in a rat model, it was not observed with some other DPP-4 inhibitors possibly 

due to unique chemical structures of different DPP-4 inhibitors [107]. Linagliptin has a 
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xanthine-based scaffold that can inhibit the production of xanthine oxidase in tissue [108]. 

DPP-4 deficiency reduces oxidative stress in the diabetic kidney in a variety of experimental 

models [106, 109, 110]. Very recently, Spencer et al. showed that in a murine model of 

diabetes, linagliptin treatment could reduce renal oxidative stress in a glucose-independent 

manner [111], suggesting that antioxidant system is required for the renoprotective effects of 

linagliptin.

6. Anti-fibrotic effects of DPP-4 inhibitors and its mechanisms of action:

Fibrosis is one of the significant complications of progressive kidney diseases, which is 

common among diabetic patients affecting normal glomerular filtration rate [112, 113]. 

Commonly, kidney fibrosis is found in the glomerulus and tubulointerstitial space of 

nephron. In the T1D murine model, fibrosis was ameliorated by DPP-4 inhibitor linagliptin 

without alteration of blood glucose level [114]. Fibroblasts, a type of cells in connective 

tissue produces collagen and other fibers upon activation and establish fibrosis by 

accumulating excessive collagens and other extracellular matrices (ECM) proteins in the 

kidney. DPP-4 has emerged as one of the pro-fibrotic agents as DPP-4 inhibitors have been 

shown to have anti-fibrotic effects in diverse species and organs including liver in rat [115], 

heart in mouse [116, 117], and kidney [118], even in human adipose tissue [119] and smooth 

muscles [120]. DPP-4 inhibition thus may be a promising therapeutic strategy to prevent the 

formation of fibrosis or even reversal of augmented fibrotic markers in progressive kidney 

disease. Using 5/6 nephrectomized uremic cardiomyopathy rat model, Chaykovska et al. 

showed that treatment with different DPP-4 inhibitors such as sitagliptin, alogliptin, and 

linagliptin significantly reduced blood concentration of osteopontin, a marker of kidney 

tubular injury and fibrosis [121]. In addition, they have also shown that sitagliptin and 

alogliptin at a dose of 7.0 µmol/kg and linagliptin at a dose of 0.5 µmol/kg had a similar 

effect on blood osteopontin concentration [121]. A higher dose of linagliptin, i.e. 7.0 

µmol/kg did not further reduced osteopontin concentration significantly compare to 0.5 

µmol/kg suggesting a need for correct DPP-4 inhibitors dosing to get optimum kidney 

benefit without excessive use of these drugs in CKD. These DPP-4 inhibitors-mediated 

pharmacokinetic and anti-fibrotic effects are controlled by several interconnected complex 

molecular pathways, which are partly dependent on dosing and duration of the treatment. 

Therefore, for effective therapeutic strategy, there is a need for more scientific attention, 

especially in the case of diabetic renal fibrosis, some of which are discussed below.

6.1. DPP-4 and Endothelial-to-mesenchymal transition (EndMT):

Kanasaki et al. have shown that anti-fibrotic changes by DPP-4 inhibitor linagliptin 

treatment occurred by attenuation of endothelial-to-mesenchymal transition (EndMT) in 

mice kidney [114], which is one of the major sources of kidney fibroblast [122–125]. 

EndMT is a complex process in which cells of the endothelial layer become detached and 

acquire mesenchymal phenotype by losing all its previous endothelial markers and 

transforming to myofibroblastic cells [126, 127]. These myofibroblasts invade the interstitial 

space and produce an excessive amount of collagen, α-smooth muscle actin and other ECM 

proteins leading to fibrosis formation. The EndMT pathway can be induced by several 

complex molecular networks, which are initiated mostly by TGF-β. Shi et al. have reported 
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that induced interaction of DPP-4 and integrin-β1 establish cross-talk with TGF-β and 

EndMT in a streptozotocin-induced CD-1 mouse diabetic kidney [101]. Using human 

dermal microvascular endothelial cells, Kanasaki et al. showed that DPP-4 inhibitor 

linagliptin inhibited TGF-β2 induced EndMT via Smad-3, a transcription factor essential for 

TGF-β mediated signalling [114]. Vascular endothelial growth factor receptor 1 (VEGFR-1) 

induces EndMT, but in contrast, VEGFR-2 counteract the EndMT [128]. By a simple 

schematic drawing, TGF-β2-induced EndMT pathway is mentioned in figure 2.

6.2. DPP-4 and TGF-β-Smad signalling:

In DN, fibrotic pathways mainly by TGF-β signalling lead to scar formation, and in the 

kidney, it may lead to kidney failure. In many cases, DPP-4 is increased in the diabetic 

kidney along with TGF-β1 and -β2 expressions. Linagliptin attenuate the enzymatic activity 

of DPP-4, and thus, activation of TGF-β in proximal tubular cells is challenged in the human 

kidney as well as downstream fibrotic markers by Linagliptin treatment [129]. TGF-β2 

activates Smad-3 by phosphorylation, and Smad-3 is an important transcription factor 

controlling TGF-β superfamily signalling pathways in human HaCaT cells [130]. 

Linagliptin has been shown to reduce TGF-β signalling in cultured renal proximal tubular 

epithelial cells (HK-2) in high glucose exposure by different molecular pathways [131–133]. 

In addition, it has been reported that cation-independent mannose-6-phosphate receptor 

(CIM6PR) activated TGF-β1 in cultured HK-2 cells in high glucose supplemented media 

[131]. Moreover, DPP-4 and CIM6PR interaction are required for TGF-β1-Smad signalling, 

thus when DPP-4 is blocked, fibrosis formation by the TGF-β1 pathway is almost stopped in 

HK-2 cells [133]. This cross-talk between CIM6PR and TGF-β signalling is summarised in 

a schematic diagram (Figs. 3). The TGF-β1 pathway is interconnected with the integrin- β1 

mediated cellular action in kidney fibrosis in a unilateral ureteral obstruction (UUO) mouse 

model. The inhibition of integrin- β1 signals reduce TGF- β1 mediated responses and thus 

ameliorated fibrosis [134]. Hamzeh et al. have shown that in the case of integrin- β1 

attenuation, fibronectin expression in a fibrotic kidney by TGF- β1 signalling is down-

regulated in HK-2 cells [135]. This cross-talk between TGF- β1 and integrin- β1 is mediated 

by cSrc- and STAT3- dependent pathways, and is summarized schematically in fig. 2.

6.3. DPP-4 and integrin- β1 signalling:

Integrins are heterodimers of different α and β subunits (18 types of α and 8 types of β), 

each exhibits different ligand-binding and signalling properties [136]. Integrins are 

transmembrane protein, and their extracellular domain binds to ECM glycoproteins 

including fibronectin, collagens, vascular cell adhesion molecule-1 (VCAM-1), intracellular 

cell adhesion molecule (ICAM-1), laminins and other cellular receptors [137, 138]. Thus, 

integrins regulate cytoskeletal organization, cell proliferation, cell shape, cell motility and 

angiogenesis in variety cells [139]. Among integrins, β1 integrin, for example, is pro-fibrotic 

in nature [140]. Liu et al. reported that expression integrin-β1 expression is required in 

fibroblasts for fibrogenesis, and deletion of integrin-β1 resulted in resistance to bleomycin-

induced cutaneous thickening and fibrosis formation in a mouse model [141]. In the UUO 

murine model, integrin- β1 mRNA as well as protein expression were upregulated [134]. In 

the absence of integrin-β1, human proximal tubule cells did not activate cSrc and STAT-3 

signalling pathway to promote pro-fibrotic protein synthesis in renal fibrosis [135]. DPP-4 
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inhibition decrease integrin-β1 phosphorylation at S785 residue, which is important for 

cellular adhesion [142]. DPP-4 and integrin- β1 interaction is essential for pro-fibrotic 

signalling pathways involving TGF-β, and DPP-4 associated heterodimerization of TGF-β 
and EndMT are inhibited by integrin- β1 deletion in HMVECs [101]. Furthermore, DPP-4-

integrin- β1 associations upregulate vascular endothelial growth factor receptor 1 (VEGF-

R1) favouring EndMT and down-regulating VEGFR-2, which in turn inhibit EndMT [101]. 

These VEGF-Rs’ alterations are important as they stimulate the proliferation of endothelial 

cells and angiogenesis [128]. These reports suggest that integrin- β1 modulation has the 

potential for a future therapeutic approach to combat diabetic kidney fibrosis. For easy 

understanding, DPP-4 and integrin- β1 association and signalling cascades are depicted 

schematically in fig. 2.

6.4. DPP-4 and miRNAs:

Micro RNAs (miRNAs) are small, noncoding RNAs (~ 22 bases) that have been shown to 

have immense biological importance in the last decade for their role in gene silencing by 

regulating protein expression through targeting mRNAs via specific target sites in 3’UTR. 

Alterations of miRNAs expressions are reported in transitioning from a healthy kidney to a 

fibrotic kidney in a variety of disease conditions. For example, higher expression of miR-29s 

is reported as anti-fibrotic and attenuated fibrotic progression [143–145]. Qin et al. have 

shown that miR-29s significantly inhibited TGF-β/Smad3 signalling and promoted renal 

fibrosis [146]. 3’UTR of DPP-4 mRNA has a binding site for miR-29 [114]. On binding to 

this element, miRNA-29 suppresses gene expression of DPP-4, and consequently, pro-

fibrotic markers are inhibited in mouse kidney [114]. Interestingly, integrin- β1 and INF-γ 
are also inhibited by miR-29 [147]. MiR-29 a,b,c were suppressed in DN than that of a 

healthy kidney, and Linagliptin, a DPP-4 inhibitor ameliorated the kidney functions by 

inducing miR-29 expression in the diabetic model [114].

Chen et al. reported another miRNA, miR-let-7 that has an anti-EndMT role and can also 

regulate cross-talk between EndMT and fibroblast growth factor receptor-1 (FGFR-1) [148]. 

Nagai et al. have revealed mmu-let-7 family miRNAs are downregulated in the diabetic 

kidney [149]. These mmu-let-7 family miRNAs, let-7b or let-7c blocks FGF signalling, 

which can induce EndMT [148]. This FGF receptor blocker let-7 can also suppress TGF-β 
receptor 1 [150]. Apart from these above miRNAs, miRNA-21 and miRNA-23 have been 

shown to have an important role in EndMT mediated kidney fibrosis [151]. Nonetheless, the 

bidirectional cross-talk between miR-29s and miR-let-7 and its anti-fibrotic role in DN is 

still not clear and needs further scientific attention. The interactions between miRNA-29 and 

miRNA-let-7 are presented schematically in fig 4.

6.5. Epigenetic regulation of DPP-4 expression

Cytosine-methylation in CpG dinucleotides, especially which are localized in the promoter 

region of genes is one of the best-known epigenetic mechanisms [152]. The human genome 

sequences revealed that DPP-4 gene locus contains CpG dinucleotide rich island (CpG 

island) in its promoter region, spanning 1,275 bp (human build 36.3; chromosome 2, minor 

strand), which includes 102 CpG sites [153]. This region begins 582 bp upstream from the 

start codon extend to 104 bp of the second exon (www.ncbi.nlm.nih.gov/projects/genome/
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guide/human/). McGuiness and Wesley showed that hypermethylation of the DPP-4 

promoter CpG island has been associated with gene expression repression in human 

melanoma cell lines [154], and confirms the same result found in adult T-cell leukaemia 

cells four years ago [155]. Epigenetic regulation of DPP-4 expression has been postulated in 

visceral adipose tissue during severe obesity, but differences in promoter methylation levels 

are associated with the abundance of mRNA in visceral adipose tissue of severely obese 

subjects remain unanswered [153]. Turcot et al. hypothesized that DPP-4 expression levels 

are negatively correlated with methylation of CpG sites in non-diabetic severe obese women, 

even though methylation percentage of CpGs in the second exon of DPP-4 gene is positively 

correlated with metabolic syndromes [156].

It was previously postulated by Turcot et al. that CpG methylation levels within the promoter 

and 5′UTR regions of the DPP-4 gene might influence transcriptional efficacy [153]. 

However, a subsequent report has shown that non-promoter/non-5′UTR CpG-sites may also 

mediate the same action [154], as in specific CpG island situated in the first intron of the 

peroxisomal membrane protein 4 [157] and in the early growth response 2 genes in cancer 

cells [158]. Furthermore, downstream CpG sites may also influence gene expression, as it 

was seen with CpG sites within exon 4 of the C-Fos gene in neonatal diethylstilbestrol-

treated mice uteri [159], and 4th intron of interleukin-10 (IL-10) gene in human regulatory T 

lymphocytes [155]. The transcriptional regulations by non-promoter/non-5′UTR CpG 

islands, however, remain unclear. In a study, Turcot et al. identified CpG sites 94, 101, and 

102 in the DPP-4 gene as transcription binding sites by using the MatInspector matrix 

library (www.genomatix.de) [156]. In conclusion, to our knowledge, this is the first 

methylation analysis of the DPP-4 promoter.

Analysis of CpG island in the visceral adipose tissue of premenopausal non-diabetic severe 

obese women revealed that only the end of the promoter of the gene, CpG island was 

methylated over 10% (CpG94–102) [156]. The methylation pattern and percent of 

methylation were negatively correlated with DPP-4 mRNA abundance. These were also 

associated with variability in the plasma lipid profile, regarding the role of DPP-4 in 

enzymatic inactivation of incretin hormones and several post-translational processing of 

biologically important proteins as mentioned earlier.

Glucose-stimulated DPP-4 expression is also modulated by DNA methylation. The 

hypomethylation of the DPP-4 gene enhances glucose-stimulated expression and release of 

DPP-4 in the liver of C57BL/6J male mice, and the release of DPP-4 increases circulating 

DPP-4 in the body [160]. In contrast, in a rat model of steatosis, differential expressions of 

DPP-4 were not correlated with DNA methylation of the gene. Even, no differential 

methylation pattern was found in subcutaneous and visceral adipose tissues with varying 

levels of enzyme expression [161].

Though it is evident that epigenetic control of DPP-4 may play a crucial role in fibrosis 

progression, but to our knowledge, there is no evidential data about DPP-4 gene methylation 

and correlation of its expression level in diabetic nephropathy or specifically diabetic kidney 

fibrosis. As discussed in this review, several complex pathways together control DPP-4 

mediated kidney fibrosis. Therefore, it would be interesting to define the methylation pattern 
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of the DPP-4 gene and its differential expression and correlation to understand epigenetic 

modulation in the diabetic kidney.

6.6. Impacts of DPP-4 inhibition on gut microbial dysbiosis leading to improved kidney 
function in diabetes

The different population of microorganisms resides in the colon that is capable of fermenting 

carbohydrate and protein not absorbed in digestion. These microbiota populations can 

produce different metabolites, especially short-chain fatty acids (SCFA), mainly by 

anaerobic bacteria from plant cell wall polysaccharides. Microbial genes are essential for 

metabolic processes of the body that also play an important role in pathologies, such as 

metabolic syndrome or T2D in humans[162]. Kidney disease is often related to different 

metabolic syndromes, which could be reversed by SCFAs [163]. Based on the available 

reports, Ramezani and Raj have nicely summarized a correlation between dysbiosis and end-

point renal disorders in their review article, and suggest that prebiotics and probiotics may 

have therapeutic roles in maintaining a metabolically-balanced gut microbiota to alleviate 

CKD progression and uremia-associated complications [164].

Interestingly, SCFA-producing bacteria are positively influenced by anti-diabetic drugs, 

high-fiber diets, and physical activity. Sitagliptin, a common DPP-4 inhibitor and anti-

diabetic drug, was shown to restore the gut microbiota structure in fecal DNA samples. The 

results showed a higher abundance of Firmicutes and Tenericutes, and less abundance of 

Bacteroidetes in diabetic-induced rats compared to their lean counterparts [165]. 

Saxagliptin, another DPP-4 inhibitor, showed better-recovering effects on the microbiota 

phyla distribution in mice, but the reasons are unclear [166]. The functions of SCFAs and 

their activation of transmembrane G protein-coupled receptors or inhibition of histone 

acetylation are still controversial. Regardless of the pathways are, the growing evidence 

suggests that SCFAs regulate inflammation, oxidative stress, and fibrosis in kidney disease 

through the activation of the gut–kidney axis [163]. Therefore, DPP-4 inhibitors and their 

roles in reversing dysbiosis should be studied more to cover the knowledge gap of DPP-4 

inhibitor-mediated restoration of the fibrotic kidney via the gut-kidney axis.

7. DPP-4 inhibition and reno-protection: Key clinical studies and findings

Experimental results from several animal models with DPP-4 inhibitors facilitated the 

hypothesis that DPP-4 inhibition may protect the kidney from DN as well as from non-

diabetic kidney diseases. However, there is little preclinical data to support the proof-of-

concept that DPP-4 inhibitors have significant pleiotropic renal benefits. In recent post hoc 

analyses on the cardiovascular safety studies, DPP-4 inhibitors saxagliptin and linagliptin 

have been found to improve albumin to creatinine ratio (ACR) without any improvement in 

the estimated glomerular filtration rate (eGFR) [167–170]. In a randomized MARLINA-T2D 

trial, which was designed to investigate glycemic and renal effects of DPP-4 inhibitor for 24 

weeks added to standard-of-care in T2D patients, Groop et al. reported that although 

linagliptin significantly improved glycemic control, it failed to lower albuminuria 

significantly [171]. Interestingly, a random clinical study on T2D patients suggested that 

linagliptin treatment for 4 weeks prevented impairment of renal endothelial functions [172]. 
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After 3.6 years follow up in a large cohort study of 923,936 diabetic patients of whom 

83,638 patients were DPP-4 inhibitor users including 9.7% saxagliptin, 14.6% vildagliptin, 

and 75.7% sitagliptin, it has been observed that DPP-4 inhibitors treatment in these diabetic 

patients reduced the risk of mild to severe acute kidney injury [173]. Recently, a clinical trial 

of the Cardiovascular and Renal Microvascular Outcome Study With Linagliptin 

(CARMELINA) was conducted aiming to investigate long term impact of linagliptin on 

cardiovascular and renal outcomes in a selected population of T2D patients. This multi-sites 

and a multi-national clinical trial involving 605 clinics of 27 countries where the placebo-

controlled, randomized non-inferiority trial was performed in T2D patients, and the results 

indicated that 8.8%−9.4% linagliptin recipient patients showed better kidney outcome [174]. 

In another publication of the same CARMELINA study, which included 6,979 patients, 

investigators have indicated that linagliptin versus placebo did not affect baseline eGFR or 

urine albumin-creatinine ratio significantly [175]. Similarly, sitagliptin treatment to 14,671 

patients did not reveal significant clinical changes neither in albuminuria nor in eGFR [176]. 

In another study with a 12 week long sitagliptin treatment on 55 T2D patients, a modestly 

reduced glomerular hydraulic pressure was reported. However, other internal hemodynamic 

variables and renal damage markers remained unchanged compared to placebo [177]. In the 

past 79th Scientific Session of American Diabetes Association meeting results of 

CARdiovascular Outcome study of LINAgliptin versus glimepiride in patients with type 2 

diabetes (CAROLINA) was presented, and the study found no potential differences in 

cardiovascular outcomes between linagliptin and glimepiride users, although a significantly 

lower risks of hypoglycaemia and weight gain with linagliptin compared with glimepiride 

were reported (http://www.diabetes.org/newsroom/press-releases/2019/linagliptin-and-

glimepiride.html).

8. Future perspectives:

It is now irrefutable that DPP-4 inhibitors play an anti-fibrotic role in the kidney of diabetic 

conditions in complex interconnected molecular pathways, which are partly summarised in 

this review article. Although a recent randomized placebo-controlled CARMELINA clinical 

trial failed to demonstrate any benefit of linagliptin for the secondary composite kidney 

outcomes [174], more preclinical and clinical trials with longer duration (5 yrs. or more) is 

needed to establish whether DPP-4 inhibitors have renoprotective effects in diabetic kidney 

diseases.

It is also important to take into consideration that fibrosis is essentially a normal tissue repair 

process, and therefore DPP-4 inhibition may affect the normal tissue repairing mechanism 

and cause tissue damage, inflammation or other metabolic processes. More pleiotropic 

actions of DPP-4 inhibitors should be explored in humans as experimental animal models or 

cell lines behave differently than that of the human body. In addition, as there are several 

forms of DPP-4, for example, transmembrane (tDPP-4) and soluble (sDPP-4) forms, 

regulation or inhibition of these types of DPP-4 enzymes and the epigenetic control of these 

forms should be studied in a comparative mode with different types of DPP-4 inhibitors.

Furthermore, the relationship between ECM proteins and DPP-4 are almost unknown and 

how different types of MMPs and collagens are associated with DPP-4 during progressive 
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fibrosis are virtually unexplored. Future studies are needed to focus on more molecular 

mechanisms of DPP-4 mediated anti-fibrotic actions in the diabetic kidney, as well as 

clinical studies, are necessary to ensure minimal side effects for prolonged administration of 

DPP-4 inhibitor(s) in different organs or tissues in human.

It is also noteworthy to mention that there is a 760 amino acid long type II transmembrane 

non-classical serine protease belongs to S9B prolyl oligopeptidase subfamily, named 

fibroblast activation protein or FAP. Merops peptidase database showed FAP shares approx. 

50% sequence homology and exopeptidase specificity with DPP-4 [178]; however, any 

association of FAP and diabetic kidney is still unknown. Deciphering association of FAP and 

DPP-4 may lead to a clear picture of pro-fibrotic action of DPP-4 if any.

9. Conclusion:

In this review, we have discussed various possible mechanisms of actions of the enzyme, 

DPP-4 in diabetic renal pathophysiology. Especially, its contribution to fibrotic development 

by presenting several experimental and preclinical data. Emphasis on incretin and non-

incretin mediated pathways, as well as AGE-RAGE pathways, are also described. In 

addition, how endothelial to mesenchymal transitions makes a big impact in fibrotic kidney 

development, and TGF-β, integrins and ECM proteins such as collagens and fibronectin are 

interconnected in T2D fibrosis that can be reversed by DPP-4 inhibitors are also discussed in 

light of various experimental outcomes. The possible role Micro-RNAs and their association 

are also addressed as they play a crucial role in ailing DN. Finally, we conclude that the 

targeted approach of DPP-4 inhibition to improve progressive renal disease outcomes, 

especially the management of kidney fibrosis are yet to be established through preclinical 

and clinical trials.
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Figure 1: 
Schematic diagram depicting interactions between CIM6PR and DPP-4 and the involvement 

of DPP-4 inhibitors in anti-fibrotic effects in the kidney. In normal glucose conditions, 

membrane-bound CIM6PR and DPP-4 have very little or no interaction. In high glucose 

levels, the interaction between CIM6PR and DPP-4 establishes, resulting in the activation of 

fibrotic TGF-β pathways. DPP-4 inhibitors prevent DPP-4 and CIM6PR interactions that 

finally attenuate fibrosis. Abbreviations: CIM6PR, Cation-independent mannose-6-

phosphate receptor; DPP-4, Dipeptidyl peptidase-4; TGF-β, Transforming growth factor; p, 

phospho-. Concept of the diagram partly adapted from Panchapakesan and Pollock, 2014 

[118].
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Figure 2: 
Schematic diagram showing the interaction between Int-β1 and DPP-4, resulting in 

endothelial to mesenchymal transition during progressive fibrosis. Interaction between Int-

β1 and DPP-4 leads to the formation of TGF-β1R and TGF-β2R heterodimer that causes 

mesenchymal programming of endothelial cells. In contrast to VEGF-R1, which induces the 

process of the TGF-β mediated EndMT and fibrosis, VEGF-R2 inhibits the process. 

Abbreviations: Int-β1: Integrin- β1; TGF-β: Transforming growth factor; EndMT: 

Endothelial to mesenchymal transition; VEGF-R: vascular endothelial growth factor 

receptor. STAT3, Signal transducer and activator of transcription 3; cSrc, non-receptor 

tyrosine kinase.
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Figure 3: 
Schematic diagram showing the interaction between DPP-4 and TGF-β R: In high glucose 

condition, the interaction between CIM6PR and DPP-4 induces heterodimer formation of 

TGF-β R1 and TGF-β R2. The newly formed hetero-dimer of TGF-β receptors activates 

Smad by phosphorylation, and phosphorylated Smad, in turn, induces ECM protein 

expression leading to initiation and formation of fibrosis.
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Figure 4: 
Schematic diagram showing crosstalk between miRNA-29 and mi-RNA-let-7 in progressive 

fibrosis: DPP-4 inhibitors by blocking DPP-4 enzyme interactions, inhibit the TGF-β/ Smad 

pathway. Inhibited TGF- β/Smad pathway, in turn, induces miR-29 that subsequently inhibit 

Int-β1 and INF-γ. Inhibition of Int-β1 and INF-γ induce FGFR-1 and induce miR-let-7. 

miR-let-7 inhibits TGF- β R1. Therefore, miR-29 and miR-let-7 comprise anti-EndMT 

programs. Int-β1, integrin-β1; INF-γ, Interferon-γ; FGFR, fibroblast growth factor receptor.
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