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Abstract

Background—Neuroanatomical pattern classification using support vector machines (SVMs) 

has shown promising results in classifying Multiple Sclerosis (MS) patients based on individual 

structural magnetic resonance images (MRI).

Objectives—To determine whether pattern classification using SVMs facilitates predicting 

conversion to clinically definite multiple sclerosis (CDMS) from clinically isolated syndrome 

(CIS).

Methods—We used baseline MRI data from 364 patients with CIS, randomised to interferon 

beta-1b or placebo. Non-linear SVMs and 10-fold cross-validation were applied to predict 

converters/non-converters (175/189) at two years follow-up based on clinical and demographic 

data, lesion-specific quantitative geometric features and grey-matter-to-whole-brain volume ratios. 

We applied linear SVM analysis and leave-one-out cross-validation to subgroups of converters 

(n=25) and non-converters (n=44) based on cortical grey matter segmentations.

Results—Highest prediction accuracies of 70.4% (p=8e-5) were reached with a combination of 

lesion-specific geometric (image-based) and demographic/clinical features. Cortical grey matter 

was informative for the placebo group (acc.: 64.6%, p=0.002) but not for the interferon group. 

Classification based on demographic/clinical covariates only resulted in an accuracy of 56% 

(p=0.05). Overall, lesion geometry was more informative in the interferon group, EDSS and sex 

were more important for the placebo cohort.

Conclusions—Alongside standard demographic and clinical measures, both lesion geometry 

and grey matter based information can aid prediction of conversion to CDMS.

Introduction

The advance of non-invasive imaging techniques, such as magnetic resonance imaging 

(MRI), has made a large impact on the study of Multiple Sclerosis (MS). Measures of 

abnormalities derived from structural MRI are useful in the context of early diagnosis, 

treatment planning and monitoring of disease progression. To date, however, MRI data is 

mainly used in a qualitative way to assess the dissemination of MS lesions in space and time.
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The most common quantitative measure is lesion load, i.e. the total lesion volume. Previous 

work on using lesion load for classification has been inconclusive (Aban et al. 2008), 

(Zivadinov et al. 2005; MacKay Altman et al. 2012). Other studies have shown that 

conventional MRI measures have rather low predictive value and are therefore poor 

indicators for determining the clinical outcomes in MS (Lovblad et al. 2010). Existing 

quantitative methods that are used for the analysis of MS lesions are to a large extent inapt to 

fully reflect the given data (Filli et al. 2012; Locatelli et al. 2004) (Bates et al. 2003) (Wei et 

al. 2004) (Ge et al. 2014).

Clinically isolated syndromes (CIS), such as optic neuritis, brainstem or spinal cord 

syndromes are the first clinical presentations of MS in about 85% of cases (Scalfari et al. 

2010; Confavreux and Vukusic 2006). Over time, most patients with a CIS, with additional 

clinically silent brain lesions on MRI that suggest disseminated CNS disease, develop 

relapsing-remitting MS (RRMS) and have a substantial risk for later progression of 

disability(Brex et al. 2002a; M. Tintore et al. 2006; Fisniku et al. 2008b).

The identification of patients with CIS who will develop clinically definite MS (CDMS) in 

the short-term is particularly relevant from a clinical, therapeutic(Calabrese et al. 2011), and 

economical point of view (Beer and Kesselring 1994).

A number of clinical features including laboratory investigations and MRI abnormalities 

have been associated with an increased risk for conversion to CDMS. Among these, MRI is 

the most informative marker (M. Tintore et al. 2005; M. Tintore et al. 2001; Morrissey et al. 

1993; O'Riordan et al. 1998; Brex et al. 2002b) to monitor treatment efficacy. Several studies 

have confirmed the predictive value of baseline and follow-up MR imaging for conversion to 

CDMS, depending on the population, follow-up duration, and treatment intervention. To 

date, however, no reliable method exists to predict who will, and will not, develop MS 

amongst those with CIS.

One of the reasons for the limited impact of the findings on clinical practice is that 

neuroimaging studies have typically reported population differences between groups. For 

neuroimaging to be useful in a clinical setting, however, inferences have to be made at the 

level of the individual rather than the group. One analytical method that allows such 

inference is multivariate pattern classification based on support vector machines (SVMs) 

which are sensitive to spatially distributed and subtle effects in the brain that would be 

otherwise undetectable using traditional methods which focus on gross differences at group 

level (for a review on SVMs applied to neurological conditions see (Orru et al. 2012)).

Our present study aims to determine whether multivariate neuroanatomical pattern 

classification facilitates predicting conversion to CDMS in individuals with a CIS based on 

structural MRI features and clinical characteristics in a two-year follow-up. A combination 

of different MRI-based features has been shown to improve results as compared to using 

only one measurement (Wottschel et al. 2015). The study showed that a linear SVM 

correctly predicted CDMS in 71% of patients at 1 year, and in 68% at 3 years of follow-up 

based on different combinations of lesional and clinical features.
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A recent study on lesional geometry in MS used 3D-printing of lesions to qualitatively rate 

their shape and surface characteristics (Newton et al. 2017). Earlier work by Goldberg-

Zimring et al. (Goldberg-Zimring et al. 2003) studied longitudinal changes in lesion 

geometry as captured by spherical harmonics. The study also found that lesional shape was 

more variable over time than size or volume. Although providing valuable insights, the 

methods presented in these two studies are not easily applicable to studies with more than a 

handful of patients.

On a larger scale, Gourraud et al (2013) (Gourraud et al. 2013) used the topological 

arrangement of lesional clusters (e.g. many small clusters vs. few big clusters) as an 

additional trait in a GWAS analysis; however, the study did not consider measures derived 

from individual lesions.

The present study demonstrates that a rich feature set incorporating multiple types of data 

and in combination with a classifier that is well suited for high-dimensional, multi-modal 

settings, SVMs, provide an alternative approach. Unlike previous work(Wottschel et al. 

2015), we employed kernel-based SVMs in a non-linear classification scheme using a large 

number of quantitative features in a large population of 175 converters and 189 non-

converters. By solving the classification problem in a higher dimensional auxiliary space, 

kernel-based SVMs can more easily adapt to the structure of the data (Schölkopf and Smola, 

2001). Most importantly, in addition to traditional demographic, clinical and lesional 

measures, we included aspects of lesion geometry derived from Minkowski functionals 

(Legland et al., 2007). These functionals provide quantitative measures that are closely 

related to standard geometric quantities such as volume, surface area and width of individual 

lesions.

Furthermore, there is increasing evidence that grey matter (GM) atrophy in CIS predicts 

conversion to CDMS (Calabrese et al. 2011; Raz et al. 2010; Jenkins et al. 2011). Therefore, 

we also include measures of GM volume and demonstrate how predictive performance of 

non-linear SVM can be

Finally, in a separate analysis, we used linear SVM to investigate whether SVMs can 

differentiate CIS from CDMS based on cortical grey matter characteristics.

Methods

Data and the BENEFIT study

This is a post-hoc analysis of MRI and clinical data from the BENEFIT study(Kappos et al. 

2006; Frederik Barkhof et al. 2007). Briefly, BENEFIT was a double-blind, placebo-

controlled, randomized, parallel-group, multicenter (total of 98 centers), phase 3 study that 

evaluated the safety, tolerability and efficacy of interferon beta-1b (Betaferon/Betaseron; 

Bayer HealthCare Pharmaceuticals Inc) in patients with a monofocal or multifocal 

presentation of the disease, a first demyelinating event suggestive of MS and at least two 

clinically silent lesions on a T2-weighted brain magnetic resonance (MRI) scan. Within 60 

days of the onset of the first clinical event, and after providing written informed consent, 

patients (n=468, aged 18-45 years) were randomly assigned, in a 5:3 ratio, to interferon 
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beta-1b 250 μg (n=292) or placebo (n=176) subcutaneously every other day for 2 years or 

until CDMS was diagnosed by use of the modified Poser criteria (Bakshi et al. 2005) and 

confirmed by a central committee. Patients were then eligible to enter the follow-up phase 

with open-label interferon beta-1b (Kappos et al. 2007a). During this double-blind phase, 

visits were scheduled for collection of Expanded Disability Status Scale (EDSS), MRI, and 

other efficacy data and for safety data at months 3, 6, 9, 12, 18, and 24.

MRI acquisition and pre-processing

Baseline MR images were obtained using an oblique axial acquisition plane and gadolinium 

diethylenetriamine pentaacetic acid (0.1 mmol/kg of body weight) as contrast agent (T1c). 

The MR imaging protocol included a T1-weighted (T1w) spin echo after contrast 

administration with repetition times of 400 to 700 milliseconds and echo times of 5 to 25 

milliseconds. A dual echo T2-weighted (T2w) spin echo with repetition times of 2000 to 

3000 milliseconds and echo times of 20 to 40 milliseconds (first echo) and 60 to 100 

milliseconds (second echo) was acquired as well. The field of view for all examinations was 

25 cm with a 256x256–pixel matrix, resulting in a pixel size of roughly 1x1 mm2. Images 

were acquired in 2 interleaved sets with a 3-mm gap, resulting in whole-brain coverage with 

contiguous 3-mm-thick sections.

All MRI scans were performed with 0.1 mmol/kg gadolinium (Gd)-DTPA. The numbers and 

volumes of hyperintense lesions on T2-weighted images and Gd-enhancing lesions on T1-

weighted images were centrally evaluated by the MRI Analysis Centre in Amsterdam, which 

was kept blinded to treatment allocation.

All of an individual patient's MRI was performed using the same machine. Assessment of 

the MRIs was performed centrally at the Image Analysis Centre at the Vrije Universiteit 

Medical Center. The quality assessment included a trial-specific standard operating 

procedure, training specifications (including a dummy-run procedure for site selection), and 

internal quality control procedures. During the trial each MRI was subjected to a routine 

quality control procedure, and additional MRIs were obtained when quality standards were 

not met.

The numbers and volumes of hyperintense lesions on T2-weighted images (T2 lesions) and 

Gd-enhancing (Gd lesions) and hypointense lesions on T1-weighted images (T1-hypointense 

lesions) were determined by evaluators who were blinded to treatment allocation but not to 

MRI order. Because all the MRIs were performed after Gd administration, T1-hypointense 

lesions were defined as the subset of new or enlarging lesions on T2-weighted images that 

were isointense to hypointense relative to gray matter on T1-weighted images. Lesions were 

identified by trained radiologists who marked the MS lesions on hard copy; their volumes 

were subsequently determined electronically by trained technicians using in-house–

developed software (Show_Images version 3.6.3) based on local thresholding (Barkhof et al. 

2007).

All MRI scans used in the present study were performed at 1.5T and included transaxial 

contiguous 3-mm dual-echo images. T1-weighted images with sufficient image quality 

together with their corresponding lesion masks, as well as clinical data at two year follow-
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up, had to be comparable across scanners. We employed subsets of placebo patients and 

interferon beta-1b patients who either converted to CDMS (conv+) or did not convert (conv-) 

(see Table 1). Definition of the outcome measure was based on the double blind phase.

Statistical analysis of demographic data

Statistical analysis was performed using IBM SPSS Version 19.0. Group comparisons were 

performed using the Student's t-test, chi2-test or Wilcoxon rank sum test when appropriate. 

Values are reportet as mean (SD) or median (IQR). A statistical level of p < 0.05 was 

considered significant.

Classification based on lesion-specific geometric measures and feature combinations 
using non-linear SVMs

For this approach, we considered a classification and prediction model using kernel-based 

(radial basis functions) support vector machines. As input to the classifier we used detailed 

geometric features of individual lesions derived from the available MRI data (T2-, T1-, Gd-

lesions).

First, the binary lesion masks were used to identify individual lesions. Minkowski 

functionals(Legland et al. 2011) were then used to extract and quantify the geometry of each 

lesion. In standard 3D Euclidean space, Minkowski functionals are directly related to the 

geometric quantities volume, surface area, mean breadth and the Euler-Poincare (EP) 

characteristic(Arns et al. 2001; Lang et al. 2001). More details on the computation of 

geometric features as well as feature reduction and additional preprocessing steps (see also 

Figure 2) can be found in the supplementary materials.

We also considered a parcellation of the whole brain into 13 regions of interest (ROIs) in 

order to add some amount of spatial information about lesion location to the feature set. (See 

supplementary materials for a description of the 13 ROIs.) Lesion dissemination in space is 

a standard requirement in the criteria for the diagnosis of CDMS (McDonald et al. 2001; C. 

H. Polman et al. 2005). Ideally, including spatial information will aide classification and 

prediction accuracy.

Classification based on linear SVMs using cortical grey matter segmentations

For linear pattern classification analysis, we used LIBSVM, a library for SVMs (http://

www.csie.ntu.edu.tw/-cjlin/libsvm), running under Matlab 7.1 (MathWorks, USA). Two-

dimensional T1-weighted images (Placebo: n=44 converters, 25 non-converters; IFN-b: 

n=49 converters, 49 non-converters) with sufficient image quality aquired on three different 

1.5T scanners were interpolated to an isotropic resolution of 1 mm3,(Richert et al. 2006). 

Images were processed using FMRIBs software libray FSL for coregistration, segmentation 

(FAST), lesion filling, and interpolation (FLIRT). Interpolated images were visually 

checked, and then normalized, segmented and modulated using Statistical Parametric 

Mapping software (SPM8; Wellcome Department of Imaging Neurosciences, University 

College London) and Voxel-Based Morphometry (VBM8) toolbox (http://dbm.neuro.uni-

jena.de/vbm8/) and DARTEL.
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For the grey matter classification task, the total number of dimensions was determined by 

the number of voxels within the cortical GM mask. To implement a linear SVM, a kernel 

matrix was created from the images based on correlation, i.e. the similarity between each 

pair of subjects. Details on the rationale for using linear SVMs in this setting, as well as 

advantages and limitations of SVMs in general can be found in the supplementary materials.

Predictive performance was evaluated using leave-one-out cross-validation; details are given 

in the supplementary materials.

Results

The demographic and clinical characteristics of patients are summarised in Table 1.

Classification based on feature combinations

A summary of balanced prediction accuracies of kernel SVMs trained on different 

combinations of input features is given in Table 2 and visualised in Figure 3. All values are 

based on nonlinear SVMs using an RBF kernel. Parameters were optimised through grid 

search. P-values are based on permutation tests of the class labels (1000 permutations per 

model). One way of estimating the importance of different features is to visualise the 

corresponding SVM weights. Since it is not possible to obtain an analytic expression for the 

weights and thus separate them in the nonlinear case, any illustration has to rely on weights 

based on linear SVMs. Even in the linear case the plots are meant purely as a qualitative way 

of visualising the importance of input variables relative to one another. In addition, the 

weights do not indicate whether any interaction between features are relevant during 

classification. No quantitative assessments should be drawn directly from the magnitude of 

individual weights.

In general, we found that our trained classifiers were more likely to distinguish correctly 

between converters and non-converters in the INF-b treated cohort compared to the placebo 

treated group.

The simplest model (M1) utilised demographic (sex, age) and clinical (EDSS score) 

covariates only (accuracy: 56%, p=0.05). Including grey matter-to-whole-brain volume 

ratios (M3) increased prediction accuracy by a few per cent in the INF-b but not in the 

placebo group.

Model M2 included “traditional” measures such as lesion count and total lesion load (i.e. 

total lesion volume). These were combined with the grey matter volume feature in M4. 

Figure 4 shows the relative magnitude of SVM weights (again, resulting from training a 

linear SVM) for each input feature with classification accuracy equal to 57.6% (p=0.07).

M6 was solely based on whole-brain summary measures of lesion-based geometry and 

performed on a similar level as using demographic/clinical features only. Combining the two 

kinds of input information and adding grey matter volume (M7) lead to a significant 

improvement of classification accuracy, reaching 64.6% (p=0.0017) for the INF-b group.
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Model M8 represented the largest possible feature set by splitting the summary measures of 

lesion geometry into 13 ROIs, plus including all other available covariates. Classifier 

performance was markedly reduced, most likely due to large amounts of redundant or 

irrelevant (i.e. equal to zero) input features. Dimensionality reduction via PCA space was 

only partly able to ameliorate this issue.

In M9 half of the summary statistics were excluded in order to lower the level of redundancy 

in the data. Only total, mean and standard deviation measures were retained in the feature set 

which resulted in a prediction accuracy of 70.4% (p=8e-5). Note that splitting the same 

features by ROIs again reduced overall performance (cf. M10).

Figure 5 displays SVM weights for M9 of the corresponding linear classifier. The root mean 

square values (RMS, or quadratic means) of SVM weights shown in Figure 6 (accuracy: 

60.5%, p=0.019) allow for a comparison between different kinds of features and their 

variability.

For reference, training a kernel SVM with input features as specified in model M9 on T2 

weighted lesion data resulted in a prediction accuracy of about 60% (p<0.002); and similarly 

for T1 weighted black-hole lesion data (accuracy 64%, p<0.0008). We also combined 

feature sets based on different imaging modalities, at the cost of increasing redundancy, 

which gave an accuracy of about 63% (p<0.01). Note that for the combined-modality model 

the size of available data was reduced by roughly 20% as not all imaging modalities were 

available for all subjects.

Classification based on cortical grey matter segmentations

The average accuracy from the 500 bootstraps was 71.2% (95% confidence interval: 

70.7-71.6%), which means that, on average, SVMs correctly predicted CDMS in 71.2% of 

placebo-treated individuals, with a sensitivity of 64% (converters correctly identified) and 

specificity of 78.3% (non-converters correctly identified). Middle and medial frontal, 

superior and middle temporal, anterior and posterior cingulate, middle temporal, fusiform, 

middle occipital, and insular regions contributed most to the classification accuracy as 

shown here for the matched placebo groups (Figure 7).

Discussion

Our study aims to determine whether multivariate neuroanatomical pattern classification 

facilitates predicting conversion to CDMS in individuals with a CIS based on structural MRI 

features and clinical characteristics in a two-year follow-up. We used geometric measures of 

individual lesions computed from MRI data in combination with clinical information from 

patients with CIS to predict conversion to CDMS. We included a large set of quantitative 

measures on individual lesions to perform classification into one of two groups, converters 

and non-converters, based on SVMs. In addition to providing an accurate classifier, we 

aimed to determine which types of features are most important for successful classification.

In the IFN-b group the best performance was achieved with non-linear classification and 

model M9 utilizing demographic and clinical covariates, global grey matter volume, lesion 
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count as well as total, mean and standard deviation measures of lesion geometrics. In the 

placebo group linear classification using cortical grey matter segmentations yielded the 

highest accuracy. It should be noted that using prediction accuracies directly for model 

comparison is not suitable, since differences could arise by chance. The focus should 

therefore lie on models that reached statistically significant accuracies. The classification 

accuracies were only moderate (not exceeding 70%) which limits the applicability of the 

model for predicting the onset of disease in the brain scans of CIS patients in clinical praxis. 

In general, this application is challenging for classification, as the differences observed in 

CIS are likely to be much more subtle then those observed in established MS. Not all CIS 

patients develop MS, and in those who do, disability is highly variable(Fisniku et al. 2008b).

Furthermore, it cannot be excluded that some of the patients in the non-converter group may 

still develop MS in the long-term. Our results, however, are consistent with other studies on 

prediction of disease onset in MS (Wottschel et al. 2015) and Alzheimer’s disease(Young et 

al. 2013) which reported similar classification accuracies.

Classification based on feature combinations

Consistent with the results from earlier studies (Wottschel et al. 2015),55, the demographic 

attributes age and sex as well as the EDSS score carry a considerable amount of information 

about the disease and its progression (see Fig 6). When considering the full set of all 

geometric measures, each summarised in a ROI specific value (M10 in Table 2), a large 

number of these features will contain similar or even redundant information. However, it 

should be noted that imaging data of CIS patients may not necessarily be well suited for 

splitting into ROIs because most CIS patients have relatively few or even only one lesion.a 

This is due to the fact that the gain in spatial information about lesion locations may be 

offset by the inclusion of a large number of uninformative, zero-valued features for regions 

where no lesion is present.

Thus, feature selection or feature reduction becomes a necessity when optimising the 

classification procedure. A PCA transformation of input features reduces some of this 

redundancy and, in principle, SVMs can cope with a certain level of inter-dependency 

between features.

Nevertheless, classification outcomes are still likely to be affected by a lack of distinct 

information across the feature set. Therefore in this study, a partition of geometric features 

according to different brain regions turned out to be useful only to some extent.

Ideally, as classification outcome varies depending on the combination of features used as 

input, one would like to find the most informative subset among all available features. This 

is hindered by the fact that an exhaustive combinatorial search across all features is 

computationally infeasible; and it would lead to overfitting by selecting a feature set that is 

specifically suited for the available data set but is unlikely to generalise well to new data. As 

aWith other data sets that comprise of larger numbers of lesions per patients, we found that the segmentation into white matter track 
regions can substantially increase prediction accuracies compared to those feature sets that rely on whole brain summaries only.
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a way out we considered pre-specified subsets of possible feature combinations as presented 

in Table 2.

Principally, the examination of weights of individual features for the support vectors across 

different models can help inform which kinds of features are driving the classification 

procedure. A comparison of the magnitude of SVM weights provides a qualitative 

assessment of relative importance of different input features. With regard to our set of 

geometry-based features, a comparison across different (linear) classifier weights indicated 

that the EP characteristic is often more significant than a simple lesion count. Among 

clinical and demographic covariates, age seemed to be the single best predictor with younger 

patients showing a higher probability to convert to CDMS (cf. negative weight on age in 

Figures 4 and 5).

When comparing placebo and IFN-b groups, lesion geometry played a bigger role in the 

classifier for the IFN-b group. EDSS and sex were more important for the placebo cohort, 

less so for the IFN-b group. Both features carried predominantly positive weights in all 

SVM models, indicating that higher EDSS at baseline as well as being female are predictors 

for conversion. Additionally, we found that the grey matter-to-whole-brain volume ratio in 

most cases was more informative than either EDSS or sex.

Active plaques typically are associated with Gd- enhancement on MRI and most likely 

represent the pathological substrate of the attacks in MS (Filippi et al. 2012; Popescu et al. 

2013). Therefore, we concentrated here on T1-Gd imaging data. However, a comparison of 

weights from SVMs trained on T2 or T1 black hole MRI data showed very small variation, 

especially with respect to the sign of individual weights, across different modalities within 

each cohort (placebo or IFN-b), and much larger differences between the two cohorts.

It should be noted that a quantitative comparison of prediction accuracies and/or p-values 

across models is to be avoided. A statistically rigorous method for model comparison would 

need to be based on, for example, an appropriate permutation method, in order to assess the 

probability of finding spurious differences between any two given models. We are not aware 

of the existence of such a method in the context of a cross-validation framework, like the one 

we use in this work. Although beyond the scope of the current study, the need for the 

development of an appropriate permutation method for this setting could provide a basis for 

future work.

Classification based on cortical grey matter segmentations

Using cortical grey matter segmentations, we show that linear SVMs moderately predicted 

individual conversion/non-conversion to CDMS in 71.2% of placebo-treated CIS patients. 

Although not exceptionally high, it is worth noting that the accuracy represents the average 

of 78% specificity and 64% sensitivity. The latter of which might be explained by the 

possibility that some of the CDMS patients categorized as converters do not show cortical 

pathology. Notably, patients experiencing a rapid transformation within 1 year show cortical 

atrophy in contrast to patients with slower disease progression (Perez-Miralles et al. 2013). 

We cannot exclude that those converters who were wrongly classified as non-converters are 

patients with a slower disease progression. In a 2-year follow-up the non-converters are 
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likely to still develop CDMS, some of them maybe even shortly after the last follow-up. 

Structural grey matter changes, i.e. both, cortical lesions and grey matter atrophy are 

considered as promising characteristics to track the conversion from CIS to CDMS 20, 

(Calabrese et al. 2010), (M Tintore et al. 2008), (Kelly et al. 1993).

Some studies, however, failed to find a significant cortical atrophy in CIS compared to 

NC(Dalton et al. 2004; Ceccarelli et al. 2008; Ramasamy et al. 2009) while others have 

observed a significant cortical atrophy only in CIS(Bergsland et al. 2012) having a 

dissemination in space (DIS) of the lesions or only in selected brain regions, such as the 

hippocampus and the deep grey matter(Sastre-Garriga et al. 2005). Multivariate analysis of 

cortical thickness in patients with CIS who convert early to MS identified atrophy of 

superior frontal gyrus, thalamus, putamen and cerebellum as independent predictors of 

conversion to MS20. CIS with atrophy of such areas had a double risk of conversion.

These heterogeneous and partly contradictory findings may be explained e.g. by the clinical 

and paraclinical heterogeneity of patients with CIS, who may have quite different WM 

lesion load, and, in some cases, will never develop definite MS (Calabrese et al. 2011).

Previously, it was shown that regional GM atrophy is relevant in patients with CIS who 

convert early to MS(Calabrese et al. 2011; Raz et al. 2010), but about 20 % of CIS patients 

do not convert to MS after two decades (Fisniku et al. 2008b). An accuracy of 70% in our 

linear SVM analysis reveals that cortical GM patterns played a role for discrimination of 

converters and non-converters in the placebo-treated patients. In contrast, converters and 

non-converters could not be discriminated in the IFN-b groups. In our study, group labeling 

was based on conversion/non-conversion to CDMS at two year follow-up. However, at 

follow-up, parts of those patients which would have been expected to convert under placebo 

changed to non-converters or better “responders” under therapy. The latter might explain 

why we could not discriminate the treated group accurately using linear SVM.

Limitations

Our study further supports the idea that structural neuroimaging can inform prediction of 

CDMS. There are some limitations, however, that should be taken into account.

A crucial prerequisite for reliable image classification at the single-case level is the 

identification of morphometric criteria for distinguishing individuals. Beyond the impact of 

key demographic, clinical and lesion-associated MRI parameters on the 'natural risk' of 

CDMS (C. Polman et al. 2008), subclinical structural damage in the brain (i.e. changes in 

the normal-appearing brain tissue) might also occur early in the disease. However, its 

functional consequences in CIS patients might be negligible (Kappos et al. 2007a). Recently, 

mapping brain regions with diagnostic information using a “searchlight approach” and 

leave-one-out cross-validation to identify neuroanatomical patterns relevant for individual 

classification of patients and controls has been performed successfully in relapsing-remitting 

MS (Weygandt et al. 2011). Hotspots of MS associated tissue alterations which are highly 

informative about the clinical status have been identified in different normal-appearing areas 

of the brain. We infer from these results, that the approach could be promising also for 

classification and prognosis of patients with CIS.
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The smaller sample size of the non-converters in the linear SVM analysis using GM 

segmentations may have limited the converters vs non-converters classification accuracy, 

and thus the findings may have been influenced by the heterogeneity of the non-converters 

subgroup. To account for this, we controlled for the potential effects of covariates, such as 

age, gender, and scanner.

Generally, it is unclear whether supervised MRI-based pattern recognition can achieve the 

level of sensitivity and specificity needed in order to be integrated into clinical applications. 

In the future, feature selection methods and the use of larger, independent test data may 

further increase classification accuracy. Furthermore, the shift from single predictive models 

to ensembles of classifiers may produce more generalisable diagnostic biomarkers by 

averaging the diagnostic decisions of numerous predictive models (Koutsouleris et al. 2010). 

Additionally, it will be interesting to investigate whether other para-clinical markers e.g. 

synthesis of oligoclonal bands (M Tintore et al. 2008) and genetic factors (Kelly et al. 1993) 

can improve SVM-based classification accuracy.

The IFN and the placebo group showed different features to have a role in determining 

conversion from CIS to CDMS. Early initiation of treatment at the stage of CIS has been 

demonstrated to delay conversion to CDMS, and to positively affect the evolution of clinical 

and MRI disease aspect (Kappos et al. 2007b). Assessment of the balance between burden of 

treatment and effects on outcome in patients with CIS is clinically important because a 

considerable proportion of patients will develop CDMS and eventually progress to 

substantial disability in the following years (Kappos et al. 2009). However, about 15–20% 

might not develop CDMS, not even after 20 years (Fisniku et al. 2008b, 2008a). In the 

context of early intervention, multivariate pattern classification may constitute the 

framework for MRI based discrimination of those individuals who will benefit from 

treatment from those who will do well without intervention.

Conclusions

The main potential of SVM-based classification is that it might be useful for predicting the 

clinical transition to MS at the individual level. Automatic pattern classification methods 

have been considered to promote a potentially accessible and objective way to improve 

clinical decision making, and may present a measure of the risk of developing MS in 

individuals with CIS, if sufficiently accurate.

We demonstrated that MRI data of MS lesions contain more information about the disease 

than is currently utilized in clinical assessments. Both lesion geometry and grey matter 

based information can aid prediction of conversion to CDMS. Inclusion of other lesional or 

degenerative MRI features may in the future further improve classification accuracy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Preprocessing pipeline.
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Figure 2. 
Preprocessing pipeline for geometry-based lesion measures and subsequent classification 

with nonlinear SVMs.
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Figure 3. 
Prediction accuracies of models as described in Table 2. Bars indicate 95% confidence 

interval. Significance levels based on permutation testing: * (p < 0.05), ** (p < 0.005), *** 

(p < 0.0005).
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Figure 4. 
M4. Individual weights from a linear SVM trained on features including demographic and 

clinical covariates, grey matter volume, lesion count and total lesion load; based on T1-Gd 

MRI data of IFN-b treated patients (converters: 50, non-converters: 49). Positive (negative) 

weights indicate that a larger feature value will drive prediction towards conversion (non-

conversion). For sex, being female (male) corresponds to the positive (negative) axis. 

Weights are scaled relatively to the largest individual weight, which is set equal to one. Note 

that weights should only be interpreted qualitatively, not quantitatively.
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Figure 5. 
M9. Individual weights from a linear SVM trained on demographic, clinical, grey matter 

volume and geometry based features derived from T1-Gd MRI data of IFN-b treated patients 

(converters: 50, non-converters: 49). Positive (negative) weights indicate that a larger feature 

value will drive prediction towards conversion (non-conversion). For sex, being female 

(male) corresponds to the positive (negative) axis. Weights are scaled relatively to the largest 

individual weight, which is set equal to one. Note that weights should only be interpreted 

qualitatively, not quantitatively.

Abbreviations: EDSS - expanded disability status scale, EPC - Euler-Poincare 

characteristic, GM - grey matter, SD – standard deviation.
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Figure 6. 
M9. Root mean squares summaries of the weights in Fig. 4 indicating the relative 

importance of different kinds of input features during classification. Weights are scaled 

relatively to the largest individual weight, which is set equal to one. Note that weights 

should only be interpreted qualitatively, not quantitatively.
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Figure 7. 
Weight vector maps showing the most discriminating brain regions between placebo groups 

for the matched placebo groups (top 10 %; accuracy 66%). (A, B) Regions that contributed 

most to classification accuracy in the matched placebo groups are shown in red, in axial, 

coronal and sagittal views (z = [-28, -18, -8, 2, 10, 22, 31]). (C) Projection of each subject 

onto the weight vector; with positive patterns (blue circles) discriminating for conv+, and 

negative patterns (red crosses) discriminating for conv-CDMS could not be predicted based 

on cortical segmentations of the treated patients (total accuracy 48%; sens.: 42.9%, spec.: 

53.1; p=0.6)
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Table 2

Prediction accuracy of optimised kernel SVM based on different combinations of input features; including 

95% confidence intervals and corresponding p-values.

* Summaries include total, mean, median, minimum, maximum and standard deviation (SD) of lesion volume, 

surface area and mean breadth, respectively. Measures are based on T1-Gd MRI data. ** Total, mean and SD 

of volume, surface area and mean breadth (excluding median, minimum, maximum measures), and EP.

Abbreviations: DC -demographic and clinical covariates, EDSS - expanded disability status scale, EP - Euler-

Poincare characteristic, GEO-brain - whole-brain summaries of geometric measures, GM - grey matter, ROI - 

region of interest.

model input features
[resulting number of features]

placebo group
(N=61, conv+:
39, conv-: 22)

IFN-b group
(N=99, conv+:
50, conv-: 49)

M1 demographic and clinical covariates
(DC): age, sex, EDSS [3 features]

56.7%
[48.5–64.9%]
(p=0.053)
[77:63] *

55.5%
[49.0-62.0%]
(p=0.051)
[98:126] *

M2 DC, lesion count, lesion load (i.e. total
lesion volume) [5 f.]

50.1%
[37.6-62.6%]
(p=0.537)

57.6%
[47.9-67.3%]
(p=0.072)

M3 DC, GM volume ratio (GM) [4 f.] 54.3%
[41.8-66.8%]
(p=0.261)

58.6%
[48.9-68.3%]
(p=0.048)

M4 DC, GM, lesion count, lesion load [6 f.] 60.9%
[48.7-73.1%]
(p=0.046)

60.6
[51.0-70.2%]
(p=0.020)

M5 DC, GM, count, load, Euler-Poincare
characteristic (EP) [7 f.]

56.6%
[44.2-69.0%]
(p=0.145)

54.5%
[44.7-64.3%]
(p=0.193)

M6 whole-brain summaries* of geometric
measures (GEO-brain) [21 f.]

57.9%
[45.5-70.3%]
(p=0.126)

58.5%
[48.8-68.2%]
(p=0.046)

M7 DC, GM, GEO-brain [25 f.] 67.6%
[55.9-79.3%]
(p=0.0022)

64.6%
[55.2-74.0%]
(p=0.0017)

M8 DC, GM by ROI, geometric measures by
ROI (GEO-ROI) [276 f.]

51.2%
[38.7-63.7%]
(p=0.468)

59.6%
[49.9-69.3%]
(p=0.035)

M9 DC, GM, lesion count, subset** of GEO-
brain [15 f.]

57.8%
[45.4-70.2%]
(p=0.133)

70.4%
[61.4-79.4%]
(p=8e-5)

M10 DC, GM by ROI, lesion count, subset**
of GEO-ROI [159 f.]

50.5%
[38.0-63.0%]
(p=0.491)

66.6%
[57.3-75.9%]
(p=0.0004)
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