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Low-carbon innovation induced by emissions
trading in China
Junming Zhu 1, Yichun Fan2, Xinghua Deng 3 & Lan Xue1

Emissions trading scheme (ETS) has been adopted by an increasing number of countries and

regions for carbon mitigation, but its actual effect depends on specific program design and

institutional context. Before launching the world largest ETS, China experimented with seven

independent regional pilots, whose effects are only indirectly explored. Here we provide firm-

level evidence of the innovation effect directly from China’s pilot emissions trading, based on

latest patenting information and a quasi-experimental design. China’s pilots increase low-

carbon innovation of ETS firms by 5–10% without crowding out their other technology

innovation. The increase from ETS firms accounts for about 1% increase of the regional low-

carbon patents, while a similar increase from large non-ETS firms is also induced by the ETS.

Most importantly, the effect is not associated with permit price, auction, or firm character-

istics, but is driven by mass-based allowance allocation. A rate-based approach, however, is

adopted by China’s national market.
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Emissions trading scheme has been an increasingly popular
policy for climate mitigation: ETS programs cover almost
15% of global carbon emissions at present; 20 programs are

in operation, in the European Union (EU), New Zealand, China,
South Korea, Kazakhstan, Switzerland, and 22 subnational
regions, including California and other states in the Regional
Greenhouse Gas Initiative in the United States; 15 more programs
have been planned or under consideration1. The popularity of
ETS may also help to link national and regional climate policies
for more efficient mitigation globally2. The idea to minimize
abatement cost via trading under an emission cap is theoretically
appealing, but the actual effect of an ETS requires a closer look.
Its performance and relative desirability to alternative policy
instruments can be affected by existing policy3,4, program cov-
erage5, endogenous innovation6, and policy specification. Eva-
luation of the existing ETS programs is therefore important to the
advancement in instrument choice and policy design for climate
mitigation.

The use of emissions trading in China is of particular interest
to researchers and practitioners. China is not only the largest
CO2 emitter, but also has the largest amount of emissions
regulated under ETS. Following its tradition of policy experi-
mentation7, China initiated seven regional ETS pilots in two
provinces and five cities during 2013–20148,9 before starting the
national market in 2017. The seven ETS pilots represent the
country’ first explicit use of a market-based instrument for
climate mitigation. They have been independently designed and
operated, featuring a variety of differences. They are part of
the broader low-carbon pilot scheme for climate policy
experimentation and potentially interact with other national
endeavor for energy efficiency and climate mitigation.
The policy design and interaction create rich opportunities
for policy evaluation and learning (Supplementary Figs. 1 to 3,
Supplementary Table 1, and Supplementary Note 1). Experi-
ence from the pilots can be used directly for the development of
China’s national market with the world largest emission cov-
erage10, and potentially for ETS in other countries.

Here we present firm-level evidence of policy effects directly
from emissions trading and differential program designs in China
since 2013. We focus on the effect of ETS pilots on low-carbon
innovation, based on a quasi-experimental design and dis-
aggregated patent information. Low-carbon innovation helps to
break out of path dependency from a carbon-intensive econ-
omy11 and existing energy infrastructure12; it creates a stock of
technologies to hedge against future uncertainties in climate
mitigation13,14, essential for achieving policy targets to stabilize
global temperature15,16. China has experienced more than ten
years of rapid growth in low-carbon innovation. Two years before
China’s State Intellectual Property Office (SIPO) became the
world largest patent application receiver in 2011, it overtook the
US Patent and Trademark Office (USPTO) in receiving more
low-carbon patent applications (Fig. 1). Innovation quality has
been improving at the same time. As a measure of high-value
innovation, triadic low-carbon patents17 filed jointly at the SIPO,
the USPTO and the European Patent Office (EPO) increased by
14 times, the same as that of total low-carbon patents (Supple-
mentary Fig. 4).

The theoretical literature suggests that climate policies can
direct innovative activities toward low-carbon technologies18,19,
therefore reducing compliance cost and promoting further miti-
gation in the long term. The empirical literature confirms that
increased energy price20, carbon tax21, and the EU ETS22 can
facilitate low-carbon innovation. But not much is known about
the ETS effects conditional on the presence of other climate
policies, the scope of effects among regulated and unregulated
firms, and influences from different ETS program design.

Our findings show significant induced innovation effects of the
ETS both directly on ETS firms and indirectly on large non-ETS
firms on top of other climate policy influences. The identified
effects help to sort out previously inconsistent research findings
related to but not directly from emissions trading in China: policy
announcement in 2011 of ETS pilots has a positive effect on
innovation from a small set of publicly listed firms possibly but
not necessarily subject to emissions trading23; the aggregate effect
at the regional level was arguably negative24; energy price, as a
proxy for carbon price, has a positive effect on clean innovation
but a negative one on other innovation25. By using the same
estimation method, our results are directly comparable to the
innovation effect of the EU ETS22, showing a similar, significant
effect on individual ETS firms but limited impacts at the
regional level.

More importantly, our finding reveals the influences from ETS
program design. The policy effect was not affected by permit
price, auction, or industrial energy intensity, suggesting a weak
role of carbon pricing, likely caused by the overall low price and
limited trading in several ETS programs. The effect was driven by
firms that were subject to mass-based allowance allocation where
the number of allowances was pre-established before a com-
pliance cycle; the effect was not significant among firms subject to
rate-based allowance allocation, where the number of allowances
was updated according to the actual output. Our findings suggest
that China’s current national market, with a rate-based approach
and inclusion of the power sector only, may deliver additional
climate benefits with a broader coverage and a better allocation
approach.

Results
Rate and direction of ETS-induced innovation. The rate and
direction of innovation are essential for achieving climate miti-
gation targets by affecting the availability, cost, performance, and
timing of low-carbon technological change. The main innovation
effect of an ETS on low-carbon technologies was estimated in two
steps. First, we matched for each ETS firm a similar non-ETS firm
as its counterfactual, to control for factors other than the ETS that
might have affected innovation (see Methods section). The mat-
ched ETS and non-ETS firms shared similar patterns in their
historical patent filing (Fig. 2 and Supplementary Fig. 5) and
other characteristics (Supplementary Fig. 6, Supplementary
Tables 2–4, and Supplementary Note 2). But the two groups

100,000

2001 2003 2005 2007 2009 2011 2013

EPO

USPTO

N
um

be
r 

of
 lo

w
 c

ar
bo

n 
pa

te
nt

s

SIPO

80,000

60,000

40,000

20,000

0

Fig. 1 Annual low-carbon patent application at the Chinese, US and EU
patent offices. SIPO patents are available via its website (http://www.sipo.
gov.cn/zhfwpt/zljs/). USPTO and EPO patents are available via EPO’s
PATSTAT database (https://www.epo.org/searching-for-patents/
business/patstat.html#tab-1). The scope of low-carbon innovation is the
same as used in the main estimation (see Methods section) with reference
to the IPC Green Inventory
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diverged after the initiation of seven ETS pilots during
2013–2014, implying a positive effect of the ETS on low-carbon
innovation.

The ETS effect on low-carbon innovation was further
estimated by applying a Tobit-modified difference-in-differences
(DID) estimator to the matched sample (see Methods section).
An average ETS firm filed 1.75 additional low-carbon patents,
with a 95% confidence interval of (0.5, 1.9), during the first two
years of the ETS (Fig. 3a and Supplementary Table 5). Such an
effect was significant and substantial—the EU ETS, in compar-
ison, led to two additional low-carbon patents filed per firm
in five years22. The effect was consistent across different matching
specifications (Supplementary Note 3 and Supplementary
Table 6); scopes of low-carbon patents (Supplementary Table 7);
more restrictive matching only within ETS regions to eliminate
other policy influences (Supplementary Table 8); different
baselines and samples to eliminate unobservable selection bias
(Supplementary Table 9); and an alternative estimation based on
a common parametric DID (Supplementary Table 10). The
estimated effect also passed placebo tests, being unlikely a result
of chance, any other omitted variable (Supplementary Fig. 7), or
regional and firm features (Supplementary Table 11).

Despite the promising policy effect on the matched sample, the
overall contribution of emissions trading on low-carbon innova-
tion was limited. To guarantee matching quality, 40% of the ETS
firms, mostly being larger and more innovative, could not be
matched with non-ETS firms (Supplementary Table 12). If we
assume moderately that the same policy effect of 1.75 additional
patents applied to these firms, the total effect on all the ETS firms
would be 282 (90, 301) additional low-carbon patents considering

data censoring at zero, or 10.1% (3.04%, 10.9%) increase
(Supplementary Table 13 and Supplementary Note 4). If an
alternative matching method based on propensity score is used to
have most of the ETS firms matched, the estimated effect would
be 0.75 (0, 1.9) additional low-carbon patents individually, 135
(0, 301) additional patents in total, or 4.6% (0, 10.9%) increase
(Supplementary Figs. 8–9, Supplementary Table 14, and Supple-
mentary Note 5). Even if we assume no effect on the 40%
unmatched firms, an extreme case, the increase from the matched
firms would still lead to 2.2% (0.73%, 2.38%) increase of all the
ETS firms (Supplementary Table 13). Depending on the
assumption, the direct effect of the ETS contributed to around
0.4–2% of the more than 16,000 low-carbon patents filed by firms
in ETS regions during 2014–2015. The overall contribution of
China’s pilot ETS to regional low-carbon innovation was similar
to that of the EU ETS22.

A common concern for policy-induced innovation is that
increased low-carbon innovation in a firm may crowd out other
innovative activities25,26. The disproportionate policy impacts
would be particularly troublesome if other innovation of
high social value were delayed or suspended, creating adverse
side-effects of climate mitigation. To examine this, the same
estimation method was applied to non-low-carbon technologies.
Further subcategorization of patents into detailed technology
areas was not pursued, considering the reliability of statistical
inference.

Instead of being crowded out, other technology patenting was
increased by China’s pilot ETS too. The ETS caused a firm to file
one (0, 2) additional patent of other technologies (Fig. 3a), the
same as the crowding-in effect of the EU ETS. This was driven
largely by increased filing of other green patents: the share of
these patents increased from less than 1% to more than 5%
among ETS firms, and from less than 1% to just above 1% among
non-ETS firms. Either overlapping with or complementary to
low-carbon technologies, the availability of these other green
technologies supports the previous forecast of co-benefits from
China’s carbon pricing27. Although 69% of the patents induced
by the ETS was non-low-carbon (Fig. 3b), this already
represented a shift in innovation direction—the share of low-
carbon patents increased to 31% from only a few percent before
the ETS.

Spillovers of policy effects to non-ETS firms. It is possible that
the innovation effect of China’s ETS not only pertain to the
regulated ETS firms, but also to other unregulated firms. An
environmental policy may create a deterrence effect, causing firms
that are likely to be regulated in the future to comply in advance.
If such policy spillovers existed, the overall innovation effect of
the ETS would be greater than a simple aggregation of the firm-
level estimation above: the scope of the effect would be beyond
ETS firms to unregulated ones; the individual effect on ETS firms
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Fig. 2 The number of low-carbon patenting by matched ETS and non-ETS
firms. ETS and non-ETS firms had similar trends of low-carbon patenting
before the ETS started, and diverged afterwards. The gray area marks the
period from the first program being started in June 2013 to the last program
being started in June 2014
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Fig. 3 Rate and direction of ETS-induced innovation. a Firm-level effects and b aggregate effects on the number of low-carbon and other technology
patenting and 95% confidence intervals. The aggregate effect was calculated by applying the individual effect to firms with consideration of the corner
solution at zero patent
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might be greater than the estimation above. While the nature of
innovation may also create knowledge flows and spillovers,
especially to firms in the same technology space as the regulated
firms, this process takes time, unlikely significant in the first
two years.

We identified three sets of firms that were more likely subject
to policy spillovers and estimated impacts on them separately.
First, several ETS programs specified their respective lists of non-
ETS firms that were required to report CO2 emissions annually
(Supplementary Table 1). The innovation effect of reporting alone
is unclear, considering inconsistent evidence from voluntary
programs28,29. But these large CO2 emitters would have a higher
chance to be included in the ETS later because of either their own
emission increase or a lower inclusion criteria. Second, we
selected in each industry sector of each ETS program the largest
non-ETS firms by output. These large non-ETS firms within ETS
sectors had a higher chance of being regulated later because of
either their own emission increase or a lower inclusion criteria.
Third, we focused on the non-ETS sectors not covered by six ETS
programs but by the Shenzhen ETS (the most comprehensive in
sectoral coverage), and selected the largest firms in those sectors.
These firms would likely be regulated if the ETS programs were to
expand in sectoral coverage following the Shenzhen ETS. In
addition, we tested knowledge spillovers among non-ETS firms
that filed patents jointly with ETS firms previously, following the
analysis for the EU ETS22.

Large non-ETS firms in sectors covered by their regional ETS
(second set above) or the Shenzhen ETS (third set above) were
significantly induced by the ETS to innovate. We estimated one
more patenting from each of the firms in response to the ETS,
with 95% confidence intervals of (1, 1) and (1, 1.9), respectively,
thanks to their large sample size (Table 1, Supplementary
Table 15, and Supplementary Note 6). To confirm that the effect
only pertained to these large firms more likely to be included in
the ETS rather than sector-wide through knowledge spillovers,
we also estimated the effect on small firms in these sectors,
showing no significant effect. The spillover effect was not
associated with industry competition, patent transfer or license
out (Supplementary Note 6), suggesting the unregulated firms’
own demand in response to the policy. With a small sample size,
the estimated effect on reporting firms was positive but
nonsignificant. Neither could we find any evidence of knowledge
spillover yet, as expected.

Because of the policy spillovers, the innovation impact of the
ETS was broader than regulated firms. To avoid underestimation
of the direct effect, the ETS firms were matched with firms in the
non-ETS low-carbon pilot regions, showing a similar effect of
1.75 (1, 1.9) patents. Because of the nature of spillovers, however,
the overall impact cannot be precisely estimated. It was not likely
substantial, considering that the ETS firms only contributed to
around 1% increase of regional low-carbon patenting and
spillovers were limited to large unregulated firms in sectors
already or likely covered by the ETS. Further increase of the
policy impacts requires a broader program coverage.

Potential mechanism of the ETS in facilitating innovation.
Given significant effects of the ETS on firm-level innovation, it
would be important to understand the mechanism through which
the ETS facilitated innovative activities. A better understanding of
the policy mechanism helps to further improve the effectiveness
and efficiency of policy-making for climate mitigation.

The conventional wisdom is that environmental externalities of
emissions contribute to underinvestment in innovation and
adoption of pollution-control technologies; emissions trading
increases the demand for pollution-control innovation by
addressing the environmental externalities and creating appro-
priate price signals for mitigation30,31. If this were the case for
China’s ETS, one would expect that a higher permit price led to
more low-carbon innovation. But a price mechanism could be
challenged by the presence of spillovers of policy-induced
innovation to non-ETS firms not subject to carbon pricing. The
mechanism could also be compromised by the overall low price
and limited transaction.

Allowance allocation scheme is also an important feature of an
ETS and may affect the degree of innovation6,32. In a typical cap-
and-trade system, the amount of allowances is pre-established
before a compliance cycle, i.e., mass-based. For political,
competitiveness, or equity concerns, however, a rate-based system
(also known as tradable performance standard) is often used by
updating the number of allowances according to the actual
output33. The former can achieve the social optimum, at least in
theory, by setting an emission level to have the marginal
abatement cost equal the marginal cost of the externality. Its
efficiency also helps to link national and regional programs for
global mitigation efficiency2. In comparison, rate-based allocation
subsidizes output by allowing additional emissions and compro-
mises cost-effectiveness34,35, which is exacerbated with hetero-
geneous benchmarks36. The innovation impact from the two
methods, however, is likely ambiguous6,33. ETS pilots varied in
their use of allocation methods, and usually applied different
methods to different industries, which may lead to heterogeneous
induced-innovation effects.

We evaluated whether the induced-innovation effect was
dependent upon pricing, allowance allocation, and related features
that varied across programs and industries. Program or firm-
specific influences were tested both by a DID estimation with
interaction terms between these program features and the
treatment status of the ETS and by between-group comparisons
based on Wilcoxon’s rank-sum test (Table 2; see Methods section).

When considering the interactions from program and firm
features, the estimated ETS effect was no longer significant, with a
much smaller coefficient than being estimated alone (Supple-
mentary Table 10), suggesting its influences from these features.
A higher permit price, however, was not associated with more
ETS-induced innovation, shown by a small, nonsignificant
coefficient. Neither was auction significantly correlated with
induced innovation. Consistent with these was the fact that ETS
firms in energy-intensive sectors, who should be more sensitive to
carbon pricing, did not have significantly more innovation. All of

Table 1 Indirect impact of the ETS on non-ETS firms

Estimate 95% confidence interval Matched firm pair

Reporting firms 1 (−1, 2.9) 128
Large firms in ETS sectors 1 (1, 1) 1430
Small firms in ETS sectors 0.75 (−0.9, 0.9) 2142
Large firms in Shenzhen sectors 1 (1, 1.9) 1074
Small firms in Shenzhen sectors 0.25 (−0.9, 0.9) 1411
Co-patenters of ETS firms 0.75 (−1, 3.9) 79
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these suggest a weak role carbon pricing and trading played in the
first two years, with overall low price and limited trading in
several markets: the highest permit price was less than $20/ton
(Supplementary Fig. 2) and the highest average price was lower
than $10/ton (Supplementary Table 1); in four out of the seven
markets, two-year total trading was less than 5% of the annual
allowance (Supplementary Table 1).

While pricing and trading did not affect induced innovation,
allowance allocation structure did. Firms under mass-based
allocation outperformed those under rate-based allocation with
significantly more induced low-carbon innovation. Results were
consistent in cases both without and with firm characteristics as
control variables and in a subsample excluding power plants,
which tend to file fewer patents and receive rate-based allowance
allocation (Table 2). The mass-based approach actually drove the
overall policy effect while the rate-based approach had no effect
(Fig. 4).

We further ruled out the influence from other factors,
including program commitment in cap reduction, industrial
competition37,38 (measured by Herfindahl-Hirschman Index),
firms’ previous patenting experience39, and ownership. Mass-
based allocation was the only one that ensured an induced
innovation effect from the ETS. It guarantees a binding cap for
emissions control, at least similar to a stringent mandatory
instrument for policy effectiveness when the market does not
operate well for efficiency. Although patent quality has often been
a concern, there is no evidence of the quality of ETS-induced
innovation being compromised (Supplementary Table 16 and
Supplementary Note 7).

Discussion
As the largest CO2 emitter, China’s mitigation efforts contribute
to the global climate agenda through direct emission reduction
and indirect policy learning and technology diffusion. There has

been a patenting surge in China for innovation in general, thanks
to a series of reforms40 and policy incentives39,41. We show in this
context emissions trading schemes stood out from other climate
policy experimentations to induce firm-level innovation, parti-
cularly for low-carbon technologies. The policy-induced innova-
tion effect extended beyond the regulated firms to large
unregulated ones in sectors already or likely covered by the ETS.
The overall contribution of the ETS to regional low-carbon
innovation, however, was still limited, suggesting the need for
broader program coverage to increase policy impacts.

The significant policy effect was not affected by carbon pricing
yet, with low permit price, limited auction, and limited market
fluidity in several programs. Rather, the policy effect was driven
by firms under mass-based allocation with the number of
allowances established in advance of a compliance cycle. China’s

Table 2 Heterogeneous effects of the ETS across programs and firms

Dependent variable (Δlow-carbon patent) Wilcoxon’s rank-sum test
alternative hypothesis

ETS −0.007 (0.096) −0.038 (0.0928) −0.139 (0.155)
ETS*average permit price 0.000 0.000 0.003 High price > low price

(0.002) (0.002) (0.003) p= 0.97
ETS*auction= 1 0.018 0.016 0.016 Auction > no auction

(0.078) (0.078) (0.077) p= 0.99
ETS*mass-based= 1 0.069* 0.073** 0.083* Mass-based > rate-based

(0.036) (0.034) (0.044) p= 0.02
ETS*cap reduction= 1 −0.033 −0.035 −0.030 Cap reduction > no cap

(0.048) (0.048) (0.053) p= 0.07
ETS*energy-intensive= 1 0.015 0.000 0.024 Energy-intensive > other

(0.050) (0.047) (0.052) p= 0.19
ETS*no patent before= 1 −0.011 −0.009 −0.010 No patent before > patent

(0.041) (0.041) (0.046) p= 0.30
ETS*Herfindahl-Hirschman Index 0.588 0.701 0.734 High-competition > other

(1.406) (1.377) (1.425) p= 0.12
ETS*state-owned= 1 0.003 0.072 0.094* State-owned > other

(0.035) (0.043) (0.046) p= 0.34
ETS*foreign-owned= 1 −0.028 −0.001 0.002 Foreign-owned > other

(0.036) (0.037) (0.028) p= 0.77
Firm characteristics No Yes Yes
Matched firm pair dummies Yes Yes Yes
Excluding power plants No No Yes
Observations 1332 1332 1198
Adjusted R-squared 0.204 0.208 0.216

Note: Astersisks (*) and (**) indicate 10% and 5% significance levels, respectively. In parentheses are standard errors clustered at the ETS program and province levels for observations in and outside
ETS regions, respectively
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Fig. 4 ETS-induced Innovation under alternative allowance allocation
approaches. ETS effects on the number of low-carbon patenting and 95%
confidence intervals among firms under mass-based allocation and that
under rate-based allocation
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national carbon market has adopted a rate-based approach with
the number of allowances being updated by firms’ actual out-
put42, which had no effect on inducing innovation in the ETS
pilots. A rate-based approach may have its advantage in adap-
tation and distributional considerations. But our results provide
one more reason in favor of a mass-based approach for future
development of the market, besides its efficiency advantage and
ease of linkage across programs.

Methods
Data. Our main dataset of patent information has been made available by the State
Intellectual Property Office (SIPO) for free and its associated publisher the Intel-
lectual Property Publishing House Co. Ltd for purchase. It includes information of
all the patent applications the SIPO received and published since the first Chinese
patent law being enforced in 1985, from both domestic and foreign individuals,
firms, and institutions. Information about each patent application includes appli-
cation number, date, patent title, applicant name and location, inventor, agent,
International Patent Classification (IPC) code, and patent type (invention, utility
model, or design).

There is a time lag between patent application and SIPO publication of patent
information, which influences the timing for collecting patent data in evaluating
recent policies. The time lag is usually considered around 18 months41, but our
investigation shows that to compile more representative patent data, a longer lag
would be preferred. Supplementary Fig. 10 illustrates monthly cumulative
distribution of published patents by the year of application. After 18 months,
around 80% out of the total applications as announced by the SIPO for a given year
have been published, and the rate of publication are still increasing rapidly. The
share increases to around 90% after 26 months, which is well beyond the turning
point and at the flat part of the curves with only trivial increases in following years.
As the curves predict, a few percent out of SIPO announced total applications will
never be published in a reasonable time frame.

The cumulative distributions of publication months in Supplementary Fig. 10
are for annual cohorts where annual total application numbers are based on SIPO’s
announcement. The publication lags for patenting in different months of a year—
January and December in the extreme cases—are mixed. Alternatively, we took all
patent entries during 2007–2016 in the SIPO dataset as the total population and
drew the cumulative distribution of the time lag between application and
publication for each patent in Supplementary Fig. 11. It provides a more accurate
probability distribution of time lags between patenting and publication in recent
years. Again, it shows that only 80% of all patents would be published and available
after 18 months, although there is a surge in the 18th month because of required
publication. After 26 months, more than 97% of patent information ever published
by the SIPO would be available. Therefore, all our results were produced based on
data acquired in March 2018, 26 months after the end of our study period in 2015.

Data about patent filing, instead of patent granted, have been used in the
analysis, following the previous innovation research in Europe and China22,39,41,43.
Besides the reason that filing measures firms’ innovative efforts, patent examination
decisions also take much longer to be available41, making it impossible to evaluate
policies in recent years based on data of patent granted. Patent filing is also of
better quality and more consistent availability than alternative measurements of
innovation, such as research and development expenditure43. In total, we collected
13,473,005 published patent applications filed to the SIPO from 1985–2016,
including 6,993,314 inventions and 6,479,691 utility models. Among them, firms
filed 8,268,320 patents, including 4,516,681 inventions and 3,751,639 utility
models.

A well-known issue with Chinese patent filing is the insufficiency and
unavailability of citation information, which could have been used as an indicator
for patent quality41, for two reasons: first, the SIPO and patent regulations in China
do not require citation of all related patents; second, the SIPO has not made the
citation information available. We addressed this issue in two ways. Our descriptive
analysis used triadic patents filed jointly at the SIPO, the USPTO and the EPO to
measure high-quality patents. These international patent families are proved
particularly valuable17. But patent families are extremely rare among firms, and
take a much longer time to be available than the common time lag between
application and publication at the SIPO. Therefore, in econometric analysis where
it is infeasible to use triadic patents, we differentiated patent types between high-
quality invention patents and low-quality utility models. The third type, designs, is
about exterior appearance of a product and therefore not included in our analysis,
similar to the practice in other research39.

In order to distinguish a patent of low-carbon innovation from other patents,
we used the IPC code accompanied with each patent. Every patent application
includes one or more IPC codes, which were assigned by SIPO’s experts to reflect
the patent’s technology areas. To identify the low-carbon IPC codes, we referred to
the IPC Green Inventory, which was developed by the World Intellectual Property
Office with reference to the United Nations Framework Convention on Climate
Change. An alternative categorization of low-carbon technologies, Y02
classification, was not feasible, because the SIPO patent entries do not contain
related classification codes.

Low-carbon patents in our main results were based on a relatively broad set of
areas related to climate mitigation in the IPC Green Inventory: alternative energy
production, transportation, energy conservation, carbon capture and storage,
nuclear power generation, reuse of waste materials, and administrative, regulatory,
and design aspects related to climate mitigation. This classification led to 1,202,975
low-carbon patents, or 9% of total applications, in which 546,799 were filed by
firms in China. An alternative, narrow set of areas were used to represent low-
carbon innovation in robustness checks, consisting of low-carbon power generation
and energy conservation.

The patent data were merged with the Annual Survey of Industrial Firms (ASIF,
also known as the Chinese Industrial Enterprise Database) from the National
Bureau of Statistics to form a dataset of firms and patents they filed. Being the most
comprehensive firm-level dataset in China besides economic census, the ASIF
consists of all the state-owned enterprises and other enterprises that are above
scale, meaning with annual sales above 20 million RMB (since 2011 for our study
period, before that above scale referred to above 5 million RMB).

A fuzzy matching technique was adopted to improve matching rate between
firms and patent applicants sharing the same name, in recognition of personal
discretion in reporting information for the ASIF and patent application: we broke
names into pieces of information and allowed flexibility in the sequence by which
the pieces appear and minor variation of their forms, as long as there was no
conflict. For example, two names with almost the same characters except that one
with location information appeared at the beginning and the other with location
information appeared in the middle could be treated as the same firm. Names with
the only difference in the suffix of location information (such as Beijing City versus
Beijing) would also be considered referring to the same firm. Without causing any
conflict, this procedure improved the overall quality in dataset merge. To reflect
firms’ annual innovation activities, patents were counted according to the date of
application. The merging procedure led to a dataset of 309,656 firms, who filed
2,000,120 patents, including 147,102 low-carbon patents. The regulatory status of a
firm with regard to the ETS has been generally available through lists of ETS firms
publicized by the local governments. In rare occasions where a list was unavailable,
we filed information disclosure requests to obtain firm lists.

Empirical strategies. The identification strategy for the effect of the ETS on
innovation has been matching-adjusted DID that proceeded in two steps44,45, used
for estimation of both the main policy effects and spillovers. The same strategy has
been used, for example, to evaluate the effect of NOX emissions trading in Southern
California46 and European Union ETS22. The first step selected and matched ETS
firms with similar non-ETS firms, conditional on their observable characteristics, to
remove potential biases in sample selection caused by policy design or other
confounding factors; the second step estimated the difference-in-differences of the
matched ETS and no-ETS firms to account for firm-level heterogeneity and time
trends, with adjustment for the issue of a corner solution at zero patent.

Matching was the preferred strategy to make the regulatory status under the
ETS appear to be a random assignment, conditional on observable characteristics
of firms. It took advantage of the fact that seven independent ETS programs all
adopted different firm inclusion criteria, with regard to industrial sector (4 to
26 sectors), emission threshold (3 to 150 thousand tons of CO2), and the base year
to measure emission for inclusion (2009–11, 2010–2011, 2009–2012, 2011–2012, or
2008–2012). The differences in inclusion criteria across programs led to an overlap
in the joint distributions of pre-ETS covariates of ETS and non-ETS firms.

Two sets of marginal differences between ETS and non-ETS firms were
explored for a quasi-experimental design via matching: two firms may be identical
except their locations, so that one (an ETS firm) is in the ETS, and the other
(a non-ETS firm) is in place of no ETS but other climate policies, of an ETS with a
narrower sectoral coverage, or of an ETS with a higher emission threshold for firm
inclusion; two firms may be identical except their highest emission levels during the
base years for inclusion measurement, which does not necessarily indicate a
difference in pre-treatment emissions.

Similarity between ETS and non-ETS firms was measured by a nearest neighbor
matching estimator44,47. It required a firm pair to be exactly matched on the four-
digit industrial classification code (the most detailed level), on location within low-
carbon pilot regions, and to have the shortest Mahalanobis distance. The
Mahalanobis distance of a firm pair was calculated based on their pretreatment
innovation and common predicators of innovation, including total asset,
employment, age, low-carbon and total patenting in the pretreatment period
(2011–2012), and accumulative levels of low-carbon and total patenting by 2012.
The remaining covariates were log transformed except for age, and patent count
plus one was used in log transformation. In addition, quadratic terms were used for
all the patenting related covariates to improve matching quality on innovation.
Considering both matching quality (i.e., similarity between a matched firm pair)
and representativeness of a matched sample, we set a caliper of 1.5 to remove
matched pairs with longer Mahalanobis distances. Replacement was allowed so that
a non-ETS firm could be used as a match for multiple ETS firms. Matching quality
was evaluated by comparing between the two groups their pretreatment levels of
the matching variables, as well as output, which was left out of matching for
evaluation only (Supplementary Tables 3–4 and Supplementary Figs. 5–6).

The second step applied a nonparametric Tobit-modified empirical-likelihood-
based DID estimator that has been used in estimating the effect of the EU ETS22.
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The advantage of this estimator over a common DID is that it estimates precisely
the number of patenting while accounting for the issue of a corner solution at zero
—firms with optimal patenting choice at zero may possess different levels of
innovation intention. In addition, the nonparametric nature of the estimator does
not assume a specific distribution of patent data. It searched for a treatment effect
which, when being subtracted, made the distributions of ETS and non-ETS firms’
first differences most similar, where similarity was measured by Wilcoxon’s signed-
rank statistic48. A Tobit modification was applied to the subtraction process to
calculate the DID of each firm pair to account for the corner solution at zero:

δj ¼
max YjT1 � τ � YjT0;�YjT0

� �
� YjC1;�YjC0

� �
if τ � 0

YjT1 � YjT0

� �
�max YjC1 þ τ � YjC0;�YjC0

� �
if τ < 0

8><
>:

ð1Þ

where Y is the number of patent filing; firm pairs are indexed by j; τ is the
treatment effect being searched; δj is the DID used for calculating Wilcoxon’s
statistic; T and C denote ETS and non-ETS firms in a pair; 1 and 0 denote
posttreatment (2014–2015) and pretreatment (2011–2012) periods, respectively.

Matching-adjusted DID estimators assume conditional unconfoundedness, i.e.,
assignment of regulatory status is independent of the potential outcome
distribution of firms had they not been assigned to the ETS, conditional on the
observables. To assess this assumption (which is not directly testable in principal)
and general robustness of our results, we tested a set of alternative strategies and
specifications, including different calipers, number of non-ETS firms matched with
each ETS firm, location restriction in matching, estimation strategy, scope of low-
carbon technologies, samples, baseline periods, as well as placebo tests
(Supplementary Tables 6–11 and Supplementary Fig. 7). Balance tests for output,
which was unobserved in the matching process, also helped to confirm conditional
unconfoundedness (Supplementary Tables 3–4 and Supplementary Figs. 5–6).

The same estimation strategy was used to test policy spillover effects. It matched
non-ETS firms potentially subject to spillovers—reporting firms, large firms in ETS
sectors or in Shenzhen ETS sectors, co-patenters of ETS firms—with other non-
ETS firms not subject to these influences. Unlike clear-cut inclusion criteria,
however, spillovers take networked channels and can be ambiguous. Therefore, the
same identification strategy may not be as strong as in the main estimation.

Besides our preferred strategy that can estimate a constant treatment effect and
account for the corner solution at zero patenting, we also adopted an alternative
estimation strategy after the same matching process. This strategy followed
common practices in research using patent data, and could be extended to
investigate whether ETS program specification and composition of firms and
industries led to heterogeneous induced innovation effects. For point estimation of
the general effects, a common parametric DID was used:

ΔPatentij ¼ αj þ β1Di¼T þ εij ð2Þ
where matched firm pairs are indexed by j and the treatment status in a firm pair is
indicated by i; αj is a set of firm pair dummies; Di¼T is a dummy variable with the
value one for ETS firms; εij is the error term; ΔPatentij is the first difference of the
natural log of patent count plus one, often used to address inflated number of zeros
in patent data49,50.

The application of the main estimation strategy to heterogeneous treatment
effects in investigation of potential ETS mechanisms would be computationally
difficult, considering the calculation of empirical likelihood. Instead, we tested
heterogeneous treatment effects based on the common DID of Eq. 2:

ΔPatentij ¼ αj þ β1Di¼T þ β2Di¼TXps þ β3Di¼TXj þ ϵij ð3Þ
where Xps is a set of design and operational features that vary across programs and
sectors within programs; Xj is a set of firm and industry characteristics. To assist
statistical inference, we also divided the ETS firms into two groups according to
program specifications or firm characteristics to be investigated, and compared the
DID values between groups based on Wilcoxon’s rank-sum test.

It has to be noted that, although the same matched sample from the main
estimation is used, it does not represent the same identification strategy. The main
estimation takes advantage of different program inclusion criteria to use matching
to recover seemingly randomized assignment of ETS status for causal identification.
But when making inference for the effect from different program features,
assignment of these features is not likely made randomized through matching,
because they may be correlated with program inclusion criteria.

Data availability
The original patent data has been made available by the State Intellectual Property Office
via its website (http://www.sipo.gov.cn/zhfwpt/zljs/) and also published by the
Intellectual Property Publishing House Co. Ltd, with bulk access granted. The Annual
Survey of Industrial Firms is confidential and restricted from public access. For
reproducing figures and results, processed data with confidential information removed is
available from the authors on request.

Code availability
Computer code is available from the authors on request.
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