
Perceptual awareness and active inference
Thomas Parr 1,*, Andrew W. Corcoran2, Karl J. Friston1

and Jakob Hohwy 2

1Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, Institute of
Neurology, 12 Queen Square, London WC1N 3BG, UK; 2Cognition & Philosophy Laboratory, Department of
Philosophy, Monash University, Melbourne, VIC 3800, Australia

*Correspondence address. The Wellcome Centre for Human Neuroimaging, Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK. Tel: þ44 (0)20
3448 4362; Fax: þ44 (0)20 7813 1420; E-mail: thomas.parr.12@ucl.ac.uk

Abstract

Perceptual awareness depends upon the way in which we engage with our sensorium. This notion is central to active
inference, a theoretical framework that treats perception and action as inferential processes. This variational perspective
on cognition formalizes the notion of perception as hypothesis testing and treats actions as experiments that are designed
(in part) to gather evidence for or against alternative hypotheses. The common treatment of perception and action affords a
useful interpretation of certain perceptual phenomena whose active component is often not acknowledged. In this article,
we start by considering Troxler fading – the dissipation of a peripheral percept during maintenance of fixation, and its
recovery during free (saccadic) exploration. This offers an important example of the failure to maintain a percept without
actively interrogating a visual scene. We argue that this may be understood in terms of the accumulation of uncertainty
about a hypothesized stimulus when free exploration is disrupted by experimental instructions or pathology. Once we take
this view, we can generalize the idea of using bodily (oculomotor) action to resolve uncertainty to include the use of mental
(attentional) actions for the same purpose. This affords a useful way to think about binocular rivalry paradigms, in which
perceptual changes need not be associated with an overt movement.
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Introduction

Bayesian accounts of brain function (Knill and Pouget 2004;
Doya 2007; De Ridder et al. 2014) rely upon the idea that the brain
utilizes an internal generative model (Von Helmholtz 1867) of
its environment to make predictions about incoming sensory
data, and that it adjusts this model when these predictions are
not fulfilled (Rao and Ballard 1999; Friston and Kiebel 2009). This
view formalizes the notion of perception as hypothesis testing
(Gregory 1980) and facilitates the extension of this to the meta-
phor of the brain as a scientist who actively performs experi-
ments (actions) to disambiguate between competing models of
the world (Friston et al. 2015). Although this perspective has
been successful in understanding a range of behavioural, ana-
tomical and neurophysiological findings (Friston et al. 2017a;

Parr and Friston 2018), some phenomena appear at odds with
the idea that perception is inference. Here, we focus upon
two such phenomena in which percepts appear to deviate from
what we might intuitively expect from optimal inference.
Specifically, both involve the perception of change over time,
despite static sensory input. These include Troxler fading,
in which fixation in the centre of an unchanging stimulus is
associated with the percept of fading of peripheral stimuli
(Troxler 1804); and perceptual (e.g. binocular) rivalry, in which
awareness alternates between two distinct percepts. We argue
that these percepts can be framed as optimal inferences [in line
with the complete class theorems (Wald 1947)] and that their
apparent sub-optimality affords an opportunity to explore
the sorts of prior beliefs that are necessary to make these Bayes
optimal [Bayes optimality is quantified in terms of Bayesian
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model evidence (i.e. how probable data are under a given
model). This is the quantity approximated by negative free en-
ergy. Note that, because free energy is a functional of prior
beliefs, the behaviour that maximizes model evidence will differ
depending upon those beliefs].

This sort of approach has been employed with great suc-
cess to aid understanding our susceptibility to a range of visual
illusions (Geisler and Kersten 2002; Weiss et al. 2002; Brown
and Friston 2012; Brown et al. 2013). In what follows, we make
use of similar ideas but place a special emphasis upon active
engagement with the sensorium. The importance of action in
perception is simply demonstrated in Fig. 1, which shows a
stimulus of the sort that can induce Troxler fading. On ex-
tended fixation of the central cross, the colours in the periph-
ery appear to fade away. The colours immediately re-appear
upon resumption of normal exploratory eye movements. This
simple example illustrates the need to consider the active in-
ferential processes that underwrite perceptual awareness. In
the following sections, we first provide a brief overview of the
generic aspects of active inference and then turn to the spe-
cific generative model used to illustrate the importance of ac-
tion in perception; under beliefs that the world may change in
an unpredictable way. We then apply the conclusions drawn
from these simulations to try to explain perceptual (binocular)
rivalry. A comprehensive evaluation of all previous empirical
and experimental data is beyond the scope of the present pa-
per, which presents a starting point for further research.
Ultimately, the theoretical accounts proposed here represent
hypotheses as to the generative models and, implicitly, com-
putational mechanisms that underwrite these perceptual phe-
nomena. As such, they must be answerable to empirical data.

To facilitate this, we highlight some of the predictions that
arise from this approach that we hope to test through psycho-
physical and neuroimaging experiments.

Active Inference

The ideas outlined in the introduction may be formalized by
appealing to active inference. This is a theoretical perspective
on brain function that frames action and perception as
‘self-evidencing’ (Hohwy 2016) or free energy minimizing pro-
cesses. Another way of putting this is that these are inferential
processes, with perception representing inferences about
the causes of sensory data, and action planning as a process of
inference about ‘what I am going to do next’. A simple way to
motivate this perspective is to start from the idea that actions
(u) change the external world such that some function of sen-
sory observations (o) is optimized (Friston 2013):

u ¼ arg max
u

LðoðuÞÞ (1)

This premise is essentially a restatement of the principle of ho-
meostasis, as it says that actions correct deviations in observed
values (where observations encompass both external and inter-
nal environments), returning them to their optimum values.
It also underwrites a range of theoretical accounts of behaviour,
where creatures are assumed to maximize the ‘value’ or ‘utility’
of the data they observe. Given that this function of observa-
tions may be maximized, we can treat this as an un-normalized
log probability (often referred to as ‘model evidence’):

u ¼ arg max
u

ln PðoðuÞÞ

PðoðuÞÞ ¼
X

p;s

PðoðuÞ; s; pÞ (2)

It is this expression that justifies the self-evidencing perspec-
tive, as the drive to optimize sensations has been re-expressed
as a drive to seek those sensory data that afford greater evi-
dence to one’s model of the world. Evidence is used here in the
technical sense, as a marginal likelihood (probability of data
under a model). This is made explicit in the second line of
Equation (2), in which the evidence is given as the marginal of
a distribution that accounts for the generation of observations
by hidden states (s) of the world, and the policy (course of ac-
tion) pursued (p) by the creature in question. From a varia-
tional perspective [variational methods originated in physics
as a way of turning a difficult integration problem into an opti-
mization problem Feynman, R. P. (1998). In the context of vari-
ational inference, this is used to convert the problem of
summing over all unknown variables into an optimization of a
quantity called free energy (in statistics and machine learning,
negative free energy is sometimes referred to as the evidence
lower bound or ‘ELBO’)] we can re-write Equation (2) in terms
of a free energy functional (F) (Dayan et al. 1995; Beal 2003;
Friston et al. 2010):

u ¼ argmin
u

F

F ¼ EQ ½lnQðs; pÞ � lnPðo; s; pÞ�
¼ �EQ ½lnPðo; s; pÞ� � H½Qðs; pÞ�
¼ �lnPðoÞ þ DKL½Qðs;pÞjjPðs; pjoÞ�
� � lnPðoÞ () Qðs; pÞ ¼ argmin

Q
DKL½Qðs; pÞjjPðs; pjoÞ�

(3)

Figure 1. Troxler fading. The image shown here is a simple example
of the sorts of stimuli used to induce Troxler fading. During free (sac-
cadic) exploration of this image, four blurred circles are visible, in
various colours. On fixating on the cross in the centre of this image,
the coloured stimuli gradually fade until they match the grey of the
background. Once free exploration is resumed, the percepts of
the colours are reinstated. This provides an interesting example
of the role of action in perception, as the presence or absence of ac-
tion leads to dramatically different percepts.
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This equation says that when our beliefs (Q) approximate
the (posterior) probability of states and policies (i.e. sequences
of actions) given sensory data (observations), minimizing free
energy approximates maximization of model evidence. This
emphasizes the (approximately) Bayesian inferential processes
implicated in self-evidencing. In the following, we equate per-
ception with optimization of beliefs about states and planning
with optimization of beliefs about policies. These rest upon a
generative model of the form shown in Fig. 2, in which states
cause observations, and themselves are caused by states at pre-
vious times, depending upon the policy pursued. Appealing to
the same ideas outlined in this section, we set the prior belief
about policies such that those policies with the smallest

expected free energy (G) are considered more probable (Friston
et al. 2017b,c).

lnPðpÞ ¼ �GðpÞ

GðpÞ ¼ E~Q ½lnQðsjpÞ � lnPðo; sÞ�

¼ EQ ½H ½PðojsÞ�
ð1Þ

� � H½QðojpÞ�
ð2Þ

�E~Q ½lnPðoÞ�
ð3Þ

~Qðo; sjpÞ ¼ QðsjpÞPðojsÞ

(4)

In Equation (4), the expected free energy is expressed in two
ways. The first emphasizes the similarity between it and the
free energy of Equation (3). The second splits this into three

Figure 2. Markov decision process. The schematic above shows a factor graph representation (blue) of a (partially observed) Markov decision process.
The circles represent variables, whereas the squares are the factors of the generative model that describe the probabilistic relationship between these
variables. The panel on the upper right specifies the form of these relationships. Specifically, A is a probability (likelihood) distribution that specifies
the probability of an observation (o) given a hidden state (s). The initial state is given by a probability vector (D), and the subsequent states in the se-
quence depend upon the probability transition matrix (B). This expresses the dependence of each state on the previous state in the sequence, and
upon the policy (course of action) pursued (p). The policy itself is determined by a prior belief that the most probable policies are those that are associ-
ated with the lowest expected free energy (G), that itself depends upon prior preference (C). The lower (pink) panels show the Bayesian inversion of
the model above, taking the outcomes it generates, and computing posterior beliefs about the states (s), predictive beliefs about future outcomes (o)
and beliefs about the policy being pursued (p). These computations are expressed in terms of auxiliary variables playing the role of prediction errors.
These are the free energy gradients (�), and the expected free energy gradients (1). The transition and likelihood probabilities are each equipped with
a superscripted term (x and f, respectively). These represent inverse temperature (or precision) terms that we will use to quantify the (inverse) uncer-
tainty inherent in these probabilities. Note that this Bayesian message passing relies upon local interactions [specifically, marginal message passing
(Friston et al. 2017a; Parr et al. 2019)], very much like those between neurons in a network. The notation Cat means a categorical distribution, while r

is a softmax (normalized exponential) function. Note that x, f and C appear in the panels on the right, but do not appear in the factor graph. The rea-
son for this is that the factor graph formalism we have used specifically describes the relationship between random variables (i.e. those things about
which we have probabilistic beliefs). Both x and f are parameters of distributions, but we do not model explicit beliefs about them. The influence of C
is more subtle. This only has an effect via the expected free energy, so may be thought of as a constituent of the G factor-node.
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terms with distinct interpretations. Term 1 expresses the ambi-
guity of a state-outcome mapping. The greater this term, the
lower the fidelity of this mapping. Term 2 expresses the uncer-
tainty in predicting the outcome that would be observed condi-
tioned upon the policy (i.e. the entropy of posterior predictive
beliefs). Together, terms 1 and 2 express the amount of resolv-
able uncertainty associated with a policy (Lindley 1956). Term 3
may be thought of as encoding preferences about the sorts of
outcomes that will be sought (Friston and Ao 2012). In sum-
mary, the first two terms of the expected free energy favour the
performance of experiments to disambiguate between alterna-
tive hypotheses about the world, whereas the final term biases
this towards seeking out those data consistent with one’s
favoured hypothesis. The novel aspects of the treatment in
this article rest upon this (expected free energy) functional.
As we will see later, it is this that drives the (mental or motoric)
active selection of data to resolve the uncertainty that
underwrites visual sampling (and precludes stimulus fading)
and that gives rise to the perceptual transitions in binocular
rivalry. This builds upon previous accounts of these phenomena
that focus on passive perceptual processing in the presence of
ambiguous data.

In addition to showing the form of P, the generative model,
Fig. 2 illustrates how a neuronal network could make inferences
about this generative model through gradient descents on the
variational free energy, while selecting policies that minimize
the expected free energy (Friston et al. 2017a, d).

Action in Perception

To illustrate the importance of action in perception (Martinez-
Conde et al. 2004; Zimmermann and Lappe 2016; Parr and
Friston 2017a; Bruineberg et al. 2018), we constructed a genera-
tive model of the sort that might be used by the brain in visual
scene construction (Mirza et al. 2016). Similar models have been
validated empirically in human subjects (Mirza et al. 2018). The
form of the model is shown in Fig. 3. This comprises five types
of hidden state: four that indicate the colour shown in each
quadrant, and one that represents fixation location. As shown
in the lower part of the figure, when fixating on the lower left
quadrant (left image), the visual outcome is determined by
an identity (i.e. deterministic one-to-one) mapping from
the hidden state indicating the colour in this location (i.e. the
hidden states map directly to their associated outcomes).

Figure 3. Troxler generative model. This schematic illustrates the form of the generative model used to simulate Troxler fading. It includes five
hidden state factors representing the colour of the stimulus (shown here in the rows at each corner of the image) at each location and the cur-
rent fixation location (highlighted in black). The prior probabilities (D) for each hidden state are deterministic, with fixation location starting in
the centre, and the colours as indicated above. The only outcome modality is visual (illustrated in the columns below each image), and the
mapping from the hidden state associated with a fixated location is shown in the A-matrices here. This is shown for fixation on the lower left
(left image) and the lower right (right image). Note that there is only one visual input at any one time, so vision depends upon eye position.
The B-matrices specify transitions between hidden states over time. For the stimulus hidden states, these are identity matrices (see upper
right). For the fixation location, the transitions depend upon the selected action. Here, we show an example for action four, for which all states
transition to state four. This is illustrated explicitly in the transition from the left to the right image. Preferences (C) for each outcome are set to
be uniform. Note that this model is formally identical to that pursued in Parr and Friston (2017c) to investigate the salience of different loca-
tions under different beliefs about their precisions, but with a different semantic interpretation. The likelihood and transition matrices here
are equipped with precision terms to convert them to the probabilities of Figure 2 as follows: Af ¼ rðflnðAþ e�4ÞÞ, Bx ¼ rðxlnðBþ e�4ÞÞ. The pre-
cision associated with the transition matrix for the control (fixation) state factor is always treated as infinite.
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On performing a saccade to the lower right quadrant (right im-
age), the visual outcome is determined by an identity mapping
from the hidden state representing the lower right quadrant (A).
This structure means that the subject may choose which of the
hidden states to interrogate by selecting an eye movement.
The eye movements depend upon which transition matrix (B) is
selected. The matrix shown in the centre at the upper part of
the image illustrates the form that this takes when policy 4 is
selected. Whichever position is initially fixated (columns), there
is a probability of 1 that location 4 is fixated at the next time-
step (rows). This is illustrated in the figure by the move from
the lower left to the lower right quadrant.

The transitions associated with the stimuli at each location
are set to be identity matrices. This ensures that the stimulus is
static throughout time. In the generative model (the beliefs the
brain has about how the data were generated), we equip these
matrices with a precision (inverse temperature) (x) that permits
the possibility that the stimuli may change from moment to
moment. A similar parameterization is used for the likelihoods
(with precision f). The smaller these precisions are, the more
uncertain the associated probabilities. The C-matrix expresses
preferences over outcomes, here set to be uniform (i.e. no out-
come is preferable relative to any other). Beliefs about initial
states (D) are the same for the generative model, and the pro-
cess generating the simulated data. These ensure the initial
states of each stimulus are known, and that the initial fixation
location is at the fixation cross. The idea was to initialize with
the beliefs we might have following free exploration, so that the
start of the simulation corresponds to the point at which we
have been asked to fixate or to continue exploring. This makes
very little difference for the latter, where similarly confident
beliefs are maintained throughout. However, had we started
with completely uncertain beliefs at the point of the instruction
to maintain fixation, we would have had no precise percept to
fade away. Although our synthetic subjects start with veridical
prior beliefs, the uncertainty in the transitions (1/x) ensures
that, in the absence of new data, the uncertainty associated
with these beliefs will increase with time since the start of the
trial [c.f. ‘distrusting the present’ (Hohwy et al. 2016)].

Crucially, because the likelihood is equivalently precise for
each quadrant, and because the preferences are uniform, the
only component of the expected free energy that varies between
saccades to each location is the entropy of posterior predictive
beliefs [term 2 in Equation (4)]. This drives the behaviour illus-
trated in Fig. 4A. Inspection of the lower plots that illustrate
beliefs throughout the trial reveals that on saccadic fixation
(highlighted in red), there is minimal uncertainty. Over succes-
sive time-steps, the uncertainty accumulates, leading to more
grey (probabilities between 0 and 1) in the belief plots. At each
time, the maximally uncertain location is selected for the next
saccade in accordance with term 2 in Equation (4). Another way
of looking at this is that selection of policies to minimize
expected free energy naturally gives rise to an ‘inhibition of re-
turn’ phenomenon (Posner et al. 1985; Klein 2000), whereby re-
cently fixated locations lose their salience (Parr and Friston
2019) relative to those locations in which something might have
changed (Von Helmholtz 1867; Hohwy 2012).

Figure 4B illustrates what happens when we instruct our
simulated participant to maintain fixation on the central cross.
This instruction is given by increasing the preference for seeing
the cross over all other possible outcomes (encoded in C). The
lack of exploratory eye movements here means that the accu-
mulating uncertainty cannot be counteracted, and beliefs about
the stimuli rapidly become uniform. This is illustrated in the

upper plot as a fading of the peripheral stimuli. Under this
model, the dissipation of the percept can be seen as compliance
with Jaynes’ maximum entropy principle (Jaynes 1957), which
says that the best inference is that which has the maximum
Shannon entropy (uncertainty) under the constraints imposed
by observations. This imperative is formalized in free energy
minimization, as the free energy may be expressed in terms
of an ‘energy’ minus an ‘entropy’ [third line of Equation (3)].
As data contributes only to the ‘energy’ term, an inability to
seek out new data favours the ‘entropy’ term.

Figure 4C shows a more selective deficit, in which we have
introduced a bias towards rightward saccades. This device has
previously been used to replicate the deficits of exploratory eye
movements associated with visual neglect (Parr and Friston
2017b). Neglect is a neuropsychological syndrome, normally fol-
lowing pathological insult to the right cerebral hemisphere,
characterized by an impaired awareness of stimuli on the left
side of space (Halligan and Marshall 1998). This condition is of
great importance to the issue of action in perception, as a
behavioural characteristic of neglect is a diminished frequency
of saccades to the left (Husain et al. 2001; Fruhmann Berger et al.
2008; Karnath and Rorden 2012). The simulations here illustrate
a plausible interaction between these behavioural and percep-
tual aspects of neglect, as uncertainty accumulates in those
regions that are not fixated.

Figure 5 illustrates an important feature of the model we
have described. This shows the accumulation of uncertainty for
the simulation of Fig. 4B in terms of the Shannon entropy of
these beliefs over time. As beliefs about the precision of transi-
tions increases, the time for the entropy to reach its maximum is
increased. If we equate the maximum entropy with the point at
which the image fades, it should be possible to estimate, from
experimental data, the precision a given individual ascribes to
transitions. This makes a strong empirical prediction, in that the
time taken for the image to fade should be inversely related to
measures of volatility (the imprecision of dynamics) that can be
estimated through other experimental paradigms (Mathys et al.
2014; Marshall et al. 2016; Lawson et al. 2017). Given the associa-
tion between noradrenergic signalling and precision, it may also
be possible to estimate these parameters from pupillary data
(Koss 1986) on an individual basis (Vincent et al. 2019). This addi-
tionally predicts that pharmacological manipulation of catechol-
amine signalling would systematically change the time until an
image fades. The decay of precise posterior beliefs over time rests
upon (beliefs about) the changeability of the environment
(Hohwy et al. 2016) or, more exactly, the precision of the transi-
tion probabilities that lead from one state to the next. This reso-
nates with the use of ‘fatigue’ terms in previous models of
binocular rivalry (Dayan 1998). However, while this was previ-
ously incorporated into the inference dynamics explicitly, we
find that the same sort of decay emerges naturally from a gener-
ative model that entails stochastic transitions. In the next sec-
tion, we translate the key features of the model used above to
the setting of binocular rivalry.

A common explanation for Troxler fading is that cells in the
peripheral retina fatigue (or ‘adapt’) on sustained activation
(Martinez-Conde et al. 2004). Unless we assume perceptual
awareness arises directly from the retinal activity, this explana-
tion is highly consistent with the explanation on offer here.
It implies that, during sustained fixation, little precise informa-
tion from outside the fovea is propagated to the brain. However,
it is well known that the precision of data from the peripheral
retina is limited even in free visual foraging. Our experience of a
visual scene is typically thought of as an internally generated
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percept [or inference (Von Helmholtz 1867)], informed by the
spatially limited data obtained from sequences of fixations. The
implication here is that the absence of precise data should not
lead to an imprecise inference about a previously observed
stimulus, unless the generative model used to make these infer-
ences allows for stochastic dynamics that ensure uncertainty
accumulates over time. Following this line of reasoning, evi-
dence in favour of cortical involvement in these processes is
unsurprizing (Lleras and Moore 2001; Hsieh and Tse 2006; Kanai
et al. 2008).

Attention as Action

In this section, we move from Troxler fading, in which overt
actions are crucial in maintaining a percept, to binocular rivalry,

in which no overt action takes place. This is the same move
that motivates the premotor theory of attention (Rizzolatti et al.
1987). Our aim is to show that exactly the same principles that
give rise to Troxler fading also offer a plausible account of
rivalry.

Binocular rivalry occurs in the presence of data that could be
explained by one of two (or more) hypotheses (Brascamp et al.
2018). A common way to induce this is to present different
images to each eye. If we take the view that the brain is a pas-
sive recipient of sensory data, we might expect the resulting
percept to be some blend of these explanations (Clark 2018), as
it is impossible to disambiguate between these with any degree
of certainty. However, the resulting percept actually alternates
between the two hypotheses. Although this phenomenon is dif-
ficult to account for from a ‘Bayesian brain’ perspective, it
becomes much simpler once we incorporate action. This is

Figure 4. Simulated Troxler fading. The upper plots illustrate the percepts and saccadic patterns obtained by solving the equations of Figure 2
for the model of Figure 3. The percepts are obtained by weighting the images by their posterior probabilities (which are plotted in the lower
plots). (A) It shows the case in which saccadic exploration ensures the maintenance of the image over time. (B) It shows the result of introduc-
ing a preference (C-vector Figure 3) for the fixation cross. This results in a failure to explore, and the gradual fading of the percept. (C) It depicts
a neglect-syndrome, in which a prior belief that rightward saccades are more probable than leftward saccades gives rise to an asymmetrical
exploration, leading to an accumulation of uncertainty about the left side of space. The lower parts of this Figure show the beliefs at each
time-point about each of the four stimulus locations. Each plot illustrates beliefs about which stimulus (if any) is present at a given location.
From top to bottom, these are upper left, lower left, upper right, lower right. For each of these plots, there are four rows, corresponding to the
different hidden states that might be present at those locations. Within these rows, black represents a probability of one that this is the stimu-
lus (hidden state) at this location, whereas white represents a probability of zero. Intermediate shades indicate uncertainty about the hidden
state. The red highlights indicate which location is fixated at any given time. For time-steps with no highlight, the fixation cross was fixated.
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because pursuing an action forces us to commit to interrogating
one dimension (factor) of a hypothesis at a time (Hohwy 2013),
just as in the Troxler fading example above. In that case, the
spatial configuration of stimuli enforced the constraint that
only one stimulus could be fixated at any one time. However,
beliefs about the changeability of the world drove alternations
in which location was fixated at any one time. Here, we general-
ize this to the notion of an attentional (mental) action
(Limanowski and Friston 2018) directed to one set of features or
another. In other words, attention may be employed to resolve
uncertainty about the presence or absence of one sort of stimu-
lus or the presence or absence of another. These can be seen as
two alternative dimensions in a hypothesis space, as both could
be present, both absent, or one present and the other absent.
We appeal to the same idea that the world is changeable, such
that those states informed by unattended features rapidly accu-
mulate uncertainty (and consequently epistemic value), ensur-
ing an alternation of attention. This is highly consistent with
accounts of rivalry as an attentional phenomenon (Leopold and
Logothetis 1999; Zhang et al. 2011). It also echoes previous ideas
concerning the accumulation of uncertainty for the suppressed
stimulus (Hohwy et al. 2008), but supplements this idea with an
appeal to the accumulation of epistemic value this entails.

The generative model used for this section has the same
Markov Decision Process form as that of the previous section.
There are two outcome modalities: the presence or absence of
visual data consistent with the letter ‘L’, and the presence or ab-
sence of visual data consistent with an ‘R’. In the simulated en-
vironment (generative process), these are generated by two
hidden state factors through identity mappings. The generative
model (our synthetic subject’s beliefs about the environment) is

additionally equipped with an attentional state, which plays a
similar role to that of the fixation location in the previous sec-
tion. Unlike the fixation location, this has no influence over the
data that are actually available to the subject. Instead, it modu-
lates their beliefs about the fidelity (precision) of the mapping
from the ‘R’ state to the ‘R’ outcome, and from the ‘L’ state to
the ‘L’ outcome. When attending to ‘R’, the ‘L’ outcome is as-
sumed to be randomly (imprecisely) generated and is uninfor-
mative about the ‘L’ state, and vice versa when attending to ‘L’.
As before, the ambiguity associated with each attentional policy
is equivalent when summed overall outcomes. This means that
the drive to select a given policy is determined by the predictive
entropy, or ‘how uncertain am I about what I would see if
I attended to that?’ Note that this generative model does not
preclude an inference that both stimuli are present simulta-
neously. However, it would be relatively simple to incorporate
inferences about the location of each stimulus in space, where
the prior probability that they occupy the same location is zero.

Figure 6 shows the result of simulating this paradigm, using
the same format to that of Fig. 4. Here, we present both an ‘R’
and an ‘L’ outcome. These could be presented to each eye inde-
pendently, as in binocular rivalry paradigms. The alternation of
the percept in the presence of static data illustrates the impor-
tance of internally generated dynamics in perception. Here,
these dynamics emerge from the imperative to minimize
expected free energy, under the prior belief that the world is vo-
latile. Figure 7 shows the influence of various manipulations to
the generative model on belief updating to provide intuition for
its performance. The first is to change beliefs about the preci-
sion of transitions (Fig. 7A). This illustrates the importance of
beliefs about the volatility of the world, as the slower rate of

Figure 5. Transition precision. This plot illustrates how the time until the images fade depends upon prior beliefs about the precision of transi-
tions. This is expressed as the accumulation of uncertainty over time, where uncertainty is the Shannon entropy summed over posterior
beliefs about each stimulus. All lines converge upon maximum uncertainty, corresponding to the completely faded stimuli at the end of row B
in Figure 4. As the precision of transitions (x) is increased, the time it takes for the stimulus to fade increases. This affords an opportunity for
empirical investigation, as it suggests the precision of beliefs about transitions (relative to some reference) should be estimable from the time
it takes for a percept to fade during fixation of a Troxler stimulus.
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uncertainty accumulation under beliefs that transitions are
static diminishes susceptibility to perceptual alternation. This
additionally reinforces existing theories that argue for the im-
portance of generative models about changing environments
for binocular rivalry (Hohwy et al. 2008), and with those genera-
tive models that incorporate explicit decay terms (Dayan 1998)
that implicitly model this change.

An increasing susceptibility to rivalry as expected environ-
mental dynamics become less precise predicts that those psy-
chopathologies that are associated with an impaired capacity to
estimate volatility, such as schizophrenia and autism (Lawson
et al. 2017; Palmer et al. 2017), should lead to more dramatic ri-
valrous percepts. These changes would not be seen in the fre-
quency of perceptual alternation [although such changes have
been reported (Robertson et al. 2013; Xiao et al. 2018)], but in the
difference between the percept before and after a perceptual
switch. The differences in the amount of belief updating at the
time of a perceptual switch might manifest, and be measurable,
using electroencephalography. For detailed accounts of the hy-
pothesized relationship between electrophysiological measures
and the belief updating described by active inference, please see
Friston et al. (2017a, d). An important caveat is that there may be
additional attentional deficits in conditions such as autism

(Lawson et al. 2014; Palmer et al. 2015), which could confound
this line of investigation and explain the mixed results in this
field (Wykes et al. 2018). For example, autism has been associ-
ated with a failure of selective attention, or the capacity to at-
tend away from irrelevant information. A failure to down-
weight the gain of the non-attended stimulus in our simulated
paradigm would eliminate any rivalrous phenomena, as the
ability to selectively engage attention in an adaptive way under-
writes the effects we have demonstrated. This failure of selec-
tive attention might counteract any increased susceptibility due
to over-estimated volatility in the context of autism. An alterna-
tive to relying upon psychopathology would be to appeal to in-
dividual differences. The prediction here is that the amount of
belief updating required following an attentional switch should
be inversely related to the time taken for stimuli to fade in a
Troxler paradigm (Fig. 5).

The second manipulation, shown in Fig. 7B, is an increase in
the likelihood precision ascribed to one outcome modality com-
pared with the other. In this example, we set the ‘L’ outcome to
be less ambiguous than the ‘R’ outcome. This replicates a covert
attentional (Rizzolatti et al. 1987; Sheliga et al. 1994) manifesta-
tion of the ‘Streetlight’ effect (Demirdjian et al. 2005), in which
the superior quality of information afforded by attending to ‘L’

Figure 6. Simulated binocular rivalry. The upper part of this figure shows a simple schematic of a binocular rivalry paradigm. The image pre-
sented to each eye is different (here shown simply as an ‘L’ and an ‘R’). This sets up two competing percepts. The row of circles below this
shows the posterior beliefs about the stimuli, with the stimulus intensity represented as a monotonic function of its posterior probability. The
plots below show beliefs about the presence or absence of the ‘L’, the presence or absence of the ‘R’, and whether attention is directed towards
the ‘L’ or ‘R’ features. Note that, when attention is directed towards ‘L’, this induces a belief that the ‘L’ is present, but increases the uncertainty
about whether the ‘R’ is present or absent and vice versa. The attended features are consistently those for which the uncertainty was greatest
at the previous time-step, just as with the choices of fixation location in the Troxler fading simulation. Although changes in percept coincide
with the changes in attentional focus, the two are not equivalent. The former are changes in posterior beliefs, and are consequent upon the
changes in precision assumed under alternative attentional choices. The subtlety of this distinction, and the reciprocal causation (attentional
choices depend upon posterior beliefs) between the two may underwrite debates about the relationship between attention and awareness, e.g.
(Lamme 2003).
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Figure 7. Precisions. This figure shows three special cases of the generative model used above, to provide some intuition as to the behaviour of
the simulations. The upper plots (A) show the same set-up as in Fig. 6, with the same generative process giving rise to the data. However, we
have adjusted the beliefs of our synthetic subject such that they estimate the precision of transitions to be higher (i.e. a less changeable envi-
ronment). Although the perceptual switches still continue, the percept does not change as dramatically, as beliefs about the previously
attended stimuli persist for a greater time. In the limiting case in which a subject believes the world does not change at all the percept would
appear as a mixture of the two stimuli that does not change over time (note that a minority of people do indeed report such fused percepts, but
that this leads to their exclusion from standard rivalry studies). In other words, beliefs about the precision of transitions in a person’s genera-
tive model may underwrite their susceptibility to rivalry. The middle plots (B) in this figure illustrate the influence of the likelihood precision
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(or searching for one’s keys underneath a streetlight on an oth-
erwise dark street) renders this an epistemically valuable policy
to pursue. As such, perceptual switching is eliminated in favour
of attention to the less ambiguous modality. This may be seen
as analogous to the effect of altering the contrast of the image
presented to one eye, which increases the perceptual domi-
nance of the less ambiguous stimulus (c.f. Levelt 1965). A more
extreme (but more common) example would be that of present-
ing the same image to both eyes such that there is no precise in-
formation about one hypothesis (that associated with the
stimulus not presented), and nothing to be gained by attending
to its associated features.

An interesting phenomenon that speaks to the attentional as-
pect of binocular rivalry is the slowing of transitions when atten-
tion is drawn away from the stimuli (Paffen et al. 2006; Alais et al.
2010). Under the framework employed here, this implies the ad-
dition of a third attentional policy. This would lead to a distribu-
tion of the time spent in each attentional focus among three (as
opposed to two) alternatives, such that the frequency of selecting
attention to ‘R’ or ‘L’ decreases. This implies a decrease in the fre-
quency at which a percept transitions to ‘R’ or ‘L’.

Figure 7C illustrates an important point concerning the tim-
ing of perceptual switches. Under the idealized simulations in
Fig. 6, these switches happen four times per second (i.e. on a
theta cycle). This is consistent with evidence that such transi-
tions are locked to this cycle (Doesburg et al. 2009). However, it
is important to note that perceptual switches do not necessarily
occur every 250 ms. By decreasing both likelihood precisions
(e.g. by changing the stimulus contrast), but by very subtly dif-
ferent amounts, we can break the symmetry between the two
stimuli that leads to the consistent and regular alternation of
Fig. 6, to get the more irregular pattern of Fig. 7C. Note that this
still involves switches that are locked to the theta cycle, but
that a switch does not necessarily occur at every cycle.

The frequency of perceptual transitions has been studied ex-
tensively in relation to different experimental factors and clini-
cal conditions (Robertson et al. 2013; Wykes et al. 2018; Xiao et al.
2018). However, the model presented here does not make any
strong predictions concerning these. Although intuitively it
might seem that decreased precision in beliefs about transitions
would lead to an increased rate of alternation (and would if the
sensory data really were alternating), it instead leads to faster
accumulation of uncertainty about the suppressed stimulus.
Differences in the rate of alternation between different sorts of
stimuli could be explained through an appeal to deep temporal
generative models (Kiebel et al. 2009; Friston et al. 2017d) that in-
clude a hierarchy of temporal scales. As the hierarchy is
ascended, time-courses tend to be extended, such that slowly
varying representations are housed at the highest levels
(Hasson et al. 2008; Murray et al. 2014). This is important for pro-
cesses such as working memory (Parr and Friston 2017d), which
involve the maintenance of a representation over a time-period

that exceeds that of the stimulus presentation (Funahashi et al.
1989). In the present context, this also means that the level at
which covert attention is deployed in a generative model will
influence the frequency with which the stimulus appears to al-
ternate. For natural visual images used in rivalry paradigms,
there will be several hierarchical levels in play (Yuille and
Kersten 2006). Given that conditions such as autism are associ-
ated with an altered balance between prior and likelihood preci-
sion, the influence of each hierarchical level on its adjacent
levels is altered. Excessive precision ascribed to lower (faster)
levels of the hierarchy might then mean a greater rate of per-
ceptual alteration than when this precision is greater at higher
(slower) levels. This predicts that functional imaging of rivalry
would reveal greater involvement of lower-level sensory cortical
regions in individuals with a faster rate of perceptual alterna-
tion, and of higher-order sensory or association cortices in
those exhibiting slower rates of alternation. This must be nu-
anced a little by considering the relative precisions between lev-
els, as a low precision linking a higher to a lower level manifests
as a weak (empirical) prior for the lower level, and a relatively
high precision ascribed to ascending input to the lower level. In
this scenario, there is a form of functional disconnection be-
tween the two levels that could lead to increased activity in the
lower region without driving changes in the percept at higher
levels. This predicts the opposite of the above. These opposing
predictions might provide the means to disambiguate between
excessive precision ascribed to a likelihood distribution and in-
sufficient precision associated with a prior distribution.

The model used to generate these simulations is formulated
in discrete time, so it is difficult to use this to make any defini-
tive statements about the sorts of distributions we might expect
for the associated (continuous) dominance times. An interesting
next step in accommodating these sorts of data would be to
specify a generative model that generates these data from our
simulation results. This could be done relatively simply by start-
ing from an assumed duration for a discrete time-step, and add-
ing noise to this. Naively, we might consider treating our
assumed duration as the mode of a Gaussian distribution and
adding normally distributed noise. However, the problem with
this is that it implies a finite probability for a negative domi-
nance time. A simple solution to this is to assume that the dis-
tribution of the logarithm of dominance times is normally
distributed. When exponentiated, the resulting distribution will
preclude negative dominance times and would have a lepto-
kurtic (heavy-tailed) form consistent with empirical character-
izations of these distributions (Levelt 1966; Levelt 1967).

Discussion

In the above, we simulated two paradigms that pose difficulties
for passive Bayesian accounts of brain function. Through

Figure 7. Continued
associated with each stimulus. Here, we have decreased the precision for both stimuli, the ‘R’ stimulus more than the ‘L’ stimulus.
This alters the subject’s beliefs about the ‘noisiness’ of the two observations she could make, such that both are noisy, but the ‘L’
stimulus is more reliable. Experimentally, this sort of belief can be induced by changing the contrast of the image presented to each
eye. Notably, our subject infers that the best policy is to attend only to the relatively unambiguous ‘L’ stimulus and to consistently ig-
nore the ambiguous ‘R’. The lowest plot (C) shows the same manipulation as (B), but with a much subtler difference between the two
precisions. This is just enough to break the symmetry between the two stimuli, but not enough to eliminate perceptual switching.
The three examples in this figure illustrate that, even with exactly the same sensory data, different prior beliefs about the generation
of these data can lead to dramatically different perceptual inferences. These differences offer the opportunity to investigate the dis-
tinct computational phenotypes that underwrite individual differences in perceptual experience.
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simulations of Troxler fading and binocular rivalry, we demon-
strated how appealing to (covert and overt) active inferential
processes renders these counterintuitive perceptual phenom-
ena emergent properties of variational inference. To explain
these processes, we appealed to the idea of a generative model
that makes predictions about sensory data, and that can be
used to explain incoming data in terms of their causes. The gen-
erative models used above combine two key features. The first
is that action (whether skeletomotor or mental) may be used to
forage for the data that best resolves uncertainty about a scene.
The second feature is a prior belief that the world is not deter-
ministic, but changes over time with a certain probability.
Together, these ensure the accumulation of uncertainty about
unattended stimuli that are balanced by sequential sampling to
resolve this uncertainty. By using the same features to account
for multiple perceptual phenomena, we not only comply with
Occam’s razor but advance empirically testable hypotheses
about the relationship between these paradigms. In brief, those
individuals who report a longer time until the stimuli have
faded in a Troxler paradigm should exhibit less belief updating
(and its associated electrophysiological manifestations) at per-
ceptual transitions in a binocular rivalry paradigm.

A possible objection to these ideas comes from experiments
based upon retinal image stabilization. These attempt to main-
tain an image in exactly the same place on the retina, ensuring
the image is always visible in the same retinotopic location and
is invariant to eye movements. Although always within the field
of view, these images appear to fade over time (Yarbus 1960).
The idea that repeated fixations are required to maintain a per-
cept of a (potentially) volatile stimulus appears to contrast with
this finding. The apparent contradiction here may be resolved
by appealing back to the idea of perceptions as hypotheses
(Gregory 1980). This perspective says that we do not perceive
the visual data our retina receives, but the inferences drawn
from these data. If something is stabilized relative to the retina,
then the sensory data it causes are invariant to hypotheses
about the external causes of visual data, and the (saccadic)
experiments used to resolve uncertainty about these hypothe-
ses (Rozhkova and Nikolaev 2015). As such they cannot be used
to disambiguate between perceptual hypotheses. A related in-
terpretation of this phenomenon appeals to the idea that it is it-
self an example of binocular rivalry. Under this view, there is
always a greater potential information gain by attending away
from the fixed image, and to the stimuli visible using the other
eye instead. This would reproduce the pattern of Fig. 7B, where
the uninformative stimulus rapidly fades. This is highly consis-
tent with the failure to elicit fading when the same image is sta-
bilized for both eyes (Rozhkova et al. 1982).

Another possible objection to the model used for the Troxler
fading example is that an eye movement, no matter where it is
to, might yield information about all of the stimuli. This could
be motivated in terms of the magnocellular signal arising from
the periphery of the retina (Livingstone and Hubel 1988; Zeki
and Shipp 1988; Zeki and Shipp 1989; Nealey and Maunsell
1994). Cells contributing to these pathways respond to high-
frequency temporal information, so it could be argued that any
action will induce high-frequency temporal changes in the reti-
nal periphery that would provide information about all of the
stimuli. If this is true, this does not detract from the notion that
performing eye movements provides uncertainty resolving in-
formation. It simply suggests that there is less specificity in
which eye movement is performed. However, there are good
reasons to think that the specific eye movements are important.
First, the peripheral retina and magnocellular system have very

low colour sensitivity. As long as the luminance of the stimuli is
matched to the background, the parvocellular pathways origi-
nating from the fovea should be much more important (Bachy
and Zaidi 2014). Second, saccadic suppression (Bridgeman et al.
1975) limits the communication of visual data through the vi-
sual system during self-generated eye movements, suggesting
that it is the data garnered during fixations that are used to con-
strain perceptual inference. Third, the importance of foveation
is illustrated in psychophysical data investigating the relation-
ship between stimulus eccentricity and fading (Lou 1999; Bachy
and Zaidi 2014). Faster fading of more eccentric stimuli implies
that the choice of fixation location is important and is consis-
tent with the reduced precision associated with data from the
retinal periphery relative to the fovea.

We have assumed in the above that estimates of the transi-
tion precision remain constant throughout. However, it is
highly probable that this is something updated over time, in-
ferred from sensory data. For example simulations of how this
sort of updating may proceed using this sort of model, please
see Parr et al. (2018). This implies fluctuations in these preci-
sions which, if encoded by chemicals such as noradrenaline,
could manifest through changes in pupillary diameter over
time. The time-course of this updating may be important when
perceptual alternation occurs, and this may be an important di-
rection for future work (Einhäuser et al. 2008, 2010; Naber et al.
2011). It additionally offers another avenue by which the rela-
tionship between rivalry and perceptual fading may relate to
each other that depends upon objective physiological measure-
ments. This could complement the psychophysical and electro-
physiological approaches suggested above.

Our account of attention as (covert) action resonates with
previous research on the role of attention in binocular rivalry.
Although binocular rivalry is highly resistant to volitional con-
trol, percept dominance and alternation rate are both sensitive
to endogenous attentional allocation (Lack 1974; Ooi and He
1999; Meng and Tong 2004; Chong et al. 2005; van Ee et al. 2005;
Paffen et al. 2006; Alais et al. 2010). Such findings are accommo-
dated by the active inference framework, where selective atten-
tion is understood as gain control (i.e. descending predictions
about the precision of a stimulus). The simulations presented
above speak to a rather more subtle, involuntary attentional
mechanism; one which drives (rather than modulates) binocular
rivalry. Such nonconscious inferential processes could also un-
derwrite various (e.g. affective) factors known to bias rivalrous
perceptual experience towards ‘salient’ stimuli (Alpes and
Gerdes 2007; Bannerman et al. 2008; Marx and Einhäuser 2015).
Salient stimuli afford greater opportunities for the resolution of
uncertainty and are thus preferentially sampled (this is equiva-
lent to favouring the more precise stimulus in Fig. 7C). Although
gain control and salience ascription rest on neurobiologically
distinct mechanisms, they are complementary and deeply in-
terwoven modes of uncertainty reduction under the active in-
ference framework (Parr and Friston 2017d, 2019).

Although we have cast the model here in terms of binocular
rivalry, the computational mechanisms generalize to other
forms of multi-stable perception. An important example of this
is the Necker cube (Necker 1832; Orbach et al. 1963), an ambigu-
ous image that depicts the edges of a cube, and is equally con-
sistent with a view of the cube from above or below. As in
binocular rivalry, this leads to an alternation in perceiving the
cube in each alternative configuration. One way to interpret this
is that, when we view a cubic structure, one of the vertices is
normally hidden from view by the rest of the cube. This means
that one of the vertices that could be attended affords evidence
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to the hypothesis that the cube is oriented one way, whereas
another affords evidence to an alternative hypothesis. Based on
this, we could use the same generative model as used to simu-
late binocular rivalry to simulate the experience of multi-stable
perception induced by a Necker cube [which could also include
overt eye movements (Einhäuser et al. 2004)]. As illustrated in
Fig. 8, this would mean replacing the hidden states representing
the presence or absence of ‘R’ and ‘L’ with analogous states for
presence or absence of a cube viewed from above and below.
The outcomes are the associated vertex of each of the two
cubes. The attentional state is the same, allowing the selection
of a precise likelihood mapping between each cube and the
presence or absence of its associated vertex. The above makes
the point that the interpretation of the simulations presented
above in terms of binocular rivalry rest upon the labels we have
assigned to the states and outcomes. Simply changing these
generalizes the computational mechanism to other forms of
multi-stable perception.

Interestingly, the frequency of perceptual transitions for the
Necker cube may be manipulated by physically alternating pre-
sentation of the cube and a blank stimulus at different frequen-
cies. Perceptual transitions occur with maximal frequency
when the stimulus is presented at a rate of about 2 Hz (Orbach
et al. 1966). Given the blank periods in between, this means vi-
sual input undergoes a transition at about 4 Hz. This coincides
with the theta frequency range associated with saccadic sam-
pling and perceptual sequences. In other words, at this rate, ev-
ery discrete time-step is aligned with a transition in the real
stimulus, implying a generative model where things change at

every step. As we move away from this frequency of stimulus
presentation (either increased or decreased), this is no longer
the case, and we would expect a reduced frequency of percep-
tual transitions, consistent with empirical observations (Orbach
et al. 1963).

Although we have focused upon the computational basis for
a certain kind of perceptual phenomenology, this also offers a
set of constraints upon the neurobiology for these forms of per-
ceptual awareness. Specifically, it suggests that those pathways
engaged in communication between sensory and motor regions
are crucial in ensuring active solicitation of informative sensa-
tions. Anatomically, there are several prominent white matter
tracts connecting the motor and sensory regions (Catani et al.
2002; Thiebaut de Schotten et al. 2005). These structural data are
complemented by the engagement of the regions connected by
these tracts during functional imaging studies (Büchel et al.
1998; Corbetta et al. 1998; Ptak and Schnider 2010; Corbetta and
Shulman 2011; Fiebelkorn et al. 2018). Notably, the same set of
frontal and posterior cortical regions seem to be activated by
overt (oculomotor) and covert attentional processing. These are
typically divided into a symmetrical dorsal frontoparietal net-
work, and a right-lateralized ventral frontoparietal network. It is
the latter that has been implicated in imaging studies of rivalry
(Lumer et al. 1998; Brascamp et al. 2018), and that is often impli-
cated in disorders of awareness such as visual neglect.

The generative models appealed to here may be interpreted
in terms of this anatomy (Parr and Friston 2018), with frontal
regions computing either the fixation location or the best atten-
tional target. These presumably exert a modulatory influence,

Figure 8. Multi-stable perception. The schematic shown above illustrates how the mechanisms we have employed to simulate binocular rivalry
may generalize to other forms of multi-stable perception. This uses the Necker cube as an illustrative example but could be applied to other
paradigms. On the left, we show the key features of the generative model used for the rivalry simulation. There are two hidden state factors
that represent the presence or absence of ‘L’ and of ‘R’. These generate (black vertical arrows) outcomes that are informative about the pres-
ence or absence of each of these visual features. The mapping from the states to their respective outcomes may be very precise or imprecise,
depending upon the allocation of attention (a third hidden state factor shown in pale blue), which itself depends upon the choice of policy (p).
This selects which of the two likelihood mappings is precise. On the right, we illustrate how changing the labels of each of these states and
outcomes (without changing the generative model itself) lets us reinterpret the simulation results above in terms of the multi-stable percep-
tion associated with a Necker cube. This implies a common architecture for the neuronal message passing, even if implemented in different
neuroanatomical structures (Loued-Khenissi et al. 2019).
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via the right ventral temporoparietal cortex (Sheinberg and
Logothetis 1997), over connections from early visual areas to the
ventral visual stream in the temporal cortex, and reciprocal pro-
jections from temporal to occipital areas. Based on this hypothet-
ical association between the computational architecture
associated with active inference and the functional anatomy of
rivalry, it should be possible to evaluate the processes we have
simulated in relation to neuroimaging data using dynamic causal
modelling (Friston et al. 2003). We hypothesize that the effective
connectivity between occipital cortices and ventral visual regions
representing alternative stimuli (e.g. faces and houses) during ri-
valry should be modulated whenever a perceptual switch occurs.
This modulation should be driven by changes in ventral frontal
cortical regions (Weilnhammer et al. 2013, 2017). It is worth point-
ing out that changes in early visual areas, including the lateral
geniculate nucleus (Haynes et al. 2005; Wunderlich et al. 2005) and
primary visual cortex (Polonsky et al. 2000), have also been dem-
onstrated in the rivalry. These findings endorse the notion of re-
ciprocal message passing, as they suggest that changes in higher
cortical regions are propagated to lower cortical and subcortical
regions as descending predictions. In the future, the models out-
lined here should be extended to hierarchical models (Friston
et al. 2017c) that try to predict not just the abstract features asso-
ciated with a stimulus, but also the lower-level visual features
that might be represented in earlier parts of the visual pathway.
Associating these models with the anatomical structures that im-
plement them offers the opportunity to interpret findings from
neuroimaging of perceptual awareness (Rees 2001, 2007;
Brascamp et al. 2018) in terms of the computational processes
that underwrite them.

Conclusion

Visual illusions have often been used in the study of perceptual
awareness, as they reveal the importance of internally gener-
ated perceptual content when presented with ambiguous stim-
uli. Typically, models of these processes have implicitly
assumed that the brain is a passive recipient of data that
engages in inferential processes to try to explain these data.
Here, we have focused upon two perceptual phenomena that
largely elude this approach. By framing these in terms of the ac-
tive processes that underwrite engagement with a (potentially)
dynamic environment, we find that Troxler fading and percep-
tual alternation – in the presence of rivalrous stimuli – emerge
from the accumulation of uncertainty in beliefs about unat-
tended stimuli, and the drive to act to resolve this uncertainty.
Equating elements of the computational mechanisms that un-
derwrite these processes suggests several directions for further
empirical investigation, both in terms of the association be-
tween an individual’s experience of each of these paradigms,
and the functional anatomy that supports these. Ultimately, we
hope that this will afford an opportunity to better understand
the pathological computations that give rise to abnormalities of
perceptual awareness, such as autism, psychosis and visual
neglect.

Data Availability Statement

The simulations presented in this article were performed using
standard software routines (here spm_MDP_VB_X.m) with the
generative models specified as described in the text and figures.
These routines are available as Matlab code in the SPM aca-
demic software: http://www.fil.ion.ucl.ac.uk/spm/. Simulations
of the sort reported above can be reproduced (and customized)

via a graphical user interface by typing in �DEM and selecting
the ‘visual foraging’ demo.
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Marx S, Einhäuser W. Reward modulates perception in binocular
rivalry. J Vision 2015;15:11.

Mathys CD, Lomakina EI, Daunizeau J et al. Uncertainty in per-
ception and the Hierarchical Gaussian Filter. Front. Hum.
Neurosci. 2014;8:825.

Meng M, Tong F. Can attention selectively bias bistable percep-
tion? Differences between binocular rivalry and ambiguous
figures. J Vision 2004;4:539–51.

Mirza MB, Adams RA, Mathys CD et al. Scene construction, visual
foraging, and active inference. Front Comput Neurosci 2016;10:1–16.

Mirza MB, Adams RA, Mathys C et al. Human visual exploration
reduces uncertainty about the sensed world. PLoS One 2018;13:
e0190429.

Murray JD, Bernacchia A, Freedman DJ et al. A hierarchy of in-
trinsic timescales across primate cortex. Nat Neurosci 2014;17:
1661–3.
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