Skip to main content
. 2019 Sep 3;10:1060. doi: 10.3389/fpls.2019.01060

Table 5.

General linear models (GLMs) showing relationships of allelic richness (A R), genetic diversity within populations (H S), and genetic admixture index (A D) with elevation and climate for each population of Quercus chenii. The best combination of variables was selected by a backward elimination algorithm based on Akaike information criterion (AIC) scores.

Estimate SE t P VIF AIC
Model: HS ∼ climate + elevation
(intercept) 0.665 0.004 156.317 0.000*** −88.091
elevation −0.038 0.005 −8.418 0.000*** 1.061
bio9 −0.010 0.005 −2.025 0.061* 1.061
Model: HS ∼ climate
(Intercept) 0.664 0.005 120.850 0.000*** −78.337
bio1 0.034 0.007 4.861 0.000*** 1.438
bio2 0.009 0.006 1.367 0.193 1.112
bio4 0.033 0.006 5.365 0.000*** 1.393
Model: AR ∼ climate + elevation
(Intercept) 5.122 0.062 82.456 0.000*** 9.001
elevation −0.473 0.069 −6.889 0.000*** 1.142
bio2 0.133 0.075 1.781 0.097* 1.158
bio4 0.260 0.063 4.106 0.001*** 1.160
Model: AR ∼ climate
(Intercept) 5.102 0.077 66.068 0.000*** 17.252
bio1 0.484 0.097 4.979 0.000*** 1.444
bio2 0.194 0.091 2.143 0.052* 1.121
bio4 0.558 0.091 6.113 0.000*** 1.575
bio8 0.112 0.089 1.255 0.231 1.176
Model: AD ∼ climate + elevation
(Intercept) 0.398 0.055 7.191 0.000*** 3.504
elevation −0.198 0.058 −3.432 0.003***
Model: AD ∼ climate
(Intercept) 0.398 0.063 6.280 0.000*** 9.091
bio1 0.174 0.079 2.215 0.043** 1.376
bio4 0.154 0.071 2.177 0.046** 1.376

SE, standard error; VIF, variance inflation factor, VIF < 2 indicates that multicollinearity does not confound the interpretation of individual predictors in the models; bio1, annual mean temperature; bio2, mean diurnal temperature range; bio4, temperature seasonality; bio8, mean temperature of wettest quarter; bio9, mean temperature of driest quarter; ***, P < 0.01; **, P < 0.05; *, P < 0.10