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Abstract

Background: Although many of the genic features inMycobacterium abscessus have been fully validated, a
comprehensive understanding of the regulatory elements remains lacking. Moreover, there is little understanding of
how the organism regulates its transcriptomic profile, enabling cells to survive in hostile environments. Here, to
computationally infer the gene regulatory network forMycobacterium abscessus we propose a novel statistical
computational modelling approach: BayesIan gene regulatory Networks inferreD via gene coExpression and
compaRative genomics (BINDER). In tandem with derived experimental coexpression data, the property of genomic
conservation is exploited to probabilistically infer a gene regulatory network inMycobacterium abscessus.
Inference on regulatory interactions is conducted by combining ‘primary’ and ‘auxiliary’ data strata. The data forming
the primary and auxiliary strata are derived from RNA-seq experiments and sequence information in the primary
organismMycobacterium abscessus as well as ChIP-seq data extracted from a related proxy organismMycobacterium
tuberculosis. The primary and auxiliary data are combined in a hierarchical Bayesian framework, informing the apposite
bivariate likelihood function and prior distributions respectively. The inferred relationships provide insight to regulon
groupings inMycobacterium abscessus.

Results: We implement BINDER on data relating to a collection of 167,280 regulator-target pairs resulting in the
identification of 54 regulator-target pairs, across 5 transcription factors, for which there is strong probability of
regulatory interaction.

Conclusions: The inferred regulatory interactions provide insight to, and a valuable resource for further studies of,
transcriptional control inMycobacterium abscessus, and in the family ofMycobacteriaceaemore generally. Further, the
developed BINDER framework has broad applicability, useable in settings where computational inference of a gene
regulatory network requires integration of data sources derived from both the primary organism of interest and from
related proxy organisms.
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Background
Mycobacterium abscessus is a rapidly growing mycobac-
teria capable of causing a variety of soft tissue infections,
primarily affecting subjects with immuno-deficiencies.
Mycobacterium abscessus (M. abscessus) is considered a
major pathogen involved in broncho-pulmonary infection
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in patients with cystic fibrosis or chronic pulmonary dis-
ease [1]. In addition, M. abscessus is responsible for several
skin and soft tissue diseases, central nervous system
infections, bacteremia, and ocular and other infections
[2]. Owing to a range of cellular mechanisms, one of
the most salient aspects of pathogenesis resulting from
M. abscessus infection is its multi-drug resistance. It is the
mostchemotherapy-resistant rapid-growingmycobacterium [3].
While many genic features in M. abscessus have been

fully validated and characterised in terms of the expres-
sion landscape at the transcriptional, post-transcriptional
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and translational levels [4], a comprehensive understand-
ing of regulatory elements is lacking. Without functional
identification of the modes of regulation present, a com-
plete understanding of how M. abscessus modulates its
transcriptomic tendencies, enabling cells to survive and
thrive in hostile environments such as in the presence of
antibiotics or in the host sputum, remains out of reach.
Gene regulatory network (GRN) resources are typi-

cally split into two categories: generalist resources and
specialist resources. The former category provides regu-
latory information (such as transcription factors, putative
and confirmed target genes/operon structures, transcrip-
tion factor binding sites (TFBS) motifs, upstream location
coordinates) for a wide group of organisms. CollecTF
[5] is one such resource that hosts a large collection of
DNA binding sites for prokaryotic transcription factors.
Although CollecTF comprises a small amount of regula-
tory information pertaining to mycobacteria, it currently
does not contain any information onM. abscessus. Indeed
most generalist resources tend not to comprise much con-
tent on regulatory information directly relevant to M.
abscessus.
Specialist resources tend to provide regulatory informa-

tion for a much narrower subgroup of organisms such
as a single species or genus; RegulonDB [6] is one such
resource which comprises information regarding tran-
scriptional regulation in Escherichia coli. Most resources
of both types provide curation based on techniques such
as SELEX-based methods [7] as well as ChIP-seq [8].
Currently, for M. abscessus, there is no such existing
specialist resource.
Many approaches have been designed for in silico infer-

ence of prokaryotic GRNs. Two popular strategies for
regulon mapping include (1) the use of conservation
data arising from comparative genomics analyses and
(2) expression data in the form of transcriptional abun-
dance comparison. The conservation approach relies on
the observation that TFBSs are often conserved between
related species. This implies that regulatory resources
from a given organism can be leveraged to elucidate
on transcriptional control in closely related organisms
[9]. Further, if two organisms with a non-distant com-
mon ancestor share an orthologous gene that is under-
stood to assist in achieving a certain biological process
(such as transcriptional regulation) in one organism, it
is likely to perform a similar role in the other organism
[10]. Phylogenetic footprinting provides a conservation-
based approach for determining conserved noncoding
sequences and associated TFBSs; such methods typically
involve quantifying the rate of occurrence of noncoding
DNA sequences in the upstream regions of orthologs of
genes of interest in related species [11, 12].
Expression-based approaches tend to model the

expression of a target gene candidate as a function of

the expression or activation of a regulator gene. The
GENIE3 [13] method frames the problem of deriving a
regulatory network between p genes as p different regres-
sion tree-based ensemble models where the expression
pattern of one gene is predicted by the expression pattern
of all other genes in the collection. Other authors have
noted the observed property that genes sharing a com-
mon network have a greater tendency to exhibit strong
coexpression [14]. Weighted correlation network analysis
(WGCNA) [15] is a software package that implements
a suite of correlation-based methods for describing the
coexpression patterns among genes across experimen-
tal samples designed with a view to uncovering gene
networks of several varieties.
The literature on prokaryotic gene regulation is replete

with ChIP-seq experiments detailing the specifics of
transcriptomic control [16, 17]. ChIP-seq provides a
means of isolating target DNA sequences and tran-
scription factor bound protein complexes stimulated in
response to induced transcription factor production.
This process facilitates the ascertaining of relation-
ships between specific transcription factors and target
binding site DNA sequences (including their down-
stream genic and intergenic units). Such data are not
presently available for M. abscessus, due to its sta-
tus as an emerging pathogen [3]. However, similar
resources exist to varying degrees of completeness for
closely related organisms, such as those in the fam-
ily of Mycobacteriaceae [18, 19]. Many efforts have
focussed on the integration of ChIP-seq experimental
data with RNA-based expression results to improve GRN
inference [20].
In general, the concept of designing hybrid models that

integrate existing regulatory information and expression
abundance results has been the focus of much research.
For example, iRafNet [21] implements a random forest
approach to inferring GRNs while incorporating prior
regulatory knowledge such that putative regulators used
to build individual trees are sampled in accordance with
the provided prior information. GRACE [22] integrates
biological a priori data as well as heterogeneous data
and makes use of Markov random fields to infer regula-
tory networks in eurkaryotic organisms. The RNEA [23]
approach also combines prior knowledge frommanual lit-
erature curation and experimental data with enrichment
analysis to infer relevant subnetworks under experimen-
tal conditions. The multi-species cMonkey approach [24]
includes gene expression data for multiple related organ-
isms in addition to upstream sequence information and
other network knowledge, iteratively building biclusters to
detect putative co-regulated gene groupings.
Hierarchical Bayesian frameworks provide a natural

choice for heterogenous data integration; Bayesian meth-
ods like COGRIM [25] and CRNET [26] have sought
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to exploit this quality. With a view to inferring GRNs,
integrative Bayesian methods have focussed on directly
modelling putative target gene expression data as a func-
tion of regulator activity in addition to binding strength
and sequence information.
Herein, we introduce a novel statistical modelling

approach to computationally inferring the GRN for M.
abscessus: BayesIan gene regulatory Networks inferreD via
gene coExpression and compaRative genomics (BINDER).
BINDER is an integrative approach, hybridising coex-
pression data and comparative genomics profiles to infer
prokaryotic regulons. BINDER requires two organisms: an
organism of interest, hereM. abscessus, and an annotated
proxy organism, here Mycobacterium tuberculosis (M.
tuberculosis). To computationally infer the GRN for M.
abscessus we leverage existing resources: specifically we
exploit several RNA-seq libraries elicited from M. absces-
sus generated across a range of experimental conditions,
and the unique availability of a high-quality and com-
prehensively catalogued ChIP-seq-derived regulatory net-
work in M. tuberculosis [27]. BINDER utilises a primary
data stratum and an auxiliary data stratum. Here, the data
forming the primary and auxiliary strata are derived from
RNA-seq experiments and sequence information fromM.
abscessus as well as ChIP-seq data extracted from the
related M. tuberculosis. BINDER is a Bayesian hierarchi-
cal model that appositely models the type and structure of
both this primary and auxiliary data to infer the probabil-
ity of a regulatory interaction between a regulator-target
pair. The auxiliary data inform the prior distributions
and the posterior distributions are updated by account-
ing for the primary coexpression data in a novel, apposite
bivariate likelihood function. BINDER’s Bayesian frame-
work facilitates the borrowing of information across the
genome yielding estimates of the probability of regula-
tion between regulator and target candidate genes, as
well as quantification of the inherent uncertainty in a
probabilistically principled manner.
In what follows, we explore the performance of BINDER

under a range of challenging simulated data settings, as
well as in two case studies using Bacillus subtilis (B.
subtilis) and Escherichia coli (E. coli) as the primary organ-
isms of interest, for which regulatory interactions have
been well-established. We present the regulatory interac-
tions inferred onM. abscessus by BINDER, and explore in
detail the putative inferred regulon corresponding to the
transcriptional regulator zur. We also include an explo-
ration of prior sensitivity concerns and some discussion.
The “Methods” section describes the data utilised and
details the architecture of the BINDER approach.
The results of this effort provide insight to, and

a valuable resource for further studies of, transcrip-
tional control in M. abscessus, and in the family of
Mycobacteriaceae more generally. Further, the developed

BINDER framework has broad applicability, useable in
settings where computational inference of a GRN requires
integration of data sources derived from both the primary
organism of interest and from a related proxy organism.
A software implementation for BINDER is provided by
its associated R package, which is freely available from
github.com/ptrcksn/BINDER.

Results
ExploringM. abscessus andM. tuberculosis shared
orthology
It has been established that there is high retention of gene
regulation in prokaryotes between species [28]. Moreover,
it has been demonstrated that gene function is also
retained across wide phylogenetic distances in prokary-
otes [29]. Given the availability of a large number
of experimentally validated regulatory networks in M.
tuberculosis [27], from the standpoint of inferring a
GRN in M. abscessus using conservation phenomena,
we quantifed the extent to which genes present in M.
tuberculosis are conserved in M. abscessus. To do so, we
employ the Ortholuge [64] procedure which facilitates
bacterial and archaeal comparative genomic analysis and
large-scale ortholog predictions. Through Ortholuge, we
categorise orthologs as belonging to one of five tiers,
ranging from more reliable to less reliable: supporting-
species-divergence (SSD), borderline supporting-species-
divergence (borderline SSD), reciprocal best blast (RBB),
similar non-supporting-species-divergence (similar non-
SSD) and non-supporting-species-divergence (non-SSD).
We found 1343 SSD putative orthologs, 116 borderline
SSD putative orthologs, 845 genes that satisfied the RBB
criteria but did not undergo any further analysis, 6 simi-
lar non-SSD putative orthologs and 85 non-SSD putative
orthologs. In total, we found 2395 predicted orthologs of
all qualities, equating to ≈ 48% of all annotated genes in
M. abscessus.
In terms of regulatory interactions, for 34 orthologous

regulators of interest and where possible, we performed
a one-to-one mapping of all validated regulatory interac-
tions in M. tuberculosis to their corresponding orthologs
in M. abscessus. We found a mean regulon size in M.
tuberculosis of 107.91 genes (sd: 128.78) (standard devi-
ations in parentheses). Of these 34 regulons, the mean
regulon proportion comprising orthologous interactions
inM. abscessus is 0.61 (sd: 0.16) (Fig. 1). These results are
suggestive of conserved regulatory interactions between
M. tuberculosis andM. abscessus.

BINDER simulation study
In order to evaluate the performance of BINDER
(“The BINDER model for inferring a GRN” section),
we perform a simulation study across a number of set-
tings. Our focus is on exploring the impact of BINDER’s

https://github.com/ptrcksn/BINDER


Staunton et al. BMC Bioinformatics          (2019) 20:466 Page 4 of 21

Rv0238
Rv0273c
Rv0353

Rv0465c
Rv0472c
Rv0474

Rv0653c
Rv0678
Rv0681

Rv0691c
Rv0757
Rv0818

Rv0827c
Rv1219c
Rv1404

Rv1473A
Rv1556
Rv1719
Rv1828

Rv1846c
Rv1994c
Rv2250c
Rv2324
Rv2359

Rv2374c
Rv2506
Rv2887
Rv2989

Rv3058c
Rv3219

Rv3246c
Rv3557c
Rv3849
Rv3855

0 200 400
Number of Target Genes in M. tuberculosis Regulon

M
. t

ub
er

cu
lo

si
s 

R
eg

ul
on

Orthology

M. tuberculosis Only

Orthologous to M. abscessus

Fig. 1 Number of target genes in the 34 orthologousM. tuberculosis regulons. Also illustrated is the the extent of orthology betweenM. tuberculosis
andM. abscessus

hierarchical Bayesian model structure and on the influ-
ence of the inclusion of the auxiliary data when inferring
a GRN. Specifically we focus on the parameter θr,t rep-
resenting the probability of an interaction in the (r, t)th
regulator-target pair and consider two simplified versions
of the BINDER model:

• Deterministic model : each θr,t is modelled
deterministically as a linear function of the auxiliary
data. Thus BINDER’s prior on θr,t is replaced by:

logit(θr,t) = ζr + τMErMEr,t + τPErPEr,t

• Non-auxiliary model : no auxiliary data are used
during inference on θr,t , which are instead inferred
based on the primary data only. In this case
BINDER’s prior on θr,t is instead replaced by the
prior logit(θr,t) ∼ U(−∞,∞).

In addition, the impact on inference of noisy primary
data and of large variability in the true underlying θr,t

parameters is also of interest. Since the primary data CP
and CM are assumed to be Nl(logit

(
θr,t),ψkr

)
for k ∈

{CP, CM}, larger values of ψkr reflect noisier primary
data. Similarly, logit(θr,t) ∼ N

(
γr,t ,φr

)
, with larger values

of φr reflecting larger variation in the underlying regu-
latory interaction probabilities. Hence, we compare the
performance of BINDER, the deterministic model and the
non-auxiliary model on 9 distinct dispersion parameteri-
sations corresponding to the Cartesian product of ψr =
{ψCMr ,ψCPr } = {low = 1,mid = 2, high = 3} and
φr = {low = 1,mid = 2, high = 3}.
For each of the nine dispersion settings, we simu-

late three data sets, each with N = 1, 000 regulator-
target pairs. To challenge the BINDER model, we
consider weakly informative auxiliary data: ME and
PE are generated from a Bernoulli distribution with
success parameter 0.1. We compute γr,t according to
(1) where

(
ζr , τMEr , τPEr

) = (−3.5, 3.8, 2.9) and simulate
logit(θr,t) ∼ N (γr,t ,φr). Finally, for the primary data,
we simulate CMr,t ∼ Nl(logit

(
θr,t),ψCPr

)
and CPr,t ∼
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N (logit(θr,t),ψCMr ). Model performance across the 27
settings considered was assessed using the mean absolute
deviation (MAD) [30] between each true simulated θr,t
and its resulting posterior mean estimate.
We observed competitive performance of the BINDER

approach over both the deterministic and non-auxiliary
approaches for the majority of settings considered in
terms of lower MAD (Fig. 2). Specifically, the mean
for the MAD statistics for the BINDER approach was
0.087 (sd: 0.034) as compared with 0.120 (sd: 0.050) and
0.120 (sd: 0.056) for the deterministic and non-auxiliary
approaches respectively. The deterministic approach has
a tendency to perform worse in instances where the dis-
persion around each θr,t value is large (i.e. high values for
φr). This is to be expected as the deterministic approach
has insufficient flexibility to model θr,t values that lie
distant from their mean value resulting in higher MAD
statistics. On the contrary, the deterministic approach
does well in the setting of low φr . In contrast, the non-
auxiliary approach tends to be less sensitive to changes in
the dispersion around the mean of the distribution of θr,t .

However, given that the non-auxiliary approach only uses
the primary data to infer θr,t , when the level of dispersion
around the mean of CP and CM is high (i.e. high values
for ψr) the primary data contain a weaker signal leading
to poor estimation of the true θr,t and resulting in higher
MAD statistics. As a compromise between the deter-
ministic and non-auxiliary approaches, BINDER utilises
the information contained in the auxiliary data whilst,
simultaneously, providing the flexibility to accommodate
observation-specific variation in the regulation interac-
tion probabilities resulting in more accurate inference.
BINDER outperforms the non-auxiliary model in all set-
tings considered, and is only marginally outperformed in
a minority of cases by the deterministic model in settings
where φr is mid or low.

Application of BINDER to Escherichia coli and Bacillus
subtilis data
As a benchmarking exercise to assess the performance
of BINDER on a bona fide regulatory interaction data
set, we investigated BINDER’s ability to infer interaction
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Fig. 2 Simulation results illustrating the mean absolute deviation (MAD) between the true and estimated regulation interaction probabilities
achieved by the deterministic, non-auxiliary and BINDER approaches across a range of dispersion parameter settings
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plausibility for the fur and lexA regulons in Escherichia coli
[31] and Bacillus subtilis [32]. Where E. coli constitutes
the organism of interest, Pseudomonas aeruginosa
(P. aeruginosa) [33] constitutes the proxy organism
and where B. subtilis is the organism of interest,
Listeria monocytogenes (L. monocytogenes) [34] ful-
fils the role of the proxy organism. Considering two
regulons across these well-researched settings allows
for intra-regulon and inter-regulon analysis as well as
intra-organism and inter-organism analysis.
The ferric uptake regulator, or fur, is a transcriptional

factor originally described as a repressive regulator of
genes involved in iron import. Since then, aside from iron-
homeostasis, fur has been shown to be associated with
processes such as resistance to oxidative stress, pH home-
ostasis and quorum sensing as well as other cellular mech-
anisms [35]. In bacteria, the SOS response provides the
means for responding to DNA damage; the expression of
genes comprising the SOS regulatory network is under the
control of lexA [36]. lexA is a global transcription factor
that undergoes cleavage during stress permitting expres-
sion of DNA repair functions [37]. lexA also regulates
genes that are not comprised within the SOS response
program [36].
Here we avail of well-established regulator-target

interactions as detailed by RegulonDB [6] for E. coli
and well-established regulator-target interactions as per
SubtiWiki [38] for B. subtilis. To build the primary data,
we used E. coli expression data from COLOMBOS [39]
and B. subtilis expression data from SubtiWiki [40]. For
the auxiliary data, we use regulatory sequence motifs and
orthologous target interactions from P. aeruginosa and L.
monocytogenes curated by collecTF [5].
We consider the BINDER, deterministic and non-

auxiliary approaches to infer the GRNs in Escherichia coli
and in Bacillus subtilis from their primary and auxiliary
data. Non-informative priors were employed with mean
hyperparameters set to 0 and standard deviation hyper-
parameters set to 3, with the exception of the prior on φr
which was set to φr ∼ N(0,∞)(1, 0.1) for regularisation
purposes. Further, we also consider iRafNet [21] which
employs an integrative prior-information-based approach
to random forest inference of GRNs from expression
data. For iRafNet, we applied the algorithm to each tar-
get candidate of interest individually using the fur and
lexA regulator genes as predictors; further, in addition to
the standardised expression matrix, for the iRafNet prior
information matrix W, the element wij, corresponding to
the ith regulator and jth target candidate, was configured
such that wij = exp(1) if ME = 1 or PE = 1 and wij =
exp(0) for i �= j.
In total, of the 4221 uniquely labelled genes present in

RegulonDB with available expression data, 67 correspond
to well-established regulatory interactions concerning fur

and 23 correspond to well-established interactions con-
cerning lexA in E. coli. For B. subtilis, of the 4162 uniquely
labelled genes with available expression data, 58 corre-
spond to well-established regulatory interactions with fur
and 57 to well-established regulatory interactions with
lexA.
For the fur regulon in E. coli, BINDER achieved an

area under curve (AUC) of 0.880. Notably however, in
contrast to BINDER, iRafNet omits data recorded under
conditions for which expression levels for all genes are
not available. Thus, in order to fairly compare perfor-
mance with iRafNet, we applied BINDER to a reduced
expression matrix comprising fewer conditions such that
no missing data were present. BINDER achieved an AUC
of 0.787 as compared with 0.710, 0.654 and 0.725 for
the non-auxiliary, deterministic and iRafNet approaches
respectively (Fig. 3, Table 1).
Interestingly, for BINDER applied to the reduced

coexpression data, the mean posterior 50th percentile
θ50%fur,t∀t ∈ T corresponding to validated regulatory inter-
actions was only 0.0050 as compared with 0.0016 for the
mean θ50%fur,t corresponding to observations without evi-
denced regulatory interactions (Fig. 4). That this BINDER
implementation achieved a corresponding AUC of 0.787
suggests that the distribution of θ50%fur,t values is highly
skewed to the right, and thus their relative magnitude is
of importance when observing BINDER’s output. Inter-
estingly, we did not observe this effect when BINDER
was applied to the complete expression data. Thus, we
imposed a more informative prior φfur ∼ N(0,∞)(10, 0.01)
and applied BINDER again resulting in a mean θ50%fur,t cor-
responding to validated regulatory interactions of 0.2427
as compared with 0.0183 for themean θ50%fur,t corresponding
to observations without evidenced regulatory interactions
(Fig. 4). However, with this informative prior the AUC
dropped to 0.729. This is almost identical to the AUC
for the non-auxiliary implementation which is intuitive
because as φfur increases, the auxiliary stratum provides
diminishing influence (Fig. 3, Table 1).
For the lexA regulon in E. coli, BINDER achieves an

AUC of 0.888. Once again, in order to compare perfor-
mance with iRafNet, we re-applied BINDER to a reduced
expression matrix comprising fewer conditions such that
no missing data were present. For the reduced expression
data BINDER achieved an AUC of 0.857 as compared
with 0.768, 0.778 and 0.829 for the non-auxiliary,
deterministic and iRafNet approaches respectively
(Fig. 3, Table 1).
Performance was similar for the B. subtilis organism

(Fig. 3, Table 1). For the fur regulon, BINDER achieved an
AUC of 0.905 as compared with 0.878, 0.746 and 0.694 for
the non-auxiliary, deterministic and iRafNet approaches
respectively. For the lexA regulon, BINDER achieves an
AUC of 0.855 as compared with 0.728, 0.767 and 0.819 for
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the non-auxiliary, deterministic and iRafNet approaches
respectively.
Not only does BINDER out perform all other consid-

ered approaches in terms of AUC, but, considering false
positive rates in the neighbourhood of 0, BINDER tends

Table 1 AUC scores achieved by each modelling approach for
each regulon in each organism

Model fur
(E. coli)

lexA
(E. coli)

fur
(B. subtilis)

lexA
(B. subtilis)

iRafNet 0.725 0.829 0.694 0.819

Deterministic 0.654 0.778 0.746 0.767

Non-auxiliary 0.710 0.768 0.878 0.728

BINDER 0.787 0.857 0.905 0.855

BINDER (all) 0.880 0.888 - -

BINDER (informative p(φ)) 0.729 - - -

to achieve higher true positive rates than any of the other
approaches. This is particularly important because, owing
to sparse regulatory connectivity across a given genome,
regulon mapping is typically a minority class problem i.e.
the vast majority of target candidates will constitute neg-
atives for most regulators. This implies that a low false
positive rate can still translate to a large number of false
positives.
The ability of BINDER to integrate and borrow infor-

mation across primary and auxiliary data when inferring
a GRN is demonstrated in Fig. 5 for the particular case
of the lexA regulator in B. subtilis when there is no aux-
iliary evidence. Only the full BINDER implementation is
capable of tempering estimates when there is disagree-
ment between interaction status and auxiliary evidence;
when there is an interaction but no auxiliary evidence
BINDER is capable of exploiting the individual primary
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Fig. 4 Posterior estimates of θ50%r,t for the BINDER, deterministic and non-auxiliary approaches for r = fur and r = lexA regulons in E. coli and B.
subtilis, factored by established interaction status

data values, CM and CP, to provide higher estimates to
the regulator-target candidate; however, the deterministic
approach lacks the flexibility to provide any high θ50%lexA,t
estimates in the absence of auxiliary evidence. Similarly,
owing to the lack of auxiliary evidence, BINDER is capa-
ble of tempering its estimates for θ50%lexA,t when there is
no interaction and no auxiliary evidence; in contrast, the
non-auxiliary approach results in high θ50%lexA,t estimates for
all observations with high primary data values CM and
CP. BINDER’s hierarchical modelling structure and ability
to borrow local and global information from both the pri-
mary and auxiliary data sources results in more realistic
estimates: higher θ50%lexA,t estimates for putative interactions
and lower θ50%lexA,t estimates for putative non-interactions
in general. Synoptically, BINDER’s ability to integrate the
information on whether a given regulator-target pair has
an affinity for the predicted motif and/or an ortholo-
gous regulatory interaction in the proxy organism with
the information provided in the primary data stratum
provides greater flexibility.

Application of BINDER toM. abscessus data
With a view to producing a model of regulation in M.
abscessus, we leveraged data from across 34 orthologous
ChIP-seq validated interactions in M. tuberculosis and
from 32 RNA-seq libraries from across 16 distinct
experimental conditions in M. abscessus. We considered
R = 34 orthologous regulators in M. tuberculosis, and
T = 4920 target candidates in the M. abscessus genome,
yielding N = 167, 280 regulator-target pairs. For com-
putational efficiency, given the likelihood function can be
factored by regulator, we run BINDER on the R = 34
orthologous regulators’ data in parallel. To computation-
ally infer the gene regulatory network for M. abscessus
the posterior distribution p(θr,t| . . .) is of key interest, for
r ∈ R and t ∈ T with . . . denoting all auxiliary and primary
data and other model parameters.

Prior sensitivity analysis
In order to assess the sensitivity of inference to the prior
distribution specifications, we constructed three different
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Fig. 5 For the lexA regulon in B. subtilis and for targets where the auxiliary data ME = 0 and PE = 0, estimates of θ50%lexA,t for the BINDER, deterministic
and non-auxiliary approaches, factored by known interaction status. The primary data values are CM and CP; points are jittered slightly for visibility

prior parameterisation settings and compared the result-
ing inferences. The three settings considered were labelled
as ‘non-informative’, ‘informative’ and ‘precise’ (Table 2).
In particular, the informative settings reflect a priori
beliefs that: (1) the auxiliary data PE and ME would
encode a reliable positive indication as to whether a given
regulatory interaction exists and (2) a negative intercept
would be required to correctly model interaction plausi-
bility. The precise setting reflects more extreme versions
of the informative setting (in terms of smaller auxiliary
data scale hyperparameters).
Inference was relatively insensitive to prior specifica-

tion in terms of MAD scores for θ50%r,t (uninformative
versus informative: 0.0040, sd: 0.0094; uninformative ver-
sus precise: 0.0183, sd: 0.0466; informative versus precise:
0.0168, sd: 0.0437, Fig. 6). Using a classification criterion

such that regulator-target pairs with a posterior 50th per-
centile θ50%r,t > 0.9 are classified as positive regulation
cases, comparing uninformative to informative positive
regulation cases yielded an adjusted Rand index [41] of
0.9247, versus 0.5203 and 0.5553 for uninformative ver-
sus precise and informative versus precise respectively
(an adjusted Rand index of 1 indicates perfect agreement).
Thus, for the remainder of this work, with a view to allow-
ing the data to determine the parameter estimates without
imposing strong beliefs, we focus on the uninformative
parameterisation.

Inferred regulatory interactions inM. abscessus
Of the N = 167, 280 regulator-target pairs considered in
M. abscessus, under the uninformative parameterisation,
BINDER identified 54 pairs across 5 transcription factors
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Table 2 Prior parameterisation settings considered for sensitivity
analysis of BINDER

Hyperparameter Uninformative Informative Precise

μζr 0 -3 -3

σζr 3 1 0.1

μτMEr
0 3 3

στMEr
3 1 0.1

μτPEr
0 3 3

στPEr
3 1 0.1

μφr 0 0 0

σφr 1 0.5 0.1

μψCPr
0 0 0

σψCPr
3 1.5 0.5

μψCMr
0 0 0

σψCMr
3 1.5 0.5

with a posterior 50th percentile θ50%r,t > 0.9 (Table 3).
Of these 54 interactions, 24 are known to have validated
orthologous regulatory interactions in M. tuberculosis as
per ChIP-seq data (Fig. 7); the number of interaction
pairs almost doubles by reducing the threshold by 0.1
(102 pairs with 31 known orthologous interactions satis-
fying θ50%r,t > 0.8 ). In comparison, under the informative
parameterisation, a similar effect was observed with 54
pairs with 21 known orthologous interactions satisfying
θ50%r,t > 0.9. A more conservative effect was observed
for the precise settings: 33 pairs across 28 transcription
factors with a posterior 50th percentile θ50%r,t > 0.9. As
expected, for all parameterisations, the vast majority of
posterior distributions of θ were centred at low values,
suggesting low levels of regulatory connectivity across
the M. abscessus interactome; the mean 50th percentile
for all of θ was 0.085 (sd: 0.106) for the uninforma-
tive parameterisation and 0.087 (sd: 0.105) and 0.0885
(sd: 0.0995) for the informative and precise parameterisa-
tions respectively. It should be noted that in the bench-
marking exercise (“Application of BINDER to Escherichia
coli and Bacillus subtilis data” section) we observed

Fig. 6 Heat map illustrating the similarity between mean predicted θ50%r,t values achieved by BINDER under three distinct prior distribution
parameterisations (uninformative, informative, precise) on the set of N = 167, 280 regulator-target pairs
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Table 3 Regulator-target pairs achieving a posterior θ50%r,t > 0.9
inM. abscessus by regulator under the uninformative
parameterisation

Regulator Locus
Tag

Regulator
Gene Name

Total
Interactions

Conserved
Interactions

Unconserved
Interactions

MAB_0599 - 8 4 4

MAB_1678c zur 15 8 7

MAB_4086 - 8 1 7

MAB_4270c hspR 7 4 3

MAB_4449c - 16 7 9

that the nominal value of a regulator-target pair’s θ50%r,t
is not always as informative as its relative magnitude
to {θr,1, . . . , θr,N }. In general, whilst there were many
instances of plausible conserved interactions, the results
suggest evidence for many non-conserved interactions
that may be unique to M. abscessus. Further, it can be
observed that for a given regulator, many of the regulated
genes appear to be spatially clustered along the genome
(Fig. 7). This observation lends support to the concept of
gene colocalization arising as a means to affect efficient
transcription [42, 43].
The parameter ζr in the auxiliary component influences

the inferred probability of regulator-target interaction
before any further regulator-target pair information is
taken into account, with larger values of ζr meaning higher
interaction probabilities. In this sense, each ζr is related
to the ubiquity of regulation by regulator r across the
genome. Under the uninformative parameterisation, we
observed an average posteriormean of -6.63 across all reg-
ulator models (sd: 4.07). Hence, intuitively, conditional on
the auxiliary data ME and PE being zero, the probability
of a regulatory interaction is low.
The parameter τMEr captures the influence the aux-

iliary ME data has on the prior mean of the inferred
probability of a regulatory interaction between regula-
tor r and target t, given all other covariates. Across all
regulators, under the uninformative parameterisation, we
observed an average posterior mean for τMEr of 1.43 (sd:
0.9982) (Fig. 8). The parameter τPEr has a similar inter-
pretation for the auxiliary data PE. Across all regulators,
under the uninformative parameterisation, we observed
an average posterior mean for τPEr of 1.95 (sd: 1.8981)
(Fig. 8). These results suggest that, on average, both ME
and PE are positively correlated with the primary data in
the likelihood. Given the phenomenon of genomic conser-
vation, this is as we would expect and lends credence to
the BINDER approach. Furthermore, although the mean
posterior means for τMEr and τPEr are quite similar, the lat-
ter has larger variation suggesting higher volatility in the
influence of PE than in the influence of ME.

In terms of scale parameters, under the uninformative
parameterisation, φ tended to have the lowest poste-
rior mean values (average posterior mean of 1.12 with
standard deviation 1.0067) (Fig. 9). Both ψCMr and ψCPr
yielded larger posterior mean estimates. In particular,
under the uninformative parameterisation, ψCMr yielded
an average posterior mean of 4.23 (sd: 1.7713) and ψCPr
yielded an average posterior mean of 3.63 (sd: 1.4499),
suggesting that the primary CM data tend to lie further
from logit(θr,t) than CP (Fig. 9). Also, the larger average
posterior mean associated with ψCMr compared with that
of ψCPr is intuitive, given the extra uncertainty associated
with motif inference (comprised within CM) com-
pared with validated orthologous interactions comprised
within CP.

Interpretation of results: composition of the zur regulon
As an example of a putative discovery facilitated by
BINDER, we examine the inferred regulon correspond-
ing to the transcriptional regulator zur (MAB_1678c). The
zur regulator present in M. tuberculosis and M. absces-
sus is a zinc-responsive transcription factor. Zinc is an
essential element for life in many organisms [44]. In addi-
tion to its role as a structural scaffold for many proteins,
it fulfils a critical function as a frequent enzyme and
DNA-binding protein cofactor [45]. However, zinc can
be toxic at high concentrations [46]. For prokaryotes,
efficient zinc acquisition, concentration and tolerance are
critical processes for survival and pathogenicity [47]. Zinc
homeostasis in prokaryotes is achieved via cellular import
and export, zinc binding, and zinc-sensing [47]. Cellu-
lar zinc levels are maintained by importer and exporter
proteins which are then regulated at the transcriptional
level by several zinc-responsive transcription factors [48],
including the zur regulator.
As per ChIP-seq results, the original regulon per-

taining to zur in M. tuberculosis (Rv2359/furB) com-
prised 26 target genes (12 directly regulated targets);
under the uninformative parameterisation, of these tar-
gets, 14 (53.8%) contained orthologs in M. abscessus.
Using the cutoff criterion θ50%zur,t > 0.9, BINDER sug-
gested 15 target candidate genes in M. abscessus be con-
sidered valid targets of zur, 8 of which correspond to
evidenced interactions in M. tuberculosis. Gene onto-
logical analysis carried out on the putative targets
provided intuitive insight, revealing up-regulated biolog-
ical processes (p ≤ 0.05) corresponding to metal ion
transport.
BINDER also identified a number of interesting

non-conserved putative targets for zur. For example,
MAB_1046c, is annotated as a cobalamin synthesis pro-
tein. This is interesting as MAB_0335, one of the identi-
fied conserved targets, is also annotated as a cobalamin
synthesis protein. This is perhaps owing to the role
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Fig. 7 Abacus plot illustrating interaction candidates achieving θ50%r,t > 0.9 for the uninformative parameterisation; larger points are suggestive of
less uncertainty; circles correspond to validated regulatory interactions inM. tuberculosis; shading corresponds to the posterior θ50%r,t estimate.
Regulators and targets are arranged by genomic position

of cobalamin as a cofactor for cobalamin dependent
methionine synthase in prokaryotes. Cobalamin depen-
dent methionine synthase is involved in zinc ion binding
[49]. Further, MAB_2698c and its immediately adjacent
neighbourMAB_2699c also yield high θ50%zur,t posterior esti-
mates; gene ontology suggests that MAB_2699c, another
unconserved putative target, is involved in pseudouri-
dine synthesis/pseudouridine synthase activity; pseu-
douridine synthases catalyse the isomerisation of uridine
to pseudouridine in RNA molecules and are thought to
act as RNA chaperones. Intriguingly, pseudouridine syn-
thase I (TruA) [50], one of the four distinct families of
pseudouridine synthases, contains one atom of zinc essen-
tial for its native conformation and tRNA recognition
[51]. Another unconserved target is the PPE-like gene
MAB_0809c; PPE genes are widely considered to play a
key role in pathogenesis. Interestingly, phagosomes con-
taining PPE genes found to disrupt lysosome-phagosome
fusion have been shown to display differences in zinc

levels relative to corresponding phagosomes contain-
ing PPE-knockout mutants [52]. Another highly-probable
unconserved interaction, MAB_1680, is annotated as a
putative transmembrane protein. Given its association
with zur, MAB_1680 is perhaps involved with zinc uptake
inM. abscessus.

Discussion
In this work we have inferred the GRN in M. abscessus
using the BINDER approach, the primary purpose of
which is to infer the probability of pairwise interactions
in a collection of regulator-target pairs. BINDER exploits
experimental coexpression data in tandem with the prop-
erty of genomic conservation to probabilistically infer a
GRN in M. abscessus. To infer a GRN, BINDER proceeds
by binding information from data in primary and auxiliary
strata.
BINDER facilitates information sharing horizontally

(by sharing parameters in the same layer of the model
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Fig. 8 Central 95% of mass of the posterior distributions for τMEr , τPEr and ζr under the uninformative parameterisation with posterior means
indicated by dots for each of the R = 34 regulators

hierarchy) and vertically (by sharing of parameters in
distinct strata of the hierarchy). The likelihood function
assumes independence of the assumed logit-normal dis-
tributed primary data variables, conditional on the shared
parameter of interest θr,t , representing the probability of
an interaction in the (r, t)th regulator-target pair. Further,
the mean of this interaction probability’s logit-normal
distribution is informed by a linear function of the aux-
iliary data, serving as a proxy for genomic conservation
information. Thus inference is strengthened through the
borrowing of information across variables and strata.
With the exception of PE, the construction of all

variables considered (i.e. ME, CM and CP) involves the
choice of thresholds and/or decisions. For example, from
the outset we have formed a TFBS-based module binary
membership structure and an orthologous target
binary membership structure, recorded in the auxiliary
binary variables ME and PE respectively, on which the
primary variables CM and CP rely. However, in order
to circumvent potential loss of information associated

with such hard membership, a “soft" approach using scale
free topology or clustering coefficients may be worth
exploring. Under these scenarios, the idea of membership
has a continuous representation [15]. Further, the auxil-
iary variable ME is derived from thresholding a p-value
and as such is sensitive to the cutoff point ε selected.
The BINDER approach also implements a further two
threshold points δCM and δCP; clearly it is of paramount
importance to choose these thresholds in an informed
and careful manner. We have employed a hypergeometric
framework for CM and CP, but any mapping to [0, 1] is
possible. Again, topological overlap mapping or cluster-
ing coefficent mapping [15] are alternative approaches.
With a view to foregoing the need to choose a threshold
at all, simply mapping a regulator-target pair to the mean
of its coexpression with members of the ME and PE mod-
ules is possible because the mean of a group of unsigned
coexpressions will also lie in [ 0, 1]; validation studies sug-
gests that this approach, although convenient, does not
perform quite as well as the hypergeometric framework.
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Fig. 9 Central 95% of mass of posterior distributions for φr , ψCMr and ψCPr under the uninformative parameterisation with posterior mean values
denoted by dots for each of the R = 34 regulators

It should be noted that, for our purposes, we had a rel-
atively small-scale expression compendium with which to
form our coexpression networks. Both the volume and
diversity of RNA-seq conditions used to construct the
coexpression networks may not be fully sufficient to com-
putationally infer the entire GRN in M. abscessus. Small
coexpression data sets are more likely to comprise noisy
correlation results and similar experimental conditions
have the effect of duplicating expression information lead-
ing to low numbers in terms of effective sample sizes.
Similarly, for some regulators, we observed a lack of speci-
ficity in binding sites (owing to very long binding regions
and small numbers of binding interactions); this has the
effect of negatively impacting motif inference (i.e. false
discovery of erroneous motifs). Naturally, more reliable
data are preferable, however where data are less reli-
able, it is possible to account for this uncertainty through
specification of the hyperparameters in the priors on
the variable-specific parameters. Regardless, as the signal
deteriorates (e.g. erroneous consensus motifs, inaccurate
binding interactions), inference will suffer and thus it is

important to ensure that all data sources are as accurate
as possible. For the above reasons, it may be worthwhile
to examine the more conservative BINDER parameteri-
sations (i.e. the precise parameterisations) detailed above.
This parameterisation implements a less diffuse prior dis-
tribution such that candidates lacking auxiliary support
are less likely to achieve high θr,t estimates.
Through the course of this analysis, with a view to focus-

ing on inferred highly probable regulator-target interac-
tions, we have examined pairs for which the posterior
median θ50%r,t > 0.9. However, the intention behind this
model is not to define interaction probability on the
basis of a single point estimate, but rather to provide
a posterior distribution of θr,t . This allows for a more
nuanced analysis on interaction probability estimates than
is typically provided by a simple binary classifier. Instead,
we recommend that estimates are received in the context
of the scientific question posed; varying the the num-
ber and severity of thresholds and tolerances will allow
for differing results. Similarly, as noted in the fur regu-
lon inference for E. coli explored in the benchmarking
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results, under certain scenarios BINDER estimates low
values for all interaction candidates (both positive and
negative cases); this is either due to influential hyper-
parameter settings and/or poor agreement between the
auxiliary and primary data. However, even under these
scenarios, BINDER can still estimate higher estimates for
positive interaction cases. In such cases, as is good statisti-
cal practise, prior sensitivity analyses should be conducted
or it may be worthwhile to consider regulator results
individually.
One obvious limitation of any model that exploits con-

servation phenomena to perform inference in scarcely
annotated organisms is that such a model can only
make inference based on existing conservation data;
indeed BINDER cannot infer interaction that may exist
in M. abscessus on regulators not considered here. There
are modelling approaches for “de novo" network infer-
ence that are based exclusively on coexpression anal-
ysis or other non-conservation based predictors, but
such approaches can contain many false positives [53].
Instead BINDER aims to overcome such issues by allowing
coexpression-based data have partial influence on model
inference. Moreover, while BINDER requires a consensus
sequence motif and a collection of orthologous regulator-
target interactions to perform inference, it is possible
to run BINDER with a consensus sequence motif or a
collection of orthologous interactions only. In this case,
BINDER comprises one variable in the auxiliary stratum
and one variable in the primary stratum.
One mechanism used by cells to refine and main-

tain transcription factor levels is autoregulation. It has
been argued that the occurrence of autoregulation posi-
tively correlates with the developmental or physiological
importance of the transcription factor [54]. Given that
any gene will have a perfect coexpression with itself,
most expression-based approaches (such as GENIE3 and
iRafNet) to GRN inference are unable to detect transcrip-
tion factor autoregulation. For a given regulator, BINDER
uses the coexpression profiles of a target gene with genes
under the control of the regulator to inform the proba-
bility of a regulator-target interaction. BINDER does not
examine the coexpression of the target candidate with
regulator directly. As a result, BINDER is able to detect
autoregulation.
For each regulator considered here, we applied the

BINDER approach to all 4920 annotated protein-coding
genes inM. abscessus. However, in theory, BINDER could
be applied to any desired subset of genes. With a view
to accurately describing whole-population behaviour we
recommend including all available data, albeit acknowl-
edging the associated additional computational cost.
Pearson’s correlation was employed here as a mea-

sure of coexpression. Although there are other options,
with a view to remaining conservative and reducing false

positives, Pearson’s correlation gives high values when
expression values are strongly linearly related. Common
alternatives include the more flexible Spearman’s method,
but often with increased flexibility comes an increase in
less biologically significant relationships. Although use of
Pearson’s correlation can come at the cost of increased
false negatives, studies have suggested that many coex-
pression relationships are linear and monotonic so this
issue may be overstated [55].
Recent studies have suggested that implementing an

ensemble approach to motif identification can improve
detection results [56]. BINDER could be extended to aug-
ment the number of motif search tools used in the analy-
sis. Similarly, another suggestion might be to augment the
number of proxy organisms from a single proxy organism
to k proxy organisms, similar in vein to [24]. A spike-
and-slab prior distribution [57] for the associated model
parameters would provide insight on the information con-
tained in the individual proxy organisms. Furthermore, it
is possible to extend the dimensionality of the primary
stratum. In general, data that are binary or lie in [0, 1]
can be appended to the primary stratum: for example,
the direct coexpression between a given regulator-target
pair could be used to form a trivariate primary stratum.
Although we have used exclusively binary variables in the
auxiliary stratum, there is no restriction on the form of
auxiliary data that can be modelled by BINDER.
It may be worthwhile to investigate the effect of incor-

porating more sophisticated levels of dependency in the
BINDER model. Such dependencies could be based on
operon comembership, on regulator family membership
(e.g. the whiB-like family [58]), on target reoccurrence
or on gene function using GO [59] or COG [60], for
example. Here, we only consider the gene immediately
downstream of a confirmed or putative TFBS to be under
the regulation of the associated regulator. Recent studies
suggest that operon organisation is dynamic and, hence,
operon structures are capable of changing across condi-
tions [61]. However, given that BINDER considers not
only the existence of a precedent interaction and/or motif
match for a given candidate, but also the coexpression
of that candidate with other candidates that do comprise
a precedent interaction and/or motif match, BINDER
is capable of detecting adjacent gene coregulation.
Members of operon structures that are cotranscribed
across all conditions considered will exhibit greater coex-
pression than those that are only cotranscribed under a
fraction of conditions considered; as a result, BINDER is
able to reflect that behaviour through the θr,t posteriors.
Furthermore, it is possible to construct prior distribu-
tion parameterisations such that BINDER will tend to
estimate higher θr,t median values for genes in cotran-
scribed structures if they comprise a precedent interaction
and/or motif match; this may facilitate the determination



Staunton et al. BMC Bioinformatics          (2019) 20:466 Page 16 of 21

of gene importance in cotranscribed structures. Owing to
the lack of assumptions made by BINDER with respect to
transcription start sites and operon co-membership, we
expect that the results generated by BINDER will suffi-
ciently aid in the generation of dynamic regulatory net-
works, as well as the understanding of transcriptional unit
plasticity.

Conclusions
We have sought to determine the evidence for gene
regulation in M. abscessus using a range of expression
data from M. abscessus and experimentally validated reg-
ulatory network data from M. tuberculosis. We have
demonstrated the extent to which there is a correlation
between gene regulation inM. tuberculosis and transcrip-
tome coexpression in M. abscessus. Our results imply not
only strong genic conservation between M. abscessus and
M. tuberculosis but also evidence of conservation with
respect to the modes of transcriptomic control between
these two organisms.
We have implemented a Bayesian modelling approach

to quantifying the probability of an interaction across a
collection of 167,280 regulatory-target pairs. Of these, 54
regulator-target pairs, across 5 transcription factors, were
inferred to have a posterior 50th percentile for θr,t > 0.9
inM. abscessus.
The interactions identified in this study will form a valu-

able resource for further studies of transcriptional control
in M. abscessus and in the family of Mycobacteriaceae
more generally. Further, the BINDER framework is appli-
cable across a wider range of organisms for which similar
data are available.

Methods
Data
Given the paucity of data available from the primary
organism M. abscessus (MAB), BINDER integrates data
from a proxy organism M. tuberculosis (MTB) into the
inferential procedure. Specifically, we leverage data from
across orthologous ChIP-seq validated interactions in M.
tuberculosis as proxy data and extract the primary data
from 32 RNA-seq libraries across 16 distinct experimen-
tal conditions in M. abscessus. Thus we consider the set
of all possible regulator-target interaction candidate pairs,
arising from the set R = 34 orthologous regulators in M.
tuberculosis, and T = 4920 target genes in the M. absces-
sus genome yielding N = 167, 280 regulator-target pairs
of interest.

Auxiliary data: motif evidence (ME) and precedent evidence
(PE)
Motif Evidence: With respect to a given regulator r, the
TFBS status of a target t is encoded through a binary
variable termed motif evidence (ME). Specifically, for a

regulator-target pair, ME takes the value 1 if the corre-
sponding target contains a putative TFBS for the regula-
tor’s motif in its upstream region and a value of 0 other-
wise. Here, the binding motif is assumed to be identical to
the binding motif in the proxy organism.
Withaviewtodetermining regulatormotifs, we extracted

binding sequences using the NCBI M. tuberculosis
(Accession: AL123456) complete chromosome sequence
and annotation, SMTB. The evidenced binding region
coordinates were provided by ChIP-seq data sets ranging
across several induced transcription factor experiments in
M. tuberculosis. We subsequently categorised these bind-
ing sequences by regulator with a view to discovering
binding sequence consensus motifs. The MEME motif
discovery tool [62] was used to infer a single consensus
binding motif Mr for each regulator r ∈ R: in particu-
lar, using a DNA alphabet, we searched on both strands
seeking zero or one occurrence per binding sequence of
a single consensus motif between 10 and 30 nucleotides
long.
To find putative TFBSs for the derived motifs in the M.

abscessus genome, we defined a sequence region Ut cor-
responding to the region -300nt to +50nt of the start of
each target of interest t ∈ T . This interval size was cho-
sen in light of the distribution of intergenic region lengths
in the M. abscessus genome. In order to find putative
TFBSs for eachMr , we searched in eachUt using the com-
plete chromosome sequence and annotation SMAB pro-
vided by NCBI for M. abscessus (Accession: NC010397).
In the scenario that the most upstream coordinate of an
immediately adjacent upstream gene was annotated to
occur within 300nt of an upstream region of interest, the
upstream region of interest was truncated to the most
upstream coordinate of the upstream gene. To perform
this search, we used the FIMO tool [63] to find the high-
scoring upstream sequences with a q-value ≤ ε = 0.1. We
provided a background file encoding 0-order nucleobase
probabilities based on all upstream sequences of interest.
In summary, for each regulator-target pair (r, t) for r =

1, . . . ,R and t = 1, . . . ,T the motif evidence MEr,t is
computed where:

MEr,t =
{
1 if forMr the FIMO q-value for Ut ≤ ε

0 otherwise.

For a given regulator r, we refer to the set of all genes
where MEr,t = 1 as the ‘MEr module’.
Precedent Evidence: The presence of an annotated

orthologous regulator-target interaction in the proxy
organism is encoded in the binary variable termed prece-
dent evidence (PE). For a regulator-target pair, PE takes
the value of 1 if such an orthologous interaction exists and
takes the value of 0 otherwise.
Specifically, given both the proxy genome GMTB and

the primary genome of interest GMAB, Ortholuge [64]
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derived one-to-one orthologs were used to map orthol-
ogous regulator-target interactions from GMTB to GMAB.
ChIP-seq data sets drawn from 34 induced transcrip-
tion factor experiments in GMTB were scanned for
orthologous regulator-target interactions with respect to
GMAB; orthologous regulator-target pairs were subse-
quently grouped by regulator to derive a rudimentary
orthology of regulons in GMAB.
Thus, given the rudimentary orthology, for a given reg-

ulator r and target t:

PEr,t =
{
1 if orthologous evidence of r regulating t in GMTB
0 otherwise.

As in the ME case, for a given regulator r, we refer to the
set of all genes where PEr,t = 1 as the ‘PEr module’.

Primary data: coexpression ofmotif and precedent evidence
Coexpression of Motif Evidence: Exploiting the prop-
erty that genes sharing a common regulator exhibit strong
coexpression [14], we computed a measure termed coex-
pression of motif evidence (CM). For a given regulator,
using the motif derived from the proxy organism, CM
quantifies the extent to which a target gene coexpresses
with genes that have strong affinity for the putative regu-
lator motif in the primary organism.
Specifically, for a regulator binding sequence motif Mr

inferred from GMTB, we define CMr,t for a given gene
regulator-target pair (r, t) inGMAB.We define the reduced
primary genome GMAB,−Ot = GMAB \ Ot , where Ot is
a t-inclusive set of genes in GMAB that should not be
used in the calculation of CMr,t . This set will naturally
include t, but can contain any other genes that are not
desired for calculation of CMr,t . The variable CMr,t lies in
[0, 1], where values closer to 1 represent stronger correla-
tion between expression levels of the target t with genes
in GMAB,−Ot producing strong matches to the inferred
sequence motifMr . Specifically, for a regulator-target pair

CMr,t =
{
hypergeometric(a|b, c, d) for a, b, d ≥ 1
0 otherwise

where hypergeometric(a|b, c, d) represents the cumula-
tive distribution function of a hypergeometric random
variable a with parameters b, c and d where, for some
threshold δCM,

• a is the number of genes in GMAB,−Ot that belong to
the MEr module and have an absolute expression
correlation with gene t > δCM

• b is the number of genes in GMAB,−Ot exhibiting an
absolute expression correlation with gene t > δCM

• c is the number of genes in GMAB,−Ot exhibiting an
absolute expression correlation with gene t ≤ δCM

• d is the number of genes in GMAB,−Ot that belong to
the MEr module.

A Benjamini and Hochberg adjustment [65] is applied to
these probabilities to relax the observed polarisation of
probabilities around 0 and 1; for a given regulator r, the
adjustment is relative to all targets t ∈ T . We expect genes
under the control of regulator r to coexpress strongly with
members of the MEr module. For our purposes, we vary
the threshold such that each δCM is specific to each target.
For a given target t, assuming CXi,j represents the coex-
pression between genes i and j, we choose δCM to be equal
to the 95th percentile of all values in the set {CXt,g for g ∈
GMAB,−Ot }.
Coexpression of Precedent Evidence: Analogous to

CM, we develop a score of coexpression of precedent
evidence, CP. For a given regulator, CP quantifies the
extent to which a target gene coexpresses with orthologs
of genes comprising regulator-target interactions in the
proxy organism.
Specifically, for regulator r, we define the regulon Pr

as the collection of orthologous interactions annotated in
GMTB. For a given gene regulator-target pair (r, t) inGMAB
the variable CPr,t is defined on the interval [0, 1], where
values closer to 1 represent stronger expression correla-
tion of gene t with orthologs of genes from Pr inGMAB,−Ot .
That is,

CPr,t =
{
hypergeometric(a|b, c, d) for a, b, d ≥ 1
0 otherwise

where, for a threshold δCP

• a is the number of genes in GMAB,−Ot that belong to
the PEr module and have an absolute expression
correlation with gene t > δCP

• b is the number of genes in GMAB,−Ot containing an
ortholog in GMTB and exhibit an absolute expression
correlation with gene t > δCP

• c is the number of genes in GMAB,−Ot containing an
ortholog in GMTB and exhibit an absolute expression
correlation with gene t ≤ δCP

• d is the number of genes in GMAB,−Ot that belong to
the PEr module.

Again, the probabilities are subject to Benjamini and
Hochberg adjustment relative to all target candidates t ∈
T . We expect genes under the control of regulator r to
coexpress strongly withmembers of the PEr module. Thus
again we choose δCP to be equal to the 95th percentile of
all values in the set {CXt,g for g ∈ GMAB,−Ot }.
With a view to quantifying coexpression in GMAB, the

expression profiles (using RPKM [66]) of all genes con-
stituting the NCBI GenBank annotation for the GMAB
genome were computed across 32 RNA-seq libraries
(comprising 16 distinct experimental conditions) elicited
fromarangeofastringent responseand control experiments.
In order to compute the corresponding coexpression
profiles, we generated the unsigned Pearson correlation
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coefficient of all possible pairwise annotated gene-pair
combinations. All read files were aligned using Bowtie
(version 1.2.2) [67] and totalled using Samtools (version
1.7) [68]. RNA-seq libraries can be found on NCBI’s Gene
Expression Omnibus (Accession: GSE78787).

The BINDERmodel for inferring a GRN
Borrowing strength across the primary and auxiliary data
sets, we computationally infer the GRN for M. abscessus
through a novel statistical modelling approach: BayesIan
gene regulatory Networks inferreD via gene coExpres-
sion and compaRative genomics (BINDER). BINDER is
a Bayesian hierarchical model that appositely models the
type and structure of both the primary and auxiliary data
to infer the probability of a regulatory interaction between

a regulator-target pair candidate. Each of N = |R| × |T |
observations is a regulator and target candidate pair (r, t)
from the set of regulatorsR and the set of target candidates
T in the M. abscessus genome. Interest lies in the proba-
bility θr,t of there being an interaction between regulator r
and target t. Thus, inferring θr,t facilitates inference of the
M. abscessus GRN.
As stated, BINDER integrates primary data from M.

abscessuswith data from the proxy organismM. tuberculosis.
Specifically, the variables CM and CP (“Primary data:
coexpression of motif and precedent evidence” section)
constitute the primary data stratum whilst ME and PE
(“Auxiliary data: motif evidence (ME) and precedent
evi- dence (PE)” section) constitute the auxiliary stra-
tum. As BINDER is a Bayesian hierarchical model, the

Fig. 10 Graphical representation of the hierarchical BINDER model; squares correspond to observed data, large discs correspond to random
parameters and small discs correspond to fixed hyperparameters; the surrounding boxes denote observation-specific parameters and data
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auxiliary data inform the prior distribution for each θr,t ;
the posterior distribution for each θr,t is then updated by
accounting for the primary data.
To define the likelihood function of the BINDER model

we appositely model the primary data type and assume
logit-normal distributions for CM and CP. As such, in the
case where CMr,t or CPr,t were 0 or 1, they were increased
or decreased respectively by a small factor (10−4). Fur-
ther we assume, given θr,t , the regulator-target pairs and
primary variables are conditionally independent:

L(θ ,ψCM,ψCP|CM,CP)

=
∏

r∈R
t∈T

Nl{CMr,t|logit(θr,t),ψCMr }Nl{CPr,t|logit(θr,t),ψCPr }

HereNl(x|a, b) denotes the logit-normal distribution of
x with location and standard deviation parameters a and
b respectively. The location parameter is common across
the distributions for CM and CP. This shared parameter
enables the borrowing of information across variables, in
addition to facilitating tractability through the conditional
independence assumption. The conditional independence
assumption is widely employed in other settings, such as
latent class analysis [69, 70].
As with any Bayesian hierarchical model, prior distri-

butions are specified on the BINDER model parameters.
For each θr,t we posit a logistic normal prior such that
logit(θr,t) ∼ N (γr,t ,φ) where φ is the standard deviation
parameter controlling the level of dispersion around the
mean. The mean γr,t is informed by the auxiliary data ME
and PE on the regulator-target pair (r, t) through a linear
model. Specifically:

γr,t = ζr + τMErMEr,t + τPErPEr,t (1)

Independent priors are then posited on the param-
eters in (1) such that the intercept ζr ∼ N (μζ , σζ )

and a truncated normal prior is assumed on the slope
parameters: τkr ∼ N(0,∞)(μτk , στk ) for k ∈ {ME, PE}.
This truncated normal prior with mass on the posi-
tive real line reflects the assumption that the presence
of regulation in regulator-target pair (r, t) in the proxy
organism is suggestive of the presence of such regu-
lation in M. abscessus. To complete the model setup,
prior distributions are placed on the scale parameters
such that ψlr ∼ N(0,∞)(μψl , σψl ) for l ∈ {CP,CM}.
The hyperparameters of all the specified prior distri-
butions must be set by the practitioner and their val-
ues are potentially influential; sensitivity of inference to
their choice is explored in “Prior sensitivity analysis”
section.
In order to infer the GRN for M. abscessus, the set of

parameters {θr,t : r ∈ R, t ∈ T} are of primary interest.

Thus the required posterior distribution is

p(θ |CM,CP,ME, PE,μ, σ )

=
∫

τ

. . .

∫

ψ

p(θ ,ψ ,φ, τ , ζ |CM,CP,ME, PE,μ, σ )dψdφdζdτ

This posterior distribution is explored using Stan [71],
a state-of-the-art platform for statistical modelling and
computation for large data sets that employs Hamilto-
nian Monte Carlo methods [72] to draw samples from the
posterior distribution of interest. An illustration of the
BINDER model is provided in Fig. 10.
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