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Effect of hyperoside on cervical cancer cells 
and transcriptome analysis of differentially 
expressed genes
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Abstract 

Background:  Hyperoside (Hy) is a plant-derived quercetin 3-d-galactoside that exhibits inhibitory activities on vari-
ous tumor types. The objective of the current study was to explore Hy effects on cervical cancer cell proliferation, and 
to perform a transcriptome analysis of differentially expressed genes.

Methods:  Cervical cancer HeLa and C-33A cells were cultured and the effect of Hy treatment was determined using 
the Cell Counting Kit-8 (CCK-8) assay. After calculating the IC50 of Hy in HeLa and C-33A cells, the more sensitive to 
Hy treatment cell type was selected for RNA-Seq. Differentially expressed genes (DEGs) were identified by comparing 
gene expression between the Hy and control groups. Candidate genes were determined through DEG analysis, pro-
tein interaction network (PPI) construction, PPI module analysis, transcription factor (TF) prediction, TF-target network 
construction, and survival analysis. Finally, the key candidate genes were verified by RT-qPCR and western blot.

Results:  Hy inhibited HeLa and C33A cell proliferation in a dose- and time-dependent manner, as determined by the 
CCK-8 assay. Treatment of C-33A cells with 2 mM Hy was selected for the subsequent experiments. Compared with 
the control group, 754 upregulated and 509 downregulated genes were identified after RNA-Seq. After functional 
enrichment, 74 gene ontology biological processes and 43 Kyoto Encyclopedia of Genes and Genomes pathways 
were obtained. According to the protein interaction network (PPI), PPI module analysis, TF-target network construc-
tion, and survival analysis, the key genes MYC, CNKN1A, PAX2, TFRC, ACOX2, UNC5B, APBA1, PRKACA​, PEAR1, COL12A1, 
CACNA1G, PEAR1, and CCNA2 were detected. RT-qPCR was performed on the key genes, and Western blot was used 
to verify C-MYC and TFRC. C-MYC and TFRC expressions were lower and higher than the corresponding values in the 
control group, respectively, in accordance with the results from the RNA-Seq analysis.

Conclusion:  Hy inhibited HeLa and C-33A cell proliferation through C-MYC gene expression reduction in C-33A cells 
and TFRC regulation. The results of the current study provide a theoretical basis for Hy treatment of cervical cancer.
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of Genes and Genomes, Protein–protein interactions network, Survival analysis
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Background
Cervical cancer is a malignant epithelial tumor that 
occurs in the cervix. Most cervical cancers can be 
screened early by cervical cytology and virology. More-
over, human papillomavirus (Hpv) vaccination has 
emerged as an effective method for cervical cancer 
prevention [1]. However, due to inadequate screening 
programs in many parts of the world, cervical cancer 
remains one of the most common cancer types in females 
[2, 3]. Surgery is the main method for early treatment. 
Radiotherapy and chemotherapy are further therapy 
options. Women with cervical, especially advanced or 
recurrent, cancer are commonly treated using chemo-
therapy [4]. Recently, several reports have implicated 
traditional Chinese medicines in the treatment of cervi-
cal cancer. For example, ferulic acid inhibits the prolifera-
tion, invasion, and autophagy of cervical cancer cells, and 
induces cell cycle arrest [5]. Moreover, casticin induces 
G0/G1 cell cycle arrest and apoptosis in gallbladder can-
cer [6]. Hyperoside (Hy) is a flavonoid found mainly in 
Chinese herbal medicines. It exhibits anti-inflammatory, 
anti-oxidative, and vascular protective effects. Several 
recent studies demonstrated an anticancer effect of Hy 
in a variety of tumor types. Thus, Hy increased apopto-
sis and autophagy in pancreatic cancer cells [7]. Another 
study described Hy-mediated inhibition of human osteo-
sarcoma cell proliferation and promotion of osteogenic 
differentiation [8]. Yet another study implicated Hy in 
the caspase-3, p53, and nuclear factor-kappa B (NF-κB) 
signaling pathways, which induce apoptosis and inhibit 
lung cancer cell proliferation [9, 10]. In gynecological 
oncology, Hy induces endometrial cancer cell apoptosis 
through the mitochondrial pathway [11]. However, Hy 
effect on cervical cancer development and the molecular 
mechanism implicated are unclear.

In the current study, the effect of Hy on two cervical 
cancer cell lines was determined using cytological meth-
ods, to detect changes in the cell proliferation index. Dif-
ferentially expressed genes (DEGs) were identified by 
RNA sequencing (RNA-seq), comparing untreated and 
Hy-treated cells. Further analyses of the DEGs were con-
ducted to explore the specific mechanism of Hy action on 
cervical cancer cells.

Methods
Cell culture
HeLa and C-33A cells (both acquired from the Chinese 
Academy of Sciences Shanghai Cell Bank) were cultured 
in Dulbecco’s modified Eagle’s medium (Gibco,Waltham, 
MA, USA) supplemented with 10% fetal bovine serum. 
They were inoculated in 96-well plates, cultured at 37 °C 
for 24 h, and then divided into seven groups. One group 
was untreated, whereas the remaining groups were 

treated with 0.25, 0.5, 1, 2, 4, or 8 mM Hy (Solarbio, Bei-
jing, China) for 24, 48, or 72 h.

Cell viability and IC50 determination
Cell viability was determined using the Cell Counting 
Kit-8 (CCK-8) assay at 24, 48, and 72  h. At each time 
point, 100 µL CCK-8 (Beyotime Bio, Shanghai, China) 
was added to each well of a 96-well plate, which was then 
placed in a 37  °C, 5% CO2 incubator. HeLa and C-33A 
cells were incubated for 0.5 and 2  h, respectively, in 
the dark. The absorbance of each well was measured at 
450 nm using an EPOCH microplate reader (Gene Com-
pany Limited). The half-inhibitory concentration (IC50) 
was calculated with GraphPad (version 5.0), and the cell 
line exhibiting higher sensitivity to Hy treatment was 
selected for follow-up experiments.

RNA‑Seq and data preprocessing
Cells were divided into two groups for this experiment: 
a Hy-treated and a blank control group; the experiment 
was repeated three times with independent biological 
samples. Total RNA was extracted using TRIzol (TaKaRa 
Bio, Dalian, China), and the extracted RNA was sent to 
Shanghai New Bioinformatics Co., Ltd. to construct a 
cDNA library using an Illumina HiSeqTM 2000 platform 
for double-end PE150 sequencing with 6G data per sam-
ple. Unreliable bases and reads were filtered out to obtain 
clean data for the six samples. The TopHat software (ver-
sion 2.1.0) was used to locate clean reads on the human 
reference genome (GENCODE download, GRCh38) [12]. 
The read count information on each gene alignment was 
obtained using the htseq-count tool (version 0.9.1) based 
on the human gene annotation information provided by 
GENCODE (Release 25).

Inter‑sample expression level and principal component 
analysis
The cor function of the R software (version: 3.4.1) was 
used to calculate the similarity between the two sam-
ples in each experiment. The prcomp function of the R 
software was utilized to reduce the dimensionality of the 
data. The ggfortify package (version: 0.4.6) created PCA 
plots for principal component analysis.

DEG screening
First, the raw count was normalized using the TMM 
algorithm in the edgeR package [13, 14] (version: 3.4). 
Second, the mean–variance relationship was modeled 
with the exact weighting method (voom) provided by the 
limma package [15] (version: 3.36.2). Then, using linear 
regression and empirical Bayesian methods provided by 
the limma package, differential expression analysis was 
performed on the Hy and control groups. The differential 
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expression threshold for DEGs was set to P < 0.05, 
|logFC| > 0.585.

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO)
GO [16] functional annotation and KEGG [17] enrich-
ment analysis of the DEGs were performed using the 
DAVID (version 6.8, https​://david​-d.ncifc​rf.gov/) [18]. 
P < 0.05 and enrichment count of at least 3 were consid-
ered thresholds for significant enrichment results.

Protein–protein interaction network (PPI) and PPI module 
analysis
The STRING (version 10.0, http://www.strin​g-db.org/) 
database [19] was used to predict whether gene-encoded 
proteins interact with each other. A PPI network was 
constructed for the DEGs with the STRING database 
(parameter setting: species = homo; PPI score = 0.9). 
After obtaining the PPI relationship, a network diagram 
was constructed with Cytoscape (version 3.4.0, http://
chian​ti.ucsd.edu/cytos​cape-3.4.0/) [20]. CytoNCA 
plugin [21] (version 2.1.6, parameter setting: default) for 
Cytoscape was used to analyze the topological properties 
of the node network. The hub protein in the PPI network 
was obtained by ranking the network topology properties 
for each node.

The MCODE plugin [22] (version 1.5.1, parameter set-
ting: default) for Cytoscape was used to screen protein 
complexes or functional modules. The modules with a 
score > 5 in the screening result were analyzed for KEGG 
path enrichment using the R package clusterProfiler [23] 
(version: 3.8.1).

Transcription factor prediction
The genes corresponding to the proteins identified in 
the PPI network were used as candidate genes, and tran-
scription factors (TFs) were predicted with the TRRUST 
(version 2, http://www.grnpe​dia.org/trrus​t/, threshold 
setting: q-value < 0.05, number of target genes ≥ 2) [24]. 
The predicted TFs were compared with the DEGs to 
obtain differential TFs, and the transcription regulatory 
network (TF-target network) was constructed utilizing 
the Cytoscape software.

Survival analysis of key genes
The dataset for survival analysis was obtained from 
the UCSC database (http://xena.ucsc.edu/) [25], which 
contains TCGA-related data. Cancer samples with 
available patient survival information (n = 291) were 
selected, and the TCGA cervical cancer clinical data 
were used to extract the clinical information related 
to prognosis. The genes corresponding to the hub 
proteins obtained from the PPI network and the TFs 

in the TF-target regulatory network were utilized as 
candidate genes, and candidate gene expression val-
ues were screened from the TCGA. The median values 
were divided into two groups (high expression and low 
expression). A log-rank statistical test was performed, 
and the threshold P value was set to < 0.05. The rela-
tionship between candidate genes and patient progno-
sis was analyzed, and a Kaplan–Meier survival curve 
was plotted.

RT‑qPCR analysis
Key genes for RT-qPCR verification were selected based 
on the PPI networks, topological properties, TF analy-
ses, logFC, and degree ranking data. RNA extraction was 
performed using Trizol (TaKaRa Bio, Dalian, China), 
and cDNA was synthesized with PrimeScript RT Master 
Mix (TaKaRa Bio, Tokyo, Japan). Subsequently, amplifi-
cation was carried out based on the Power SYBR Green 
PCR Master Mix (Thermo Fisher Scientific, Waltham, 
MA, USA). After an initial denaturation step of 10  min 
at 95 °C, the product was routinely examined using a dis-
sociation curve, and the amount of transcript was com-
pared with the relative Ct method with glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) as an internal 
reference control. The 2−ΔΔ Cq method was utilized for 
analysis of the experimental data. Primers and primer 
sequences for each gene are provided in Table 1.

Western blot analysis4
The MYC and TFRC genes, which were identified by RT-
qPCR, were selected for western blot analysis. Hy-treated 
cells were lysed with RIPA9 (Beyotime Bio, Shanghai, 
China), and the bicinchoninic acid (BCA; Thermo Fisher 
Scientific) reaction was performed to quantify protein 
concentrations. Equal protein amounts were resolved 
using 10% SDS-PAGE and transferred to polyvinylidene 
fluoride membranes (Millipore, Billerica, MA, USA). The 
membranes were blocked with 5% skim milk for 1 h, and 
then one of the following primary antibodies was added: 
anti-c-Myc rabbit monoclonal antibody (mAb; 57  kDa, 
1:1000 dilution, Abcam, Cambridge, MA, USA,), anti-
transferrin receptor (TFRC) rabbit monoclonal antibody 
(45 kDa, 1:5000 dilution, Abcam, Cambridge, MA, USA), 
or anti-GAPDH murine monoclonal antibody (36  kDa, 
1:1000 dilution, Santa Cruz Biotechnology, CA, USA). 
After an overnight incubation at 4  °C, a secondary anti-
body (rabbit mAb, 1:10,000 or murine mAb, 1:5000) was 
added and incubated for 2 h at 37 °C. After development 
with the Millipore ECL system, the optical density of the 
target strips was analyzed using a chemiluminescent sys-
tem (Tanon, Shanghai, China).

https://david-d.ncifcrf.gov/
http://www.string-db.org/
http://chianti.ucsd.edu/cytoscape-3.4.0/
http://chianti.ucsd.edu/cytoscape-3.4.0/
http://www.grnpedia.org/trrust/
http://xena.ucsc.edu/
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Statistical analysis
All experiments were replicated at least 3 times, and 
the data are presented as mean ± standard deviation. 
The results from CCK-8, IC50 values, qPCR, and west-
ern blot were analyzed using GraphPad Prism 5.0 soft-
ware (GraphPad Prism, San Diego, CA). Student’s t-test 
was utilized to compare differences between two groups. 
One-way ANOVA was applied for comparisons among 
three or more groups. Statistical signifcance was accepted 
for p < 0.05.

Results
Hy effect on HeLa and C‑33A cell proliferation
After 24 h in culture, the proliferation rate of HeLa cells 
decreased by 6.60%, 11.37%, 14.68%, 20.65%, 28.24%, and 
50.16% (P < 0.01) in the presence of 0.25, 0.5, 1, 2, 4, and 
8  mM Hy, respectively, compared to that of the control 
group (Fig. 1a). The respective rates for C-33A cells were 
8.19%, 8.33%, 7.87%, 21.09%, 57.26%, and 45.4% (P < 0.01). 

Furthermore, HeLa and C-33A cell viability decreased 
significantly with time (24, 48, and 72  h; Fig.  1b). Thus, 
Hy inhibited the proliferation of HeLa and C-33A cells in 
a dose- and time-dependent manner in vitro. The IC50 of 
Hy was 2 mM for C-33A cells and 4 mM for HeLa cells 
(Fig.  1b). Subsequent experiments included C-33A cells 
and 2 mM Hy.

Sequencing data analyses
After data processing, 14,000 genes were finally obtained. 
Based on the expression levels in each provided sample, 
the Pearson correlation coefficient between two samples 
is represented by an (r) value (Fig. 2a). The closer an (r) 
value is to 1, the higher the expression pattern similarity 
between samples. The average intragroup sample similar-
ity was 0.977, whereas the average between-group sample 
similarity was 0.93. These data indicated that the sam-
ples were reasonable and the experimental results were 
reliable.

The results from a principal component analysis are 
shown in Fig. 2b. The Hy group was clearly distinct from 
the control group, with obvious DEGs in the Hy group 
and control group.

DEG analysis
Using the defined threshold, we obtained 1263 DEGs, 
including 754 upregulated and 509 downregulated genes. 
Based on a two-dimensional hierarchical clustering heat 
map of the 1263 DEG values (Fig. 2c), these genes clearly 
separated the samples in the pre-grouping (Fig. 2d).

Functional and pathway enrichment analysis
The 1263 DEGs were used for GO biological processes 
(BP) functional and KEGG pathway analyses (Table  2). 
The GO_BP functional analysis determined that the 
downregulated DEGs were mainly enriched in mitochon-
drial translational elongation, mitochondrial translational 
termination, ribosomal large subunit biogenesis, and 
rRNA processing, and so on. Upregulated DEGs were 
mainly enriched in cell adhesion, cell division, mitotic 
cytokinesis, and homeostasis of cell types within a tissue, 
etc. The KEGG pathway analysis revealed that the down-
regulated DEGs were mainly enriched in RNA transport, 
p53 signaling pathway, and transcriptional misregulation 
in cancer. Upregulated DEGs were enriched in endocyto-
sis and in the PPAR, p53, GnRH, and neurotrophin sign-
aling pathways.

A PPI network and module mining of DEGs
A PPI network was obtained for a total of 435 nodes and 
1130 relationship pairs (Fig.  3a). A Cytoscape software 
CytoNCA plug-in was used to analyze the topological 
properties of the DEGs in the network. The top 20 degree 

Table 1  Primers and  primer sequences for  each gene 
analyzed with RT-qPCR

Genes Primer sequences (5′-3′)

APBA1-hF TTA​TTC​CCA​GGC​TTG​GCA​CC

APBA1-hR TCG​GAA​CGG​CTA​GGA​GAG​AA

CCNA2-hF CGC​TGG​CGG​TAC​TGA​AGT​C

CCNA2-hR GAG​GAA​CGG​TGA​CAT​GCT​CAT​

CDKN1A-hF CGA​TGG​AAC​TTC​GAC​TTT​GTCA​

CDKN1A-hR GCA​CAA​GGG​TAC​AAG​ACA​GTG​

COL12A1-hF CAA​AGG​AGG​CAA​TAC​TCT​CACAG​

COL12A1-hR GAA​GGT​G`CTT​CAA​CAT​CGT​CT

MYC-h F CCT​GGT​GCT​CCA​TGA​GGA​GAC​

MYC-h R CAG​ACT​CTG​ACC​TTT​TGC​CAGG​

PAX2-hF TCA​AGT​CGA​GTC​TAT​CTG​CATCC​

PAX2-hR CAT​GTC​ACG​ACC​AGT​CAC​AAC​

PEAR1-hF TAC​CGG​ACC​GTG​TAC​CGT​C

PEAR1-hR CAC​ACT​CAC​TGG​AAC​AGT​CGT​

RB1-hF CTC​TCG​TCA​GGC​TTG​AGT​TTG​

RB1-hR GAC​ATC​TCA​TCT​AGG​TCA​ACTGC​

TFRC-hF ACC​ATT​GTC​ATA​TAC​CCG​GTTCA​

TFRC-hR CAA​TAG​CCC​AAG​TAG​CCA​ATCAT​

PRKACA-hF ACC​CTG​AAT​GAA​AAG​CGC​ATC​

PRKACA-hR CGT​AGG​TGT​GAG​AAC​ATC​TCCC​

ACOX2-hF CGC​CTG​GGT​TGG​TTA​GAA​GAT​

ACOX2-hR CTG​AGG​GCT​CTC​ACG​AAG​AC

CACNA1G-hF ACA​CTT​GGA​ACC​GGC​TTG​AC

CACNA1G-hR AGC​ACA​CGG​ACT​GTC​CTG​A

UNC5B-hF GTC​GGA​CAC​TGC​CAA​CTA​TAC​

UNC5B-hR CCG​CCA​TTC​ACG​TAG​ACG​AT

GAPDH-hF TGA​CAA​CTT​TGG​TAT​CGT​GGA​AGG​

GAPDH-hR AGG​CAG​GGA​TGA​TGT​TCT​GGA​GAG​
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centrality (DC), betweenness centrality (BC), and close-
ness centrality (CC) scores included CCNA2, CLTC, 
DVL2, HIST1H2BD, HIST1H2BN, HSPA8, PRKACA, 
and TFRC (Table 3), which were key node proteins in the 
PPI network.

In this network, a total of 32 functional sub-modules 
were identified, including nine with a score > 5 (Fig. 3a). 
KEGG_pathway enrichment was performed on the 
nine modules (Fig.  3b), which were enriched mainly in: 
module 1—ribosomes; module 2—endocytosis; module 
3—oocyte meiosis; module 4—ribosome biogenesis in 
eukaryotes; module 5—ubiquitin-mediated proteolysis; 
module 6—protein digestion and absorption; module 7—
thermogenesis; module 8—proteasome; and module 9—
viral carcinogenesis.

TF prediction
For TF prediction, a total of 67 TFs were obtained. With 
reference to the DEGs, six differentially regulated TFs 

were identified, which included four upregulated and 
two downregulated TFs. They were combined with 24 
upregulated genes. In the TF-target network, CDKN1A, 
ASS1, CXCR4, and TFRC were coincidentally regulated 
by two or three TFs, which may be important for the 
transcriptional regulation (Fig. 4). Therefore, CDKN1A, 
ASS1, CXCR4, and TFRC were identified as key genes.

Survival analysis of key genes
Based on the gene expression values and the TCGA 
cervical cancer clinical information, four genes 
were significantly associated with disease progno-
sis (P < 0.05). Among these, MYC was downregulated, 
whereas HSPA8, CLTC, and PRKACA​ were upregu-
lated (Fig.  5). A survival curve analysis revealed that 
increased HSPA8, CLTC, and MYC expression and 
decreased PRKACA​ expression were associated with a 
worse prognosis.

Fig. 1  a Proliferation of HeLa and C-33A cells treated with a range of Hy concentrations or untreated controls at 24 h. b Proliferation of HeLa and 
C-33A cells at different time points and concentrations
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RT‑qPCR and western blot analysis of key genes
MYC gene expression in Hy-treated cells was signifi-
cantly downregulated (P < 0.01), whereas CDKN1A, 
PAX2, TFRC, ACOX2, and UNC5B gene expres-
sion was significantly upregulated (P < 0.01) in com-
parison with the blank control group measured by 

RT-qPCR. Moreover, APBA1 and PRKACA​ gene levels 
were increased (P < 0.05). However, PEAR1, CCNA2, 
COL12A1, PEAR1, and CACNA1G did not exhibit sig-
nificant changes (Fig. 6).

Western blot analysis revealed that Hy treatment 
significantly downregulated C-MYC protein levels 
(P < 0.01) and significantly increased TFRC protein 

Fig. 2  a Correlation heat map between pairs based on expression abundance. The darker the color, the higher the correlation; the lighter the color, 
the lower the correlation. b Principal component analysis data. c Cluster heat map. The top pink bar indicates the control group and the light blue 
bar indicates the Hy treatment group. A change in color from green to red notes that the expression level of the gene is relatively high. d Differential 
gene volcano map. Blue indicates downregulated genes and red indicates upregulated genes
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levels in C-33A cells compared to those in the control 
group (P < 0.01) (Fig. 7).

Discussion
Hy significantly inhibited C-33A and HeLa human cervi-
cal cancer cell proliferation in a dose- and time-depend-
ent manner. This finding is consistent with the previously 
described Hy-induced inhibition of human non-small 
cell carcinoma [26]. The mechanism of cell prolifera-
tion inhibition was further investigated in C-33 A cells. 

A total of 1263 DEGs were obtained by RNA-Seq and 
screening, indicating a significant effect of Hy on C-33A 
cell transcription. The identified DEGs were examined 
by GO_BP functional and KEGG pathway analyses. The 
upregulated genes were mainly enriched in cell adhe-
sion [27], cell division and proliferation [28], peroxisome 
proliferator-activated receptor [29], p53 [30], and gonad-
otropin-releasing hormone signaling pathways [31, 32]. 
These signaling pathways are closely related to tumor cell 
migration or invasion. The downregulated genes were 

Table 2  Key GO biological processes and KEGG pathways

DOWN or up KEGG&GO_BP Description Gene

Down KEGG_PATHWAY​ hsa03013:RNA transport RPP38, NXT1, RPP25, PHAX, ELAC1, EIF1, PYM1, GEMIN6, POP7

hsa04115:p53 signaling pathway BID, SIAH1, PMAIP1, IGFBP3, TP53AIP1

hsa05202:Transcriptional misregulation in cancer CEBPA, CEBPB, HIST1H3E, IGFBP3, MYC, ATF1, DDIT3, ETV4

GO_BP GO:0070125 ~ mitochondrial translational elongation MRPS26, MRPS34, MRPL12, MRPS33, TSFM, MRPS12, MRPL36, 
MRPS6, MRPL58, MRPL44

GO:0070126 ~ mitochondrial translational termination MRPS26, MRPS34, MRPL12, MRPS33, MRPS12, MRPL36, 
MRPS6, MRPL58, MRPL44

GO:0042273 ~ ribosomal large subunit biogenesis WDR74, NOP16, NIP7, RRS1, YAE1D1

GO:0006364 ~ rRNA processing RPP38, RPP25, RRP1, EXOSC4, BYSL, EXOSC5, PNO1, NOB1, 
RPS15A, DIEXF, LTV1, MRTO4, MRM3

GO:0042102 ~ positive regulation of T cell proliferation HAVCR2, HES1, TNFSF13B, ZP3, CD274, IL12A

GO:0070059 ~ intrinsic apoptotic signaling pathway in 
response to endoplasmic reticulum stress

CEBPB, CHAC1, TRIB3, PMAIP1, DDIT3

Up KEGG_PATHWAY​ hsa03320:PPAR signaling pathway ACOX2, ACSL1, EHHADH, RXRA, SCD, FADS2, GK, SCD5, ACSL3, 
ACAA1

hsa04115:p53 signaling pathway CDKN1A, CCNB2, CCND2, RRM2, APAF1, CCNG2, SESN1, 
GTSE1, SESN3

hsa04144:Endocytosis FGFR2, PRKCZ, LDLR, RAB5B, CYTH2, EEA1, PSD2, CLTC, GBF1, 
TFRC, CXCR4, VPS35, WIPF1, BIN1, CLTCL1, HSPA8, SH3GL2, 
IQSEC2, F2R

hsa04912:GnRH signaling pathway MAPK14, ADCY5, MAP3K1, CALM3, PRKACA​, PRKACB, CAC-
NA1F, CACNA1D, PRKCB

hsa04722:Neurotrophin signaling pathway MAGED1, RPS6KA2, MAPK14, BCL2, MAP3K1, CALM3, SORT1, 
NGFR, KIDINS220, PIK3R3

GO_BP GO:0007155 ~ cell adhesion NRP2, MTSS1, ACHE, PCDHA2, L1CAM, PCDHGC3, PCDHAC1, 
COMP, COL12A1, CD24, LOXL2, BOC, APBA1, TYRO3, FLOT2, 
PODXL, MFGE8, TINAGL1, CTNNA1, COL16A1, MCAM, 
COL5A1, NCAM1, JUP, DSG2, CNTN1, SUSD5, ADAM12, 
NCAN, CD226, NTM

GO:0051301 ~ cell division SEPT4, SEPT1, GNAI2, NEK2, CLTC, CCNG2, CD2AP, SPC25, 
CDCA8, NCAPH, NCAPG, NCAPG2, CENPC, BUB1, CABLES2, 
TUBA1A, TUBA1B, CCNA2, CDK14, KIF11, TPX2, CDC20, 
RB1, KNSTRN, CDC25C, CDC25B, CCNB2, CCND2, CDCA7L, 
MAPRE2

GO:0000281 ~ mitotic cytokinesis KIF4A, NUSAP1, ANLN, CEP55, RACGAP1, KIF20A

GO:0048873 ~ homeostasis of number of cells within a 
tissue

CORO1A, BCL2, ILDR2, F2R, ADD1, FLT3LG

GO:0007265 ~ Ras protein signal transduction ZNF304, CDKN1A, DOK3, MAPK14, IQGAP3, RB1, CCNA2, 
DHCR24

GO:0032012 ~ regulation of ARF protein signal transduc-
tion

GBF1, CYTH2, PSD2, IQSEC2

GO:0045746 ~ negative regulation of Notch signaling 
pathway

PEAR1, BEND6, GDPD5, DLK2, BMP7
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Fig. 3  a A protein interaction diagram of the up- and downregulated genes. The red node indicates up-regulation and the green node indicates 
down-regulation. The node size illustrates the size of the interaction. The different colors of the outer edge of the node represent the score > 5 
network module obtained by MCODE. b Sub-network module pathway analysis results. Color change from red to blue indicates a significant 
decrease in the P-value. The bubble size illustrates the proportion of the number of enriched genes in the corresponding module
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mainly involved in apoptosis [33], mitochondrial transla-
tion [34], ribosome-related biological processes [35], the 
p53 signaling pathway [36], and transcriptional dysregu-
lation pathway [37]. It should be noted that these genes 
are closely related to the occurrence and development of 
tumors. PPI network analysis identified CCNA2, CLTC, 
DVL2, HIST1H2BD, HIST1H2BN, HSPA8, PRKACA, and 
TFRC as candidate genes. Module analysis, transcrip-
tion factor prediction, and TF-target regulatory network 
construction selected CDKN1A, ASS1, CXCR4, HIF1A, 
KLF5, MYC, PAX2, RB1, and TFAP2C. Finally, key genes 
were identified by logFC, degree ranking, and survival 
analysis results. We selected MYC proto-oncogene 
(MYC), cyclin dependent kinase inhibitor 1A (CDKN1A), 
paired box  2 (PAX2), transferrin receptor (TFRC), 
acyl-CoA oxidase 2 (ACOX2), unc-5 netrin receptor B 
(UNC5B), amyloid beta precursor protein binding fam-
ily A member 1 (APBA1), protein kinase cAMP-activated 
catalytic subunit alpha (PRKACA​), platelet endothe-
lial aggregation receptor 1 (PEAR1), collagen type XII 
alpha 1 chain (COL12A1), CACNA1G antisense RNA 1 
(CACNA1G), RB transcriptional corepressor 1 (RB1), 
and cyclin A2 (CCNA2) for RT-qPCR verification in the 
Hy and control groups. MYC, CNKN1A, PAX2, TFRC, 
ACOX2, UNC5B, APBA1, and PRKACA​ exhibited signifi-
cant differences and were consistent with previous gene 
screening analysis results. Then, we conducted in-depth 
research on MYC and TFRC. Western blot confirmed 

Table 3  Top 20 PPI network topology property scores

Gene Degree Gene Betweenness Gene Closeness

CDC20 30 HSPA8 18026.846 CLTC 0.009112669

HSPA8 29 RXRA 15975.44 MYC 0.009111905

CCNB2 25 MAPK14 13874.259 TFRC 0.009106359

BUB1 23 MYC 12210.541 MAPK14 0.009104831

KIF11 22 CLTC 10207.014 CCNA2 0.009104831

KIF20A 22 TFRC 9083.066 RB1 0.00910025

CCNA2 22 DVL2 8572.19 SH3GL2 0.009099677

HIST1H2BD 21 CCNA2 8557.233 CEBPB 0.009098914

HIST1H2BN 20 MAP3K1 7784.2114 HIST1H2BD 0.009098342

CLTC 19 COL1A2 7332.0977 PRKACA​ 0.009098151

TFRC 19 PRKACA​ 7097.15 HIST1H2BN 0.009098151

DVL2 18 NAPA 6623.3286 HSPA8 0.009097007

PRKACA​ 18 HIST1H2BD 6509.3853 DVL2 0.009096816

CDCA8 17 CDC20 6327.5425 PRKACB 0.009096434

NAPA 17 NCAM1 6277.285 CEBPA 0.009096053

RACGAP1 17 PRKACB 6150.9224 SLC2A4 0.009095863

PPP2R5D 16 COL4A5 6065.6426 RXRA 0.009095673

DYNC1I2 16 L1CAM 5992.727 PSMC1 0.00909491

B9D2 16 HMGCS1 5969.1714 KIF4A 0.009094719

SH3GL2 16 HIST1H2BN 5857.3853 PSMB10 0.009094338

Fig. 4  TF-target regulation network analysis map. The pink circle 
and green circle indicate an upregulated gene and a downregulated 
gene, respectively; the purple diamond and blue inverted triangle 
indicate an upregulated transcription factor and a down-regulated 
transcription factor (number of target genes ≥ 2), respectively; and 
the gray arrow denotes a transcription factor regulatory target gene
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that the MYC gene was significantly downregulated and 
the TFRC gene was significantly upregulated.

The MYC gene encompasses a group of oncogenes 
including C-MYC, N-MYC, and L-MYC [38]. The MYC 
gene family and its products promote cervical cancer 
cell proliferation, immortalization, dedifferentiation, 
and transformation [39, 40]; furthermore, they can be 
used as a potential diagnostic indicator for cervical 

cancer. Increased C-MYC positive rate and correspond-
ing histology findings have been correlated with cancer 
diagnosis [41]. Presently, RNA-Seq and DEG screening 
identified MYC as a downregulated gene. Furthermore, 
MYC has been critically positioned in the constructed 
TF-target network; it has been implicated in the regu-
lation of multiple genes, and is significantly associated 
with prognosis in survival analysis [42]. RT-qPCR and 

Fig. 5  Survival curves for the key genes CLTC (a), HSPA8 (b), MYC (c), and PRKACA​ (d); red for the high-risk group and black for the low-risk group
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Fig. 6  MYC, CNKN1A, PAX2, TFRC, ACOX2, UNC5B, APBA1, PRKACA​, PEAR1, COL12A1, CACNA1G, RB1, and CCNA2 mRNA expression in C-33A cells
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western blot results further confirmed the decreased 
MYC expression in Hy-treated C-33A cells. Thus, Hy 
has a significant inhibitory effect on the MYC gene in 
cervical cancer C-33A cells.

TFRC is the most important pathway for cellular iron 
absorption [43]. There is increasing evidence that TFRC 
is involved in tumorigenesis and tumor progression, 
and its expression is significantly dysregulated in many 
cancer types [44]. Furthermore, TFRC has been closely 
related to human cervical cancer and is positively asso-
ciated with the clinical stage and with the presence 
of pelvic lymph node metastases [45]. In the current 
study, we constructed a PPI network for DEGs and con-
firmed the importance of TFRC in the PPI. RT-qPCR 
and western blot analyses revealed increased TFRC 
expression after Hy treatment. The TF-target network 
analysis identified TFRC regulation by the hypoxia-
inducible factor-1A (HIF-1A) signaling pathway, and 
elevated HIF-1A expression. Furthermore, prior studies 
have reported TFRC regulation by the HIF-1A signaling 
pathway. Under specific conditions, such as oxidative 
stress, inflammation, and hypoxia, HIF-1A expression 
induces binding of iron regulatory protein 1 and 2, and 
HIF-1A promotes TFRC transcription. Furthermore, 
HIF-1A regulates TFRC transcription by DNA binding, 
and the subsequent TFRC protein production promotes 
iron metabolism and increases oxygen exchange [44]. 
However, the mechanism by which Hy increases TFRC 
expression remains elusive. It may be due to high HIF-
1A levels caused by hypoxia. Perhaps Hy is unlikely to 
inhibit the TFRC-related HIF-1A signaling pathway 
in C-33A cell. The mechanism, by which Hy inhibits 
tumor proliferation, requires further experimentation 
and discussion.

Conclusions
In summary, Hy inhibits HeLa and C-33A cervical can-
cer cell proliferation, and regulates the transcription 
process in C-33A cells. These findings provide a new 
avenue for the clinical treatment of cervical cancer and 
a theoretical basis for the clinical application of Hy.
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