
Epigenetic pharmacotherapy for substance use disorder

Gregory C. Sartor, Ph.D.
University of Connecticut, Department of Pharmaceutical Sciences, 69 N. Eagleville Road, Storrs, 
CT 06269

Abstract

Identifying novel therapeutics for the treatment of substance use disorder (SUD) is an area of 

intensive investigation. Prior strategies that have attempted to modify one or a few 

neurotransmitter receptors have had limited success, and currently there are no FDA-approved 

medications for the treatment of cocaine, methamphetamine, and marijuana use disorders. Because 

drugs of abuse are known to alter the expression of numerous genes in reward-related brain 

regions, epigenetic-based therapies have emerged as intriguing targets for therapeutic innovation. 

Here, I evaluate potential therapeutic approaches and challenges in targeting epigenetic factors for 

the treatment of SUD and highlight examples of promising strategies and future directions.

Emerging support for epigenetic pharmacotherapies in SUD

Initially coined by Conrad Waddington in 1942, contemporary use of the term epigenetics 

generally refers to the broad spectrum of molecular mechanisms that regulate chromatin 

dynamics and gene expression, independent of changes in DNA sequence (For reviews on 

epigenetics see [1–5]). Biochemically, DNA methylation and histone modifications (e.g., 

acetylation, methylation and phosphorylation) are the primary epigenetic mechanisms that 

have been investigated. However, hundreds of additional modifications to DNA, histones, 

and RNAs, with yet to be determined functions, have been recently identified [6–8]. Acting 

as a guide or anchor for chromatin remodeling complexes, long non-coding RNAs are also 

considered to be part of the epigenetic repertoire by facilitating gene- and cell type-specific 

activity of ubiquitous histone and DNA-modifying proteins [9, 10]. In the central nervous 

system, recent evidence indicates that modifications to DNA and histones play an essential 

role in the development and maintenance of neuronal networks, learning and memories 

processes, and behavioral output in response to environmental stimuli [11]. In some cases, 

epigenetic alterations are also associated with enduring, pathophysiological changes in 

neural function and disease susceptibility [12].
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In multifactorial, polygenic disorders such as SUD, epigenetics is a particularly intriguing 

area of research. Indeed, repeated exposure to drugs of abuse alters the expression of 

hundreds of genes in reward-related brain regions, triggering maladaptive changes at the 

molecular, cellular, and circuit levels that promote drug-seeking and -taking behaviors [13–

15]. Concomitant deviations in histone- and DNA-modifying enzyme activity and gene-

specific epigenetic modifications are also observed following drug use. For example, in 

preclinical studies, cocaine [16–22], methamphetamine [23, 24], amphetamine [25], nicotine 

[26, 27], 3,4-methylenedioxy-methamphetamine (MDMA) [28], opiates [29, 30], ethanol 

[31, 32], cannabis [33, 34], and inhalants [35] alter DNA and/or histone modification the in 

nucleus accumbens, a key brain region involved in reward processing. Similar to pre-clinical 

studies, variations in epigenetic modifications, non-coding RNAs, and histone-modifying 

enzymes have also been observed in post-mortem brain samples from human drug abusers 

[14, 36–38].

In animal models for SUD, pharmacological manipulation of some epigenetic-related 

proteins is sufficient to ameliorate drug-induced behavioral, transcriptional, and 

physiological changes [39]. For example, non-selective histone deacetylase (HDAC) 

inhibitors trichostatin A and phenylbutyrate dose-dependently reduced cocaine self-

administration [40], and the HDAC3-selective inhibitor, RGFP-966, enhanced extinction of 

cocaine conditioned place preference (CPP) [41], an animal model that measures contextual 

reward processing. Sirtinol, a class III histone deacetylase (sirtuin) inhibitor, reduced 

cocaine conditioned place preference, whereas the sirtuin agonist, resveratrol, had the 

opposite effect [42]. Following repeated cocaine administration, histone acetylation reader 

protein, BRD4, is elevated in the nucleus accumbens and recruited to promoter regions of 

addiction-related genes, and pharmacological inhibition of BRD4 attenuated transcriptional 

and behavioral responses to cocaine and heroin [37, 43]. Additionally, pharmacological 

manipulation of other DNA- and histone-modifying enzymes such as, DNMT [44–53], 

KDM6b [54], G9a [20], and PRMT1 [55] alter behavioral responses to drugs of abuse (Table 

1). Outside of small molecule inhibitors, viral-mediated manipulation of DNA- and/or 
histone-modifying genes has also been found to alter drug-seeking behaviors [56–61]. Thus, 

with the potential to reverse or normalize the extensive transcriptional dysregulation and 

maladaptive behaviors caused by repeated drug use, epigenetic pharmacotherapy is a 

promising area of drug discovery for SUD.

Epigenetic therapeutic innovation and potential treatments for SUD

Despite the thousands of lives lost during the current opioid epidemic and the high rates of 
cocaine-linked deaths in African American and Hispanic populations over the past 3 decades 
[62], a dearth of new and effective clinical treatments for SUD remains. In fact, almost all 

current FDA-approved pharmacological treatments for SUD and other psychiatric disorders 

are based on neurotransmitter receptor agonist/antagonist that were identified over 40 years 

ago [63] (Figure 1). It is clear, however, that SUD is more complex than changes in 

neurotransmission, and new multifaceted treatment options are urgently needed. Although 

preclinical studies have revealed a plethora of potential therapeutic targets [39, 64, 65], few 

pharmaceutical companies have shown interest in pursuing novel treatments for SUD [66]. 
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This is particularly troubling considering that some companies contributed to and profited 

from the current opioid epidemic.

While many pharmaceutical companies have abandoned their psychiatry and neuroscience 

research programs, drug discovery and development in the field of epigenetics has recently 

flourished. Illustrating the recent surge of interest, over 200 epigenetic-related clinical trials 

are currently recruiting patients, compared to only 12 recruiting studies from 2000–2010 

(clinicaltrials.gov). Seven epigenetic-related drugs have been FDA-approved for various 

types of cancers (Azacitidine, Decitabine, Vorinostat, Romidepsin, Panobinostat, and 

Belinostat) and epilepsy/bipolar disorder (valproic acid), and over 200,000 compounds 

targeting histone- and DNA-modifying enzymes are published on ChEMBL, a chemical 

database of bioactive molecules [67]. Though the vast majority epigenetic-based treatments 

are aimed at treating cancer, many of the same enzymes are dysregulated in the brain 

following chronic drug use. Several pre-clinical studies have found that epigenetic inhibitors, 

with similar mechanisms as FDA-approved epigenetic drugs, reduce drug-seeking behaviors 

[40, 53], indicating that related therapies could be tested in patients with SUD.

Decreasing drug intake and craving, alleviating withdrawal symptoms, and preventing 

relapse are the primary treatment goals for patients with SUD. In preclinical studies, the 

HDAC3-selective inhibitor, RGFP-966, enhanced memory processes involved in extinction 

of cocaine-seeking behavior and attenuated relapse-like behavior for cocaine [41, 68]. Based 

on these results, HDAC3-selective inhibitors might be useful as a co-therapy to facilitate 

cognitive-behavioral treatments aimed at reducing drug consumption and relapse in SUD 

patients. Increased drug craving during abstinence is mediated by numerous molecular 

neuroadaptations that drive drug-seeking behaviors [69, 70]. The BET inhibitor, JQ1, has 

been shown to decrease the expression of multiple genes and/or proteins (e.g., Bdnf, GluA1) 

[43, 71, 72] that are elevated during abstinence. Therefore, with the potential to reverse 

multiple drug-induced molecular factors that drive craving and relapse, BET inhibitors may 

promote abstinence in SUD patients. Persistent drug use to alleviate withdrawal symptoms is 

another aspect that contributes to the cycle of addiction. The HDAC inhibitor 

suberoylanilide hydroxamic acid (SAHA) has been shown to reduce alcohol withdrawal-

induced hyperalgesia in rodents [73], and perhaps similar epigenetic treatments may be an 

effective way to mitigate withdrawal symptoms in SUD patients. To facilitate clinical 

studies, the recent development of PET ligands for multiple histone-modifying proteins [74] 

could also be used to measure target engagement and brain biomarkers in SUD patients. 

Thus, epigenetic-based therapies for SUD and other psychiatric disorders may help fill a 

void where traditional medications have failed or have had limited success.

Epigenetic biomarkers for SUD

In patients with SUD, epigenetic differences are potentially detectable in easily accessible 

tissues such as blood, saliva, and cerebral spinal fluid [75]. Thus far, most studies have 

compared DNA methylation of specific genes or levels of non-coding RNAs in blood 

samples of control vs. SUD patients [76–79]. Some epigenetic changes have been correlated 

with drug history and/or propensity to relapse [80], an indication that the epigenome may 

offer a new source of biomarkers to identify patient subpopulations and treatment 
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opportunities for personalized medicine. Given that that vast majority of drugs entering 

clinical trials for neuropsychiatric diseases do not produce marketable compounds [81], 

adding epigenetic biomarkers to clinical studies may diminish drug failure rates. Blood-

derived epigenetic biomarkers, however, do have limitations, as epigenetic modifications are 

known to vary widely across tissues [82]. To overcome this challenge, PET ligands are now 

being utilized to measure histone-modifying proteins in the human brain. Radioligands for 

HDACs and bromodomain and extra terminal domain (BET) inhibitors have been developed 

and tested in animals and/or humans [74, 83, 84]. Age- and disease-related changes in 

HDAC activity are presently being studied in Alzheimer’s patients [85] and similar 

strategies are likely to be employed in future SUD studies. Therefore, the integration of 

epigenetic biomarkers with existing diagnostic tools (e.g., physiologic measurements and 

genetic variables) will conceivably improve therapeutic decision making and successful 

clinical outcomes in SUD patients.

Future directions and limitations of epigenetic-based therapies for SUD

With the staggering loss of life from the ongoing opioid crisis [86, 87], there has never been 

a more important time to identify effective treatments for SUD. So why are there so few 

pharmacological treatments options? SUD and other psychiatric disorders have long been 

stigmatized and perhaps this is one reason why many pharmaceutical companies have not 

pursued new therapeutic avenues. Another reason may be related to the complexity of SUD. 

Indeed, chronic drug use evokes a torrent of maladaptive neuroadaptations–intricate changes 

that may be difficult to reverse using traditional, single neurotransmitter receptor-targeted 

therapies. With the ability to regulate multiple transcriptional networks altered by drugs of 

abuse, epigenetic pharmacotherapy has emerged as a new treatment tactic. However, some 

may contend that epigenetic-based treatments are too risky because of their pleiotropic 

activities and potential side-effects. While adverse side-effects are always a threat for new 

therapies, one could argue that epigenetic-based medication is a tractable approach based on 

several factors. First, multiple epigenetic drugs have been FDA-approved and many more 

have completed phase I and II clinical trials, indicating that these treatments can be tolerated 

in humans. Furthermore, the potential side effects may be reduced in SUD, as pre-clinical 

SUD experiments typically require much lower effective doses and treatment frequency 

compared to cancer studies [43, 88]. Second, several safe and commonly-prescribed 

medications such as statins, antiepileptics and others exhibit direct epigenetic effects in 

addition to their commonly understood mechanisms of action [89–91]. Third, humans are 

exposed to endogenous and exogenous epigenetic inhibitors on a daily basis. The foods that 

we eat contain health-promoting compounds that modify epigenetic enzyme activity (e.g, 

catechins, curcumin, lycopene, resveratrol) [92]. Additionally, our gut bacteria and liver 

produce molecules with epigenetic effects (e.g., beta hydroxybutyrate) that enter the CNS 

and promote brain health [93, 94]. Though clearly more studies are needed to understand 

epigenetic-based treatment regimen for SUD (e.g., dose and duration), such medications are 

a potentially safe option.

In order for epigenetic pharmacotherapy to become a viable clinical option for SUD, further 

work needs to be done to verify the effectiveness of epigenetic inhibitors in advanced animal 

models that more accurately resemble specific aspects of compulsive drug seeking observed 
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in human drug users. Thus far, the majority of studies have used the conditioned place 

preference procedure in male rodents to study the effects of epigenetic pharmacotherapies on 

drug-seeking behaviors. While this procedure is sufficient at measuring contextual reward 

processing, animals are only acutely exposed to drugs and the drugs are administered by the 

experimenter [95]. In self-administration procedures, the gold standard of SUD models, 

animals learn to press a lever (or nose poke) to receive a drug infusion [96]. Over the years, 

several variations of the self-administration procedure have been developed to model 

specific aspects of addiction, yet few studies have examined epigenetic mechanisms in these 

advanced models— a major impediment in epigenetic drug development for SUD (For more 

information on animal models of SUD, see [97–104]).

Testing epigenetic compounds that are FDA-approved or in phase II/III clinical trials and 

able to penetrate the blood brain barrier should be a priority, as these treatment options are 

more likely to be quickly approved for clinical testing in SUD patients. Likewise, natural or 

endogenous epigenetic inhibitors that are known to be relatively safe is another promising 

treatment route. Though epigenetic pharmacotherapy is still in its infancy, isoform-specific 

epigenetic inhibitors are already being developed to address potential side-effects of first-

generation, non-selective epigenetic compounds. Some of these isoform-specific HDAC 

inhibitors have been shown to reduce drug-seeking behaviors in animals [68] and may be 

considered for clinical testing. Though selective epigenetic inhibitors will likely reduce 

potential side effects, a major limiting factor in epigenetic pharmacotherapy for SUD is that 

many epigenetic targets are expressed in all cells and/or tissues. Moreover, some drug-

induced epigenetic modifications are regulated in a cell type-specific manner within the 

brain [105]. New gene- and cell type-specific epigenetic techniques have been utilized in 

pre-clinical studies to address these issues [106, 107]. Viral-mediated gene delivery, which 
has recently been utilized in humans (e.g., Clinicaltrial.gov identifier NCT00749957), could 
potentially be employed alone or in combination with other techniques (e.g, ultrasound) 
[108, 109] to achieve brain region- and/or cell type-specific epigenetic manipulations in 
SUD patients. Additionally, certain non-coding RNAs are selectively expressed in the brain 

and in specific cell types within the brain [110, 111] and may be targeted in patients using 

chemically modified, single-stranded oligonucleotides [112], though more research is 

needed in this area. Therefore, as advances in epigenetic pharmacotherapies and viral-

mediated approaches unfold, the prospect of clinically effective treatments for multifactorial 

brain diseases, such as SUD, may be realized in the near future.
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Figure 1: Timeline of milestones in SUD treatments and epigenetics.
(Top) Relatively few FDA-approved treatments for SUD are currently available, and most 

treatments target neurotransmitter receptors. There are no FDA-approved medications for 

cocaine, methamphetamine, and cannabis use disorders. (Bottom) The majority of histone 

and DNA-modifying proteins were identified in the last few decades. Multiple epigenetic-

based therapies have received FDA-approval in recent years for the treatment of cancer, but 

there are currently no FDA-approved, epigenetic-related treatments for SUD. AUD, alcohol 

use disorder; FDA, Food and Drug Administration; HATs, histone acetyltransferases; 

HDACs, histone deacetylases; HMTs, histone methyltransferases; NUD, nicotine use 

disorder; OUD, opioid use disorder.
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Table 1:

Effects of epigenetic pharmacotherapies on drug-seeking behaviors.

Drug of abuse Epigenetic inhibitor Target(s) Route of delivery Behavioral effect Reference(s)

Cocaine TSA HDACs systemic ↓ SA [40]

Phenylbutyrate HDACs systemic ↓ SA [40]

Garcinol HATs systemic ↓ reinstatement of SA [113]

RGFP-966 HDAC3 systemic ↑ extinction of SA [68]

RGFP-966 HDAC3 systemic ↑ extinction of CPP [41]

RG108 DNMTs intra-NAc ↓ incubation of craving [44]

TSA HDACs intra-NAcS ↑ SA [114]

JQ1 BETs systemic and intra-NAc ↓ acquisition of CPP [43]

SKLB-639 PRMT1 systemic ↓ acquisition of CPP [55]

GSK-J4 KDM6B systemic ↓ reinstatement of CPP [54]

methionine DNA methylation systemic ↓ acquisition of CPP [52]

BIX01294 GLP/G9a intra-NAc ↑ acquisition of CPP [20]

Sirtinol Sirtuins intra-NAc ↓ acquisition of CPP [42]

Nicotine phenylbutyrate HDACs systemic ↓ acquisition of CPP [115]

NaB HDACs systemic ↓ reinstatement of SA [116]

Morphine NaB HDACs systemic ↑ extinction of CPP [117]

NaB HDACs systemic ↑ acquisition of CPP [118]

Heroin JQ1 BETs intra-DS ↓ SA [37]

NaB HDACs systemic ↑ reinstatement of SA [119]

Ethanol NaB and MS-275 HDACs systemic ↓ SA [120]

RG108 DNMTs intra-mPFC ↓ SA [48]

5-Aza-dc DNMTs intra-mPFC ↓ SA [53]

5-Aza-dc, 5-aza-2′-deoxycytidine; BETs, bromodomain and extra terminal domain; CPP, conditioned place preference; DNMTs, DNA 
methyltransferases; DS, dorsal striatum; GLP, G9a-like protein; HATs, histone acetyltransferases; KDM6B, lysine demethylase 6B; mPFC, medial 
prefrontal cortex; NaB, sodium butyrate; PRMT1, protein arginine methyltransferase 1; NAc, nucleus accumbens; NAcS, nucleus accumbens shell; 
SA, self-administration; TSA, Trichostatin A.
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