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Abstract.

 

Motivated by the recent development of highly specific agents for brain
tumours, we develop a mathematical model of the spatio-temporal dynamics of a brain
tumour that receives an infusion of a highly specific cytotoxic agent (e.g. IL-4-PE, a
cytotoxin comprised of IL-4 and a mutated form of 

 

Pseudomonas

 

 exotoxin). We derive
an approximate but accurate mathematical formula for the tumour cure probability in
terms of the tumour characteristics (size at time of detection, proliferation rate, diffu-
sion coefficient), drug design (killing rate, loss rate and convection constants for
tumour and tissue), and drug delivery (infusion rate, infusion duration). Our results
suggest that high specificity is necessary but not sufficient to cure malignant gliomas;
a nondispersed spatial profile of pretreatment tumour cells and/or good drug penetra-
tion are also required. The most important levers to improve tumour cure appear to be
earlier detection, higher infusion rate, lower drug clearance rate and better convection
into tumour, but not tissue. In contrast, the tumour cure probability is less sensitive to
a longer infusion duration and enhancements in drug potency and drug specificity.

INTRODUCTION

 

Malignant gliomas currently lack effective treatment, and glioblastoma multiforme patients
receiving surgery, radiation and chemotherapy rarely survive past several years. However, a host
of new treatments and novel modes of delivery are under development in an attempt to combat
this dismal prognosis. Motivated by the enhanced delivery achieved by direct injection into the
brain (Bobo 

 

et al.

 

 1994; Lieberman 

 

et al.

 

 1995; Dillehay 1997; Laske 

 

et al.

 

 1997a; Chen 

 

et al.

 

1999) and by the promising preclinical performance of fusion cytotoxins IL4-PE (Puri 

 

et al.

 

1994) and IL-4(38–37)-PE38KDEL (Puri 

 

et al.

 

 1996; Husain 

 

et al.

 

 1998; Rand 

 

et al.

 

 2000)
[comprised of interleukin-4 (IL-4) and mutated 

 

Pseudomonas

 

 exotoxin (PE)], which selectively
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target IL-4 receptors expressed on tumour cells, we develop a mathematical model that tracks
the spatial dynamics of an infused cytotoxic treatment and its effect on a brain tumour and the
surrounding normal tissue.

Two streams of mathematical research have, via mathematical analysis combined with
laboratory and clinical data, provided insights into this problem. The first stream (Morrison &
Dedrick 1986; Basser 1992; Morrison 

 

et al.

 

 1994) models the spatio-temporal dynamics of
macromolecules that are infused into the brain. However, these studies do not explicitly model
a tumour, and hence the ultimate impact of treatment. The second stream (Tracqui 

 

et al.

 

 1995;
Woodward 

 

et al.

 

 1996; Burgess 

 

et al.

 

 1997; Swanson 1999) considers a dynamic spatial model
of a brain tumour and analyses the impact of chemotherapy and surgery on the survival time.
However, this stream of work ignores the spatial aspects of drug treatment, and – because it
considers traditional treatment modalities – focuses on survival time. The mathematical model
described in this paper, while simple, attempts to combine the essential elements of both streams
of research. Moreover, by considering newer forms of treatment, our focus is on tumour control
and toxicity, rather than survival time. The goal of our analysis is to determine the effects of
various model parameters on tumour control, in an attempt to understand the characteristics of
treatment design and delivery that are required to cure malignant gliomas.

 

The mathematical model

 

We model the brain using spherical symmetry, where 

 

r

 

 measures the radial distance from the
origin, which represents both the centre of the tumour and the location of the infusion. The
mathematical model is a system of partial differential equations that tracks the spatio-temporal
evolution of three entities: the density of tumour cells 

 

n

 

1

 

(

 

r

 

,

 

t

 

), the density of normal brain cells

 

n

 

2

 

(

 

r

 

,

 

t

 

), and the concentration of an infused cytotoxic agent, 

 

c

 

(

 

r

 

,

 

t

 

). In the model, the drug is
infused at a constant rate for 

 

T

 

 time units, i.e. for 

 

t

 

 

 

∈ 

 

[0,

 

T

 

]. Following the Burgess 

 

et al.

 

 (1997)
model, we assume that the tumour cells diffuse freely in the brain and proliferate exponentially.
This is in contrast to solid tumours, which are typically modelled as a compact sphere that varies
in size over time (Adam & Bellomo 1997). The equation describing the spatio-temporal dynamics
of the tumour cells is:

(1)

where 

 

D

 

1

 

 is the diffusion coefficient, 

 

λ

 

1

 

 is the net proliferation rate (mitosis rate minus apoptosis
rate), and 

 

k

 

1

 

 is the rate at which the drug kills the glioma cells. The initial condition for the brain
tumour is determined as in Burgess 

 

et al.

 

 (1997). We set:

(2)

which is the solution to the diffusion (with coefficient 

 

D

 

0

 

 rather than 

 

D

 

1

 

, as explained in the first
paragraph of Appendix A) plus proliferation equation at time zero if the tumour starts from a
point source of 

 

N

 

0

 

 cells at time –

 

t

 

0

 

. While Equation 2 is quite simple, it has been shown that
several generalizations, such as incorporating irregular fronto-temporal growth patterns or the
physical boundaries of the domain in which the tumour is growing, do not significantly alter the
results of the model (Woodward 

 

et al.

 

 1996).
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The normal brain cells in our model neither diffuse nor proliferate, but are simply killed
by the treatment at rate 

 

k

 

2

 

:

(3)

We assume that the total (normal plus tumour) cell concentration in the brain at time 0 equals
the constant value 

 

θ

 

, so that the initial condition for the normal brain cells is:

(4)

The two primary modes of transport for macromolecules in tissue are diffusion and convec-
tion (Swabb 

 

et al.

 

 1974). In the case of an infused substance in the brain, convection caused by
infusion dominates the effect of diffusion (Morrison 

 

et al.

 

 1994). More specifically, infusing a
52-kDa macromolecule such as IL4(38–37)-PE38KDEL (Puri 

 

et al.

 

 1996; Husain 

 

et al.

 

 1998;
Rand 

 

et al.

 

 2000), which has a diffusion coefficient in brain tissue of 2.54 

 

×

 

 10

 

−

 

7

 

 cm

 

2

 

/s (using
Saltzman & Radomsky 1991 and equation (F) in Swabb 

 

et al.

 

 (1974)), at a rate of 6 

 

µ

 

l/min (see
Table 1) generates the Peclet number (i.e. the bulk-to-diffusive flow ratio)  at a radial
distance 

 

r

 

 cm from the point of infusion. Hence, the Peclet number drops to 10 at a distance of
1.31 cm, and to 5 at a distance of 5.24 cm, implying that little radial diffusion occurs within the
practically relevant range. Consequently, we ignore diffusion of the infused agent in this model.
The drug concentration at location 

 

r

 

 at time 

 

t

 

 is given by:

(5)
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Table 1. Parameter values for the model
  

  

Parameter Estimate

Tumour diffusion coefficient after time 0, D1 0
Tumour growth rate, λ1 1.4 × 10−7 s−1

Drug killing rate of tumour, k1 67.9 cm3 µg−1 h−1

Initial size of tumour at point source, N0 1.19 × 106 cells
Time to grow from point source to presentation, t0 4.26 × 107 s
Tumour diffusion coefficient before time 0, D0 1.5 × 10−8 cm2 s−1

Drug killing rate of normal cells, k2 1.27 × 10−3 cm3 µg−1 h−1

Cell density, θ 2.04 × 107 cells cm−3

Tumour convection constant, a1 267.2
Tissue convection constant, a2 1.3 × 10−5 cm3 cells−1

Drug loss rate, µ 8.35 × 10−4 s−1

Infusion rate, q 6 µL min−1

Time duration of infusion, T 96 h
Concentration of injected fluid, c0 9 µg cm−3

Clonogenic fraction of tumour cells, f1 1.19 × 10−7

Toxic fraction of normal cells, f2 0.01
Radius for calculating toxicity, R 5 cm

131/r
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where q is the infusion rate, a1 and a2 are convection constants in the tumour and normal tissue,
respectively, and µ is the loss rate divided by the extracellular fraction [see Morrison et al.
(1994) for details about modelling the extracellular compartment]. The first-order loss term
in Equation 5 implies that binding is unsaturated, and also captures the loss due to bulk flow
across microvasculature walls via a microvascular Peclet analysis [see equations 2 and 2(a) in
Morrison et al. (1994) for details]. The infusion convection term in Equation 5 attempts to
capture both the spatial heterogeneity of brain cells and tumour cells, and the fact that
infused agents follow the tumour trail (i.e. penetrate the tumour more easily than the tissue)
(Dillehay 1997). To motivate this term, let us for the moment assume that the drug is travelling
through a homogeneous collection of tumour cells. Then n2(r,0) = 0 and the convection term
in Equation 5 reduces to:

(6)

which is the term derived in Morrison et al. (1994) by calculating the interstitial velocity using
Darcy’s Law and a conservation of mass equation. Similarly, if we assumed that the agent was
travelling through a tumourless brain, we would obtain the convection term:

(7)

which again is of the same form. The general convection term in Equation 5 makes the
simplistic but reasonable assumption that the convection constant is a spatially weighted average
of the convection constants for tumour and tissue, where the weight at location r depends on the
local fraction of tumour cells and normal cells at time 0. Because very little diffusion of tumour
cells occurs during the course of treatment (which is typically several days), our use of n2(r,0)
rather than n2(r,t) in the convection term in Equation 5 is justified and greatly simplifies the
analysis. Note that the constants a1 and a2 are expressed in different units (see Table 1) and
a1 (a2, respectively) increases (decreases, respectively) with the ease of convection. The bound-
ary condition for Equation 5 is:

c(0,t) = c0 for t ∈  [0,T ], (8)

where c0 is the drug concentration in the injection. In Equation 8, we are setting the catheter
radius, which is about 0.03 cm (Morrison et al. 1994), to zero.

To compute the tumour cure probability (TCP), we employ the commonly used ‘Poisson
model’ (Tucker & Taylor 1996), which states that the TCP is e−CT, where CT is the number of
clonogenic cells (i.e. cells capable of tumour regeneration) at the end of treatment. If we let f1
be the fraction of tumour cells that are clonogenic, then:

(9)

We assume toxic complications are experienced if a fraction f2 of the normal cells
present at time 0 within a radius R of the origin are killed by time T. That is, toxicity
occurs if:
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(10)

Equations 9 and 10 implicitly assume that the total number of tumour cells (normal cells, respect-
ively) is minimized (maximized, respectively) precisely at the end of treatment. This is a good
assumption when the clearance rate µ is high, as it is in our numerical calculations [based on
data from IL-4(38–37)-PE38KDEL in Husain et al. (1998, 1999)]. However, for a slow-clearing
agent, it is likely that the tumour burden (total normal cell killing, respectively) will be minim-
ized (maximized, respectively) at some point after treatment, in which case it would be more
accurate to incorporate postinfusion diffusion of the agent, as described by Morrison et al. (1994).

Our best estimates for the parameter values appear in Table 1. The derivations of these values
are discussed in Appendix A.

RESULTS

In Appendix B we derive approximate but accurate expressions for n1(r,T), n2(r,T) and TCP.
The approximate TCP is given by:

(11)

which is expressed in terms of the constants:

(12)

(13)

and

(14)

Our computational study uses Equations 26 and 30 rather than Equation 11 to compute the
TCP because the former expression is slightly more accurate. Because IL-4(38–37)-PE38KDEL
specificity does not appear to be the dose-limiting factor for treatment (Rand et al. 2000), our
computational study focuses primarily on the TCP rather than on the toxicity of normal tissue
in Equation 10.
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Base case
To understand the base case, we plot in Fig. 1b, a and d the steady-state drug concentration, and
the spatial profiles of the tumour cell concentration at the beginning and end of treatment,
respectively. The actual characteristic distance (i.e. inflection point) of the drug penetration in
Fig. 1b is 2.57 cm, which is intermediate between the characteristic distance of the drug in
tumour cells (4 cm) and normal brain cells (1 cm), reflecting the fact that the drug is travelling
through a heterogenous mixture of tumour and brain cells.

Figure 1c plots e–k1Tc(r), which represents the probability that a tumour cell located at radius
r survives treatment. By Equation 28 in Appendix B, the spatial profile of tumour cells at the
end of treatment (Fig. 1d) is proportional to the product of the spatial profiles of the initial
tumour cell density (Fig. 1a) and the probability of cell survival during treatment (Fig. 1c).
Because the spatial concentration of initial tumour cells in Fig. 1a decreases more slowly,
according to:

(15)

Figure 1. The spatial profiles of (a) the initial tumour cell density, (b) the steady-state drug concentration, (c) the prob-
ability of tumour cell survival, and (d) the final tumour cell density.
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than the sharp rise in cell survival in Fig. 1c, the spatial profile for the tumour cells at the end
of treatment in Fig. 1d is unimodal and the left tails of the curves in Fig. 1c and d are nearly
identical in shape. Figure 1 reveals that an increase in TCP can be achieved by shifting the curve
in Fig. 1a to the left (via earlier detection) or shifting the curve in Fig. 1c to the right (e.g. via
an increase in the infusion rate). The curve in Fig. 1d is proportional to the product of the curves
in Fig. 1a and c.

Although our focus is on tumour cure, numerical simulations (not shown here) of our model
show that tumour relapse occurs, typically within 1 cm of the tumour margin, if a cure is not
achieved. Indeed, our model builds on the models in Tracqui et al. (1995), Woodward et al.
(1996) and Burgess et al. (1997), which are calibrated using relapse data after surgery and
chemotherapy.

The remainder of this section is devoted to examining the impact of the various parameters
on TCP. The model parameters fall into three categories: tumour characteristics, drug design and
drug delivery.

Tumour characteristics
We do not continuously vary each tumour parameter in isolation because these parameters are
interrelated in a complex way. Rather, we compute the TCP for the other three tumours con-
sidered in Burgess et al. (1997). In addition to a high grade tumour that represents our base case,
the numerical study in Burgess et al. (1997) considers a low grade tumour, which has a prolif-
eration rate λ1 and a diffusion coefficient D0 that are reduced by a factor of 10 relative to the
high grade tumour; a high proliferation tumour, which has only the diffusion coefficient reduced
by a factor of 10; and a high diffusion tumour, which has only the proliferation rate reduced by
a factor of 10. For all four tumours in Burgess et al. (1997), the parameter N0 has the fixed value
given in Table 1, and the value of t0 is chosen so that the detectable tumour cell density, 8 × 106

cells per cm3, is achieved at a radius of 1.5 cm, as shown in Figs 1a and 2. The resulting TCPs
are 0.99 for the high proliferation tumour, 0.0 for the high diffusion tumour, and 0.23 for the
low grade tumour. Because very little proliferation or diffusion takes place during the short
duration of treatment, these somewhat puzzling results can be explained by viewing the initial
tumour cell profiles for these three cases, which are depicted in Fig. 2. The initial spatial profiles

Figure 2. The spatial profiles for the initial tumour cell density for the three lower grade tumours in Burgess et al.
(1997): (a) the high proliferation, and (b) the high diffusion and low grade tumours.
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of the high grade tumour in Fig. 1a and the low grade tumour in Fig. 2b are very similar, and
this similarity carries over to their TCPs. In contrast, the high proliferation tumour in Fig. 2a has
a more concentrated spatial profile (e.g. n1(r,0) = 0.35 cells per cm3 at r = 3 cm) and the high
diffusion tumour has a more dispersed spatial profile. Consequently, the infused agent (see Fig. 1b)
has an easy time penetrating the high proliferation tumour but is unable to spread throughout
the high diffusion tumour. Hence, assuming that detection occurs when a detectable tumour
cell density is achieved at a detectable tumour radius, the TCP depends almost entirely on the
diffusion-to-proliferation ratio, rather than on the absolute values of these two quantities.

To assess potential improvements in detection technology, we also continuously vary the
time of detection t0 for our base case tumour. The plot of TCP as a function of t0 is given in
Fig. 3a. The initial detectable tumour radius r(t0), which is defined as the radius that achieves
the detectable tumour cell density of 8 × 106 cells per cm3, is given by:

(16)

where n = 8 × 106 cells per cm3, and is plotted in Fig. 3b. Although the detectable tumour radius
is only growing at a rate of several mm per month in Fig. 3b, Fig 3a suggests that earlier detec-
tion of the tumour (relative to the base case of t0 = 16.2 months) would significantly improve the
TCP.

Drug design
Figure 4a plots TCP versus the drug potency k1c0, which we define as the product of the killing
rate and the drug concentration of the injected fluid. Although this curve is increasing, it is quite
flat: e.g. a greater than 100-fold increase in potency is required to raise the TCP from 0.2 to 0.3.

Now we incorporate the toxicity of normal brain tissue. We vary the specificity k1/k2 by
multiplying the value of k1 in Table 1 and dividing the value of k2 in Table 1 by the same factor.
For a given value of this factor, we set the infusion duration T so that Equation 10 is satisfied with
equality, and compute the corresponding TCP. Using the value of f1 in Table 1 yields a TCP of
0.16 for our base case for this computational experiment, rather than the value of 0.2 used for

Figure 3. The impact of time of detection on (a) TCP and (b) the detectable tumour radius.
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Figure 4. TCP versus drug design parameters: (a) drug potency, (b) drug specificity, (c) drug penetration into
tumour, (d) drug penetration into normal brain cells, and (e) loss rate.
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all of the other experiments. This discrepancy in the base case TCPs is consistent with the fact
that our estimate of k2 is based on data for transferrin-CRM107 (Laske et al. 1997b), which is
a less specific agent than IL4-PE (see Appendix A for details). The resulting graph of TCP versus
specificity is pictured in Fig. 4b. Even though this curve is increasing, a 100-fold increase in
specificity over the base case only leads to a TCP of 0.25, reflecting the fact that drug penetra-
tion, which is not affected by drug specificity, is also required to cure the tumour.

Figure 4c and 4d plot TCP versus the convection parameters a1 and a2. To ease the inter-
pretation of these parameters, we express them in terms of the corresponding characteristic
distances in tumour and brain tissue, respectively (see Appendix A for details). Although a1 does
not directly appear in Equations 26 and 30 for the TCP, it impacts TCP by causing changes
in our determination of a2, as described in Appendix A. Increasing the tumour characteristic
distance leads to better spatial coverage of the tumour by the drug, and to an increase in TCP in
Fig. 4c. The relationship is roughly linear in the neighbourhood of our base case: each additional
cm of drug penetration raises the TCP by about 0.2. In contrast, increasing the tissue character-
istic distance leads to a reduction in TCP in Fig. 4d, because less drug is delivered to the tumour.
The characteristic distances in tumour and brain tissue are determined primarily by the size of
the macromolecule, and so in practice both of these distances would be changed simultaneously.

Figure 4e contains a plot of TCP versus the drug loss rate µ. A reduction in the loss rate
increases drug penetration, and significantly improves the TCP. Our model slightly underestim-
ates the enhancement in TCP due to a reduction in loss rate, because if the loss rate gets too
small then post-treatment drug diffusion occurs that can increase the spatial drug distribution.

Drug delivery
The drug delivery parameters are the infusion rate q and the infusion duration T. In Fig. 5a, we
plot TCP versus q for a fixed infusion volume qT. In Fig. 5b, we fix the infusion rate q and vary
the infusion time T. In Fig. 5a, the TCP increases in the infusion rate, and the effect is significant
in the practically relevant range (q = 10 µl /min causes catheter tract leaks in Laske et al.
(1997)). The TCP initially increases in the infusion duration T in Fig. 5b, but the curve is flat in
the vicinity of our base case of T = 96 h, and even begins to decrease at T = 135 h. To explain
this behaviour, note that as T increases, more new tumour cells are produced and more cell kill-
ing occurs. Because the drug concentration quickly attains its steady-state profile and because

Figure 5. TCP versus drug delivery parameters: (a) infusion rate for a fixed infusion volume, and (b) time duration
of infusion.
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the killing rate and loss rate are high, tumour cell killing exhibits decreasing returns to scale with
respect to T. Eventually, tumour growth dominates the trade-off, leading to a reduction in TCP
with increasing T.

DISCUSSION

Our mathematical model employs aspects of the brain tumour model described by Burgess et al.
(1997) and the model for the delivery of microinfused macromolecules in the brain as described
by Morrison et al. (1994), and combines them to capture the spatio-temporal dynamics of drug
transport and killing in a heterogeneous collection of tumour cells and normal brain cells.

Implications of results
Equation 11 provides an explicit equation for the TCP in terms of model parameters describing
the tumour characteristics, drug design and drug delivery. The formula itself provides several
nonobvious insights. For example, TCP depends on the tissue convection parameter a2, the infu-
sion rate q and the drug clearance rate µ via a2q/µ. Hence, our model predicts that a 50%
increase in the convection parameter, a 50% increase in the infusion rate, and a 50% decrease
in the mean time-to-clearance would each achieve an equivalent increase in TCP. All of the key
parameters have a monotonic (i.e. either increasing or decreasing) impact on TCP, with the
exception of the duration of infusion T. For a drug with a restricted spatial distribution, when
T gets too large the marginal cell killing from an increase in T is more than offset by tumour
proliferation during treatment. The nature of the monotonic impact on TCP by the other model
parameters is intuitive, with the possible exception of the tissue convection parameter a2.
Increasing the ease of convection in tissue without changing the convection in the tumour causes
the tumour to retain less of the agent, thereby reducing the TCP.

Figure 1 reveals that the TCP achieved by a highly selective agent in our model is dictated
largely by the spatial profile of the pretreatment cell density (Fig. 1b) and the steady-state drug
concentration (which impacts the cell survival curve in Fig. 1c). Hence, high specificity is
necessary but not sufficient for curing a highly malignant glioma; a highly concentrated spatial
profile of pretreatment tumour cells and/or a deep distribution of infused drug is also required.
With regards to the former, our results show that the TCP is affected by the tumour diffusion
and proliferation parameters almost solely through their ratio, with relatively invasive tumours
being much more difficult to cure than relatively fast-growing tumours. Moreover, our model
predicts that advances in detection technology, even if they only reduce the time of detection by
several months, are likely to significantly improve TCP.

The second approach to improving TCP, better drug distribution, can be achieved by a
variety of drug design and delivery parameters. We find that the most promising approaches are
an increased drug infusion rate, a decreased drug loss rate and a smaller macromolecule. In
contrast, infusion duration has a limited impact on TCP, and huge improvements in drug specificity
and drug potency are required to significantly enhance TCP. Hence, traditional chemotherapeutic
agents – even if distributed with state-of-the-art technology – appear incapable of generating
profound improvements in TCP of highly invasive gliomas.

Model limitations
Our approach in this paper is to develop the simplest possible model that both captures the first-
order effects of brain tumour treatments and is amenable to an approximate closed-form expression
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for TCP. Consequently, the model is a highly simplified representation of an actual injected
tumour. Although the tumour in our model is spherically symmetric, and the brain lacks barriers
and boundaries, this tumour model has been validated against clinical data for untreated tumours
and for surgical resection (Woodward et al. 1996; Burgess et al. 1997). One restrictive assump-
tion in our model is that no drug resistance occurs. Equations 1–2 (except without the spatial
aspects of drug delivery) have been shown to require two populations of cells – one sensitive
and one resistant – to accurately mimic the clinical effect of traditional chemotherapy (Burgess
et al. 1997). However, the present model is geared at highly specific agents that target receptors
on tumour cells, and drug resistance may not be as much of an issue in this setting. For example,
IL-4 receptor expression appears to be a stable phenomenon: tumour cells remained sensitive to
IL-4 cytotoxins upon repeat administration in vivo (Laske et al. 1997b; Husain et al. 1998), after
surgical resection in vitro (Laske et al. 1997b; Husain et al. 1998), and after becoming resistant
to certain chemotherapeutic agents (e.g. doxorubicin and mitoxantrone) (De Jong et al. 2000).

Our modelling of drug delivery (see Equation 5) captures the heterogeneity of brain and
normal tissue, but is highly simplified. Nonetheless, a special case of Equation 5, which models
drug delivery into normal brain tissue, compares reasonably well with laboratory data (Morrison
et al. 1994). Two key aspects ignored in Equation 5 are saturated binding and diffusion. Saturated
binding might cause the infusion time to impact the spatial distribution, which would increase
this parameter’s impact on TCP. Diffusion would only play a significant role if the drug was
cleared very slowly.

A third aspect ignored in Equation 5 is the heterogeneity of drug delivery between tumour
cells and necrotic debris. An infusate can ‘streak’ or ‘channel’ through necrotic portions of a
tumour, thus leaving a significant fraction of the tumour without the drug (e.g. Boucher et al.
1997). While drug streaking may occur in the rightmost region of Fig. 5b, subjective evidence
suggests that this phenomenon did not occur in the clinical setting of Laske et al. (1997b) and
Rand et al. (2000), where necrosis was massive and appeared to be homogeneously distributed.
Hence, further quantitative studies are required to understand the clinical prevalence of drug
streaking. Drug streaking cannot be captured by our model, and a more complex radially asym-
metric model would be required to mimic this behaviour. If drug streaking is found to be clinic-
ally significant in future studies, the agent should be delivered at both a high infusion rate (to
reach the outer limits of the tumour) and at a low infusion rate (to offset the drug streaking and
saturate the tumour bed).

The injection regime is the simplest possible: a constant infusion rate into the centre of the
tumour for a finite period of time. Undoubtedly, more complex regimens – both temporally
(Bobo et al. 1994; Dillehay et al. 1997) and spatially (Rand et al. 2000) – can improve perform-
ance, but these issues are beyond the scope of this paper.

While our Poisson model for TCP is widely used for solid tumours, this assumption is
virtually impossible to validate for brain tumours due to the invasive nature of gliomas and the
concomitant measurement difficulties.

Also, our modelling of normal tissue complications is quite crude. In fact, dose-limiting
complications can be due not only to lack of specificity, but to brain oedema caused by a high
infusion rate or a large infusion volume, or to swelling caused by massive tumour necrosis (Rand
et al. 2000). While constraints placed on the infusion rate q and the infusion volume qT are
easily assessed by our model, further research and new strategies, possibly requiring repeated
dosings and craniotomies (Rand et al. 2000), are required to understand and overcome dose-
limiting complications due to tumour necrosis.

Finally, our baseline value of 0.2 TCP is arbitrary, and is not meant to reflect the actual
TCP of IL-4-PE, IL-4(38–37)-PE38KDEL, transferrin-CRM107 or any other cytotoxic agent
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(although this value is not inconsistent with preliminary results for IL-4(38–37)-PE38KDEL,
where 1 of 9 glioblastoma multiforme patients appear to be tumour-free 18 months after treat-
ment (Rand et al. 2000)). Hence, our numerical results are indicative of relative, not absolute,
efficacy. Nonetheless, for a drug that offers partial cure rates (i.e. TCP not near 0 or 1) for certain
grades of gliomas, our results suggest which further improvements might be most beneficial.

In summary, new developments in brain tumour research have produced highly specific
agents that provide some hope of improving the poor prognosis of malignant gliomas. Our
analysis, which is partially illuminated in Fig. 1 and which culminates in the TCP formula in
Equation 11, attempts to provide some insights into the impact on TCP that might be achievable
by various advances in tumour detection, drug design and drug delivery.
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APPENDIX A

Parameters in Table 1.
The values for the tumour parameters λ1 (which corresponds to a tumour doubling time of about
60 days), D0 (derived from the observed wave speed of a brain tumour of 0.1 cm per week), N0
and t0 are taken from Burgess et al. (1997) and are representative of a high grade glioma. The
values for N0 and t0 are chosen so that the tumour cell density at 1.5 cm from the tumour centre
achieves the detection limit of 8 × 106 cells per cm3 after t0 time units. Because very little
diffusion of tumour cells occurs during the course of therapy (at a speed of 0.1 cm/week, the
tumour only travels about 0.6 mm during the course of treatment), we set D1 = 0 (hence, the
need to differentiate between D0 and D1 in Equations 1 and 2, which allows for a more tractable
analysis.

The drug killing rate k1 was calculated using data for IL-4-PE administered to a U251 glio-
blastoma cell line; 10 ng cm−3 concentration of the agent caused 65% cell death at 2 h and 91%
cell death at 4 h. Hence:

(17)

A natural value for θ is the maximum value of the tumour cell concentration, so that there
are no normal brain cells at the very centre of the tumour. By Equation 2, this yields:

(18)
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To estimate the tumour convection parameter a1, suppose that the drug was infused into a
collection of tumour cells, so that n2(r,0) = 0 in Equation 5. Then the characteristic distance, which
is the distance to the inflection point of the steady-state solution of the drug concentration, is:

(19)

and the time to approach this characteristic distance is 2/(3µ) (Morrison et al. 1994). Using the
value of µ in Table 1, this latter quantity is only 13 min, which is far less than the length of treat-
ment (T = 96 h). Hence, it is reasonable to estimate a1 by equating the characteristic distance to
the observed distance that IL-4(38–37)-PE38KDEL travels in the tumour, which is about 4 cm.
Equating 4 cm to:

(20)

yields the value of a1 in Table 1. Similarly, we derive a2 by equating the observed distance the
IL-4(38–37)-PE38KDEL travels in white matter (1 cm) to the characteristic distance of a drug
that is infused into a tumorless brain:

(21)

Husain et al. (1999) state that 30% of IL-4(38–37)-PE38KDEL remains at the tumour site
after intratumour administration in a subcutaneous tumour model at 2 h after treatment. Hence,
we estimate the loss rate to be:

(22)

As in Morrison et al. (1994), we divide this loss rate by the extracellular fraction, which we take
to be 0.2, to obtain the value in Table 1.

The volumetric flow rate q, the length of infusion T, and the injected concentration c0 in
Table 1 are representative of the IL-4(38–37)-PE38KDEL regimen. These values correspond to
a total dose of 311 µg and a total infused volume of 34.56 cm3.

Data to estimate values of f1 and f2 are not available. Because our computational study
contains a sensitivity analysis with respect to most of the parameters, we did not want the TCP of
the base case to be too close to 0 or 1. Hence, we arbitrarily set f1 so that the TCP for the data
in Table 1 is 0.2. We arbitrarily set f2 = 0.01 and R = 5 cm to determine toxicity. Finally, a base-
line value for the normal cell killing rate k2 is determined by assuming that c0 = 1 µg cm−3,
which is the concentration that causes toxicity of transferrin-CRM107 in Laske et al. (1997b),
satisfies expression Equation 10 with equality.
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APPENDIX B

Mathematical analysis
This appendix contains an approximate analytical derivation of the solution to Equations 1–5
and 8–9. For ease of presentation, let us define the constants:

(23)

Then substituting Equation 4 into Equation 5 gives:

(24)

For the parameter values in Table 1 and for practical values of r, it follows that c2 << c3e
–c1r 2

.
Hence, we set c2 equal to zero in Equation 24; numerical computations (not shown here) confirm
that this approximation is highly accurate. Moreover, as explained earlier, the characteristic time
for the infusion in the tumour is only about 13 min, which is much less than the length of treat-
ment, and so we replace c(r,t) in Equations 1 and 3 by its steady-state value, which we denote
by c(r). With these two approximations in hand, c(r) satisfies the ordinary differential equation:

(25)

Using separation of variables, we find that the solution to Equations 25 and 8 is:

(26)

where i =  and erf(x) is the error function

(27)

Substituting Equation 26 into Equations 1 and 3, setting D1 = 0, and integrating yields:

(28)

(29)

Substituting Equation 28 into Equation 9 gives:
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(30)

Equations 26 and 30 are used to generate the numerical results in the paper. However, in an
attempt to derive a closed-form expression for the TCP, we now make two further approxima-
tions: we approximate c(r) in Equation 26 and approximate the integral in Equation 30. To
approximate c(r) in Equation 26, we first note that (Abramowitz & Stegun 1972, page 297):

(31)

Making the approximation:

(32)

we approximate the right side of Equation 31 by r (ec1r 2 − 1), which has been confirmed (data
not shown) to be highly accurate. Substituting this expression into Equation 26 yields our
approximate value for c(r):

(33)

To simplify the integral in Equation 30, we use Fig. 1c to justify approximating e–k1Tc(r) by
a step function that jumps from 0 to 1 at r, where e–k1Tc(r) = 0.5. That is, we approximate:

(34)

by:

(35)

Using the approximation c(r) in Equation 33, we can express the equation for r as:

(36)

where K is defined in Equation 14. Because we expect c1r
2 > 1, we use the Taylor series

approximation:
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(37)

to express

(38)

in Equation 36 by

(39)

Similarly, we expect ln r < c1r
2, and so we use the Taylor series approximation:

(40)

After these two Taylor series approximations, Equation 36 becomes:

(41)

We use an iterative method to approximate the solution r to Equation 41. If we ignore the

(42)

term in Equation 41 then the solution is

(43)

Now we subsititute

(44)

r into the right side of Equation 41 and solve for r, which yields the expression in Equation 13
of the text.

Performing the integration
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and substituting into Equation 30 yields
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(46)

Although we imposed a slew of approximations to derive Equation 46, each of these approxi-
mations was highly accurate and the resulting TCP in Equation 46 for the base case is 0.197,
which is very close to the value of 0.2 computed via Equations 26 and 30. Further computations
confirm that Equation 46 is a reliable estimate of TCP over a wide range of parameter values.
Finally, we note that erf(x) ≈ 1 for x > 2. Hence, we make the approximation:

(47)

in Equation 46 to obtain Equation 11 of the text. This last approximation is slightly less accurate,
leading to a TCP of 0.229 in the base case. Nonetheless, numerical computations reveal that
Equation 11 only slightly overestimates the TCP for a wide variety of cases, and hence captures
all of the qualitative features of our model. An analagous sequence of approximations that led
from Equation 28 to 46 can be used to simplify n2(r,T ) in Equation 29, but we omit the details.
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