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Abstract

To predict real-time 3D deformation field maps (DFMs) using Volumetric Cine MRI (VC-MRI) 

and adaptive boosting and multi-layer perceptron neural network (ADMLP-NN) for 4D target 

tracking.

One phase of a prior 4D-MRI is set as the prior phase, MRIprior. Principal component analysis 

(PCA) is used to extract three major respiratory deformation modes from the DFMs generated 

between the prior and remaining phases. VC-MRI at each time-step is considered a deformation of 

MRIprior, where the DFM is represented as a weighted linear combination of the PCA 

components. The PCA weightings are solved by minimizing the differences between on-board 2D 

cine MRI and its corresponding VC-MRI slice. The PCA weightings solved during the initial 

training period are used to train an ADMLP-NN to predict PCA weightings ahead of time during 

the prediction period. The predicted PCA weightings are used to build predicted 3D DFM and 

ultimately, predicted VC-MRIs for 4D target tracking. The method was evaluated using a 4D 

computerized phantom (XCAT) with patient breathing curves and MRI data from a real liver 

cancer patient. Effects of breathing amplitude change and ADMLP-NN parameter variations were 

assessed. The accuracy of the PCA curve prediction was evaluated. The predicted real-time 3D 

tumor was evaluated against the ground-truth using volume dice coefficient (VDC), center-of-

mass-shift (COMS), and target tracking errors.

For the XCAT study, the average VDC and COMS for the predicted tumor were 0.92 ± 0.02and 

1.06 ± 0.40 mm, respectively, across all predicted time-steps. The correlation coefficients between 
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predicted and actual PCA curves generated through VC-MRI estimation for the 1st/2nd principal 

components were 0.98/0.89 and 0.99/0.57 in the SI and AP directions, respectively. The optimal 

number of input neurons, hidden neurons, and MLP-NN for ADMLP-NN PCA weighting 

coefficient prediction were determined to be 7, 4, and 10, respectively. The optimal cost function 

threshold was determined to be 0.05. PCA weighting coefficient and VC-MRI accuracy was 

reduced for increased prediction-step size. Accurate PCA weighting coefficient prediction 

correlated with accurate VC-MRI prediction. For the patient study, the predicted 4D tumor 

tracking errors in superior–inferior, anterior–posterior and lateral directions were 0.50 ± 0.47 mm, 

0.40 ± 0.55 mm, and 0.28 ± 0.12 mm, respectively.

Preliminary studies demonstrated the feasibility to use VC-MRI and artificial neural networks to 

predict real-time 3D DFMs of the tumor for 4D target tracking.
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1. Introduction

Respiratory target motion during radiation therapy results in intra-fraction target localization 

uncertainties. Lung tumors can move as much as 3 cm in the craniocaudal direction 

(Korreman 2015). Stereotactic body radiation therapy (SBRT) is becoming an emerging and 

effective treatment to treat early-stage liver and non-small cell lung cancer (NSCLC) 

patients with promising early outcomes (Mendez Romero et al 2006, Mendez Romero et al 
2008, Fakiris et al 2009, Liu et al 2013, Chang et al 2015). SBRT uses tight planning target 

volume (PTV) margins and high fractionated dose to aggressively treat targets and avoid 

nearby critical structures. In addition, SBRT treatment times are longer than conventional 

treatments, making it more susceptible to localization errors caused by intra-fraction 

motions. Therefore, target localization, before and during treatment, is crucial for preventing 

tumor under-dosing and nearby healthy tissue over-dosing in SBRT.

Target tracking has been introduced in recent years as a strategy for respiratory motion 

management in SBRT (Hansen et al 2016). The target tracking method detects the target 

respiratory motion in real-time and adjusts the radiation beam position to follow the target 

motion to ensure the tumor is confined in the BEV during the radiation delivery. As a result, 

the PTV defined for the treatment can be reduced, which is beneficial for reducing the dose 

to the surrounding healthy tissues.

Target tracking demands the radiation beam to be synchronized with the target motion 

(Sharp et al 2004). Implementation of target tracking requires the incorporation of system 

latency in the process, which is the finite time between detection of a new target location and 

adjustment of the radiation beam to follow the target motion. This latency is caused by the 

time needed for tumor detection, beam shaping calculation, and MLC movement, and it can 

lead to lagging in the target tracking and consequently errors in the dose delivery. Two 

methods to minimize latency errors are latency error quantification into the treatment 

planning process and target motion prediction. Error quantification requires to redefine dose 
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calculations to incorporate geometric errors via probability density functions (PDF). PDFs 

applications are limited as it assumes the dose distribution is unaffected by geometrical 

shifts in the medium being irradiated. As a result, internal inhomogeneities and surface 

curvature can cause substantial dose errors near the surface of the patient (Roland et al 
2010). Conversely, the prediction methods predict future tumor position from prior and 

current positions, allowing the treatment system to adjust ahead of time to compensate for 

the latency (Krilavicius et al 2016).

The general workflow of target tracking with a prediction algorithm includes four mains 

steps: (1) determine current tumor position, (2) predict tumor’s next position based on 

current position, (3) systematically adjust treatment beam’s shape and orientation to 

anticipate the tumor motion. In this study, we focus on the first two steps: determine current 

and predict future tumor positions.

The current real-time tumor position can be determined by using real-time imaging systems. 

One method of real-time imaging is Calypso markers, which are electromagnetic arrays 

implanted into the target. Markers emit radiofrequency signals and are tracked by a detector 

to generate a continuous 1D signal of position with sub-millimeter levels of accuracy (Bell 

et al 2017). Alternatively, on-board kV/MV or MRI (Kellman et al 2009) cine slices can be 

used for real-time imaging. However, the real-time information is limited to 1D or 2D 

without volumetric information of the tumor to allow tracking of tumor motion in all three 

directions, which can become important for arc treatments or multiple source cobalt 

treatments with beams from various 3D directions. To address this, real-time volumetric 

imaging is under development recently for imaging modalities such as cone-beam CT 

(CBCT) or magnetic resonance imaging (MRI). Previous work has been done using patient 

prior images and deformation models for CBCT fluoroscopy that would provide fast 

volumetric imaging at a reduced dose (Ren et al 2008, Li et al 2010a, 2010b, Li et al 2011, 

Ren et al 2012, Zhang et al 2017, 2018, Gao et al 2018). We also developed volumetric-cine 

MRI (VC-MRI) recently for real-time volumetric MR imaging (Harris et al 2016, Harris et 
al 2017) for MR guided radiation therapy. VC-MRI is generated based on prior images, 

motion models and on-board 2D MR cine images. In comparison to fluoro CBCT, VC-MRI 

does not utilize ionizing radiation and provides much better soft tissue contrast.

Once the current position of the tumor is determined, the second step is to predict its future 

positions, as mentioned above. One method is the autoregressive integrating moving average 

model (ARIMA), which is a linear filtering method that predicts future respiratory signals 

based on a linear relationship between prior and future signals (Babu and Reddy 2014). We 

recently developed artificial neural networks (ANN), in particular, multi-layer perceptron 

neural networks (MLP-NN) to effectively predict both linear and non-linear signals from 1D 

patient breathing signals (Sun et al 2016). Previous prediction studies considering latency 

suggests predicting 100–600 ms ahead would be sufficient to account for the latency (Cho et 
al 2009, Liu et al 2009, Roland et al 2010, Poulsen et al 2010, Ravkilde et al 2013).

This study aims to use VC-MRI for real-time imaging and adaptive boosting and multi-layer 

perceptron neural network (ADMLP-NN) for VC-MRI prediction to predict real-time 3D 

motion of the target for 4D target tracking. ADMLP-NN has been shown to be effective in 
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predicting future real-time position management (RPM) signals from previous ones (Sun et 
al 2016). Deformation field map (DFM) weighting coefficients from VC-MRI estimations 

are extracted and used to train an ADMLP-NN to predict future weighting coefficients. 

Predicted weighting coefficients are used to construct predicted DFMs and ultimately 

predicted VC-MRIs. VC-MRI estimation and prediction are evaluated using a 4D 

computerized extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI 

data from a real liver cancer patient. For the XCAT study, motion was simulated in the 

anterior–posterior (AP) and superior–inferior (SI) direction based on patient-specific RPM 

curves. Effects of breathing amplitude change and ADMLP-NN parameter variations were 

assessed. The predictions accuracy is evaluated based on predicted DFM weighting 

coefficients and resulting predicted VC-MRIs.

2. Methods and materials

2.1. VC-MRI estimation

VC-MRI, at any time instant, is assumed to be the deformation of a prior 4D-MRI phase, 

MRIprior, obtained during patient simulation. On-board VC-MRI estimation can be as 

expressed as a function of the prior phase, MRIprior, and DFM, D, as shown in equation (1).

VCMRI(i, j, k) = MRIprior  i + Dx(i, j, k), j + Dy(i, j, k), k + Dz(i, j, k) (1)

Dx, Dy and Dz are the deformation fields along the three Cartesian coordinates. D is 

constructed from a linear combination of the first three principal respiratory motion modes, 

D0
j , extracted from principal component analysis (PCA) on the patient prior 4D-MRI as seen 

in equation (2):

D = D0ave + ∑
j = 1

3
w jD0

j (2)

D0ave is the average DFM between MRIprior and other remaining prior 4D MRI phases. The 

coefficients, wj (j = 1,2,3), are the PCA weightings for each motion mode. PCA weighting 

coefficients are solved for by matching on-board sagittal MR cines with its corresponding 

VC-MRI slice via a data fidelity constraint.

VC-MRIs are generated by deforming MRIprior with the optimized DFM, D, via equation 

(1). A more detailed explanation of VC-MRI estimation can be found in Harris et al (2016).

2.2. VC-MRI prediction

VC-MRIs are predicted ahead of time using ADMLP-NN. VC-MRI prediction is based on 

predicting PCA weighting coefficients, w j
pred, to generate predicted DFMs, Dpred, that will 

be used to construct predicted VCMRIs. The predicted VC-MRIs are constructed with 

equation (1) using the predicted DFM, Dpred, and the prior phase, MRIprior.
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2.3. PCA weighting coefficient prediction using ADMLP-NN

ADMLP-NN is composed of T identical MLP-NN, which are used as weak predictors to 

compose a strong predictor. MLP-NNs are configured to estimate future PCA weighting 

coefficients from the previous coefficients.

During VC-MRI estimation, the PCA weighting coefficients, wj, are tracked to generate 

PCA weighting coefficient curves, wj(t). Figure 1(a) shows an example for the 1st principal 

component in the superior–inferior (SI) direction.

MLP-NN training divides the PCA weighting coefficient curve, wj(t), into two components 

separated at time index, t = K. The coefficients prior to time index K is referred to as the 

training signal and is used to train and determine the weights (w’s) and biases (b’s) of each 

MLP-NN. The coefficients after time index K are referred to as the testing signal and is used 

to evaluate PCA weighting coefficient predictions.

The architecture of an MLP-NN and its training flow chart is shown in figure 1(b).

MLP-NN consists of three layers (ε): input (1), hidden (2), and output (3). The input, 

hidden, and output layer consists of H, N, and one neuron, respectively. For each MLP-NN, 

the training algorithm requires, from the training signal, training sets, q, which are pairs of 

points consisting of a training input (for prediction) and a training output (for validation). 

The signals, S(1,…,H), is the training input of the first training set, q(1), used to predict the 

training output, S(H + M), where M is the prediction step-size. S(1) represents the PCA 

weighting coefficient wj(0) at t = 0 in figure 1(a). The training process continues with all 

training sets, where in a training signal with K points, there are q = K − H − M + 1 training 

sets.

The MLP-NN output, yl
ε(q), of a neuron l in layer ε from the training set q is determined 

from the following equation:

yl
ε(q) = f ε ∑

j = 1

n
w jl

ε y j
ε − 1(q) + bl

ε , ε = 2, 3 (3)

l and j are the neuron number of the current and fore-layer. fε and is the activation function 

of the layer ε. w jl
ε  and bl

ε act as weights and biases to the inputs of the activation functions. 

Initially, the weights and biases in each MLPNN are set randomly to compute an output, y1
3. 

Afterwards, the network training performance is evaluated based on a cost function:

e(w, b) = 1
2 ∑

q = 1

K − H − M + 1
y1

3(q) − S(q) T y1
3(q) − S(q) ⩽ G . (4)
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S(q) is the training output of training set q. The cost function is minimized by updating 

weights and biases via the Levenberg–Marquardt (LM) algorithm until either the pre-set 

maximum iteration number or cost function threshold value, G, is reached.

Furthermore, adaptive boosting (Adaboost) modifies the MLP-NN prediction algorithm by 

sequentially weighting identical MLP-NNs based on sample prediction error of each MLP-

NN. Adaboost reduces the risk of predicting local minima and over-fitting from MLP-NN. 

The final predicted output, S’, of the ADMLP-NN is the weighted sum of all MLP-NN 

predictions:

S′ = ∑
t = 1

T
αt × St′ . (5)

St′ is tth MLP-NN’s optimized predicted output and αt is its corresponding adaptive boosting 

weighting. A more detailed explanation of the adaptive boosting and ADMLP-NN can be 

found in Sun et al (2016).

Once the ADMLP-NN is trained, the testing signal is used to evaluate its accuracy. The 

signal between S(K + 1) and S(K + H) are imported to the trained ADMLP-NN to predict 

the first target position, S′(K + H + M). Points are continually imported to predict the next 

target position until the last target position, S′(K + H + M + P − 1), is predicted. P is the 

number of points predicted.

2.4. Simulation study using RPM signal and XCAT phantom

XCAT, a digital anthropomorphic phantom, was used to simulate a 4D extended cardiac 

torso for the prior 4D MRI set, on-board ground-truth VC-MRIs, and 2D cine MRIs (Segars 

et al 2010). A 30 mm diameter spherical tumor with uniform intensity was simulated in the 

middle of the lung. Both the body and tumor were simulated to move in the anterior–

posterior (AP) direction and superior–inferior (SI) direction. Respiratory motions were 

simulated based on real patient breathing signals recorded by a real-time position 

management (RPM) system, where an infrared camera tracks the motion of reflective 

markers placed on top of a patients’ abdomen (Yan et al 2005).

Five different two-minute long RPM signals were used to assess the effects of breathing 

pattern variations on VC-MRI estimation and prediction as shown in figure 2.

RPM 1 (top left in figure 2) represents a regular breathing pattern. On the other hand, RPM 

2–5 demonstrate characteristics of baseline drift, variations in frequency and amplitude, and 

irregularities in breathing. Figure 2 displays the relative amplitude of the RPM signal, where 

peaks represent end-of-inhalation (EOI) and troughs represent end-of-exhalation (EOE). The 

maximum peak-to-peak amplitudes of the AP and SI motions were set to 2 and 3 cm, 

respectively.

A 10-phase 4D MRI was simulated as the prior 4D MRI from one cycle from each 

respective RPM signal. The MRI volume of each phase was composed of 256 × 256 × 100 
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voxels, with each voxel measuring 1.875 × 1.875 × 3 mm. The EOE phase of the prior 4D 

MRI was selected as MRIprior. On-board sagittal MR cines at the location corresponding to 

the central slice of the tumor in the MRIprior were extracted from the simulated on-board 

VC-MRIs, which were used as ‘ground-truth’ VC-MRIs. On-board 2D cines and VC-MRIs 

were generated at ~8 frames s−1 from the entire RPM signal. For 2 min of RPM signal, 1001 

cine frames were generated, each with a resolution of 1.875 × 1.875 mm and slice thickness 

of 3 mm. For the XCAT study, region of interests (ROIs) surrounding the tumor in the 

sagittal cine frames were used to estimate VC-MRIs and obtain PCA weighting coefficients.

To evaluate the effects of potential patient breathing pattern changes from simulation to 

treatment, three on-board patient scenarios were simulated for each RPM signal:

1. Scenario 1: No breathing pattern change.

2. Scenario 2: For both body and tumor volume, the peak-to-peak amplitude of the 

SI and AP motion were decreased to 2 cm and 1.2 cm respectively.

3. Scenario 3: For both body and tumor, the peak-to-peak amplitude of the SI and 

AP motion were increased to 4 cm and 2.8 cm, respectively.

Additionally, on-board patient breathing hysteresis were examined for RPM 1 Scenario 1, 

where the AP and SI motion were simulated to be out-of-phase by 10% and 20%.

2.5. Patient study using liver cancer patient data

The VC-MRI prediction method was evaluated using one liver patient data, scanned on a GE 

scanner under an institutional review board-approved protocol. Details of image acquisition 

and 4D MRI reconstruction can be found in the previous publications (Cai et al 2011, Liu et 
al 2014, Harris et al 2016). To briefly summarize, a balanced steady state free precession 

(bSSFP) imaging acquisition technique was used to acquire 2D axial and sagittal images for 

retrospective sorting and 10-phase 4D MRI generation. Each phase was composed of 256 × 

256 × 40 voxels. The EOI phase was used as MRIprior. 2D cine MRI was acquired 

continuously (3 frames s−1) for 1 min along each orientation after the 4D MRI scan. Both 

the prior 4D MRI and on-board 2D cine MRI have a resolution of 1.875 × 1.875 mm and a 

slice thickness of 5 mm. For the patient study, the entire sagittal cine frame was used to 

estimate VC-MRIs and obtain PCA weighting coefficients.

2.6. Optimization of ADMLP-NN parameters

ADMLP-NN was optimized by fine-tuning and evaluating the parameters, T, H, N, G, and 

M, at different values for the XCAT study shown in table 1.

Optimized ADMLP-NN parameters are used to evaluate VC-MRI prediction accuracy for 

the XCAT and patient study.

2.7. Evaluation methods

The predicted principle PCA weighting coefficient, wpred
j, was evaluated against the 

estimated (true) weighting coefficients, wj, at every time-step via normalized cross-

Pham et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2020 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correlation (NCC) (equation (11)) and normalized root-mean-square-error (NRMSE) 

(equation (12)):

NCC j =
∑t ∈ Pw j

pred(t)w j(t)

∑t ∈ P w j
pred(t) 2 w j(t)

2 (6)

NRMSE j =
1
P ∑t ∈ P w j

pred(t) − w j(t)
2

max w j
pred(t) − min w j

pred(t)
. (7)

For the XCAT study, estimated and predicted VC-MRI tumors were evaluated against the 

ground-truth VCMRI tumor. Results were reported as an average across predicted time-steps 

with the corresponding standard deviations (STD). Tumors were contoured by an in-house 

MATLAB (MathWorks, Natick, MA) code based on threshold voxel values and preset ROIs. 

Volume dice coefficient (VDC) (equation (13)) and center-of mass-shift (COMS) (equation 

(14)) was used to assess the accuracy of the predicted/estimated tumor.

VDC =
2 V ∩ V0
V + V0

. (8)

V is the volume of the tumor contoured in the predicted/estimated image and V0 is the 

volume of the tumor contoured in the ground-truth image.

COMS = Δx2 + Δy2 + Δz2 . (9)

Δx, Δy, and Δz, are the center-of-mass distances from V to V0.

For the patient study, a previously developed ROI feature-based motion tracking method 

(Cai et al 2011) was used to calculate and compare target tracking based on VC-MRI 

estimation, prediction, and 2D cine images acquired. The 2D sagittal cine was used to track 

the target motion along the AP and SI directions, and the 2D axial cine was used to track the 

target motion along the lateral direction. The average target tracking curves over the 

prediction time (15 s) from the 2D cine images were used as the reference to evaluate the 

accuracy of the target tracking curve extracted from VC-MRI estimation and prediction.

3. Results

3.1. XCAT result

The RPM-XCAT simulations were used to optimize ADMLP-NN parameters for PCA 

weighting coefficient predictions. Figure 3 shows the PCA weighting coefficient curves for 
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RPM 1 and all three scenarios generated from VC-MRI estimation. For the XCAT study, the 

lateral component was not evaluated as there was no motion simulated in the lateral 

direction. The first 90 s of each PCA curve was used to train the ADMLP-NN to predict the 

last 30 s.

Figure 4(a) shows RPM 1 Scenario 1 predicted PCA weighting coefficients curves (red) 

plotted with the estimated/true curves (blue) for prediction step-size, M = 1 (120 ms). In 

contrast to VC-MRI estimation, predicted DFMs are constructed from the first two principal 

motion modes rather than three as the 3rd component is less predictable and excluding it has 

minimal effects on the final VC-MRI. Figure 4(b) displays the prior MRI at the EOE phase, 

ground-truth VC-MRI, estimated VC-MRI, and predicted VC-MRI at the EOI phase.

3.1.1. Effects of parameters in the ADMLP-NN network—Figure 5(a) shows the 

NCC and NRMSE of RPM 1’s predicted PCA weighting coefficient curves for different 

scenarios as a function of prediction step-size. Figure 5(b) shows the VDC and COMS of 

RPM 1’s estimated and predicted VC-MRIs as a function of prediction step-size for different 

scenarios. Figure 5(c) shows RPM 1 Scenario 1 predicted PCA weighting coefficients curves 

(red) for prediction step-size, M = 4 (480 ms), plotted with the estimated/true curves (blue).

Figure 6(a) shows the NCC and NRMSE of RPM 1’s predicted PCA weighting coefficient 

curves for different scenarios as a function of input neurons. Figure 6(b) shows the VDC and 

COMS of RPM 1’s estimated and predicted VC-MRIS as a function of input neurons for 

different scenarios. From figure 6, the optimal number of input neurons was experimentally 

determined to be H = 7.

Figure 7(a) shows the NCC and NRMSE of RPM 1’s predicted PCA weighting coefficient 

curves for different scenarios as a function of MLP-NNs. Figure 7(b) shows the VDC and 

COMS of RPM 1’s estimated and predicted VC-MRIS as a function of MLP-NNs for 

different scenarios. From figure 7, the optimal number of MLP-NNs was experimentally 

determined to be T = 10.

Figure 8(a) shows the NCC and NRMSE of RPM 1’s predicted PCA weighting coefficient 

curves for different scenarios as a function of hidden neurons. Figure 8(b) shows the VDC 

and COMS of RPM 1’s estimated and predicted VC-MRIS as a function of hidden neurons 

for different scenarios. From figure 8, the optimal number of hidden neurons was 

experimentally determined to be N = 4.

Figure 9(a) shows the NCC and NRMSE of RPM 1’s predicted PCA weighting coefficient 

curves for different scenarios as a function of cost function threshold. Figure 9(b) shows the 

VDC and COMS of RPM 1’s estimated and predicted VC-MRIS as a function of cost 

function threshold for different scenarios. From figure 9, the optimal cost function threshold 

was determined to G = 0.05.

3.1.2. Predication accuracy of the ADMLP-NN network with optimized 
parameters—Using the optimized ADMLP-NN parameters, the predicted and estimated 

VC-MRIs’ VDC and COMS as a function of RPM signal is plotted in figure 10.
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3.1.3. ADMLP-NN prediction for breathing hysteresis—Table 2 shows ADMLP-

NN predicted VC-MRIs’ VDC and COMS for RPM 1 Scenario 1 with no hysteresis, 10% 

phase shift, and 20% phase shift between AP and SI motions.

3.1.4. ADMLP-NN prediction and linear extrapolation comparison.—Figure 11 

shows the comparison of the optimized ADMLP-NN and the linear method for predicting 

the 1st principal components in RPM 3 Scenario 1 with prediction step-size, M = 3 (360 

ms). The estimated PCA curve was plotted as a reference to evaluate the accuracy of the 

prediction. Note that ADMLP-NN used 7 input neurons. Similarly, the linear model used 7 

prior points to predict 3 time-steps ahead. Table 3 shows the ADMLP-NN and linear 

predicting methods’ prediction accuracy of the VDC and COMS of the tumor.

3.2. Patient result

Figures 12(a) shows the PCA weighting coefficient curves for the patient study generated 

from VC-MRI estimation. For the patient study, the first 45 s of each PCA curve was used to 

train the ADMLP-NN to predict the last 15 s. Using the optimized ADMLP-NN parameters 

from the XCAT study, PCA weighting coefficients are predicted (red) and compared with 

the estimated/true curves (blue) for prediction step-size, M = 1 (330 ms), as shown in figure 

12(b). Note, the cine acquisition rate differs between the XCAT and patient study, and as a 

result, the prediction step-size time is larger for the patient study.

The NCC and NRMSE of the PCA curves for the patient study are shown in table 4.

Figures 12(c) displays the liver patient’s prior MRI at the EOI phase, estimated VC-MRI, 

predicted VC-MRI, and sagittal 2D cine at the EOE phase. Figure 12(d) shows the liver 

patient’s tumor tracking based on estimated and predicted VC-MRI and 2D cine for average 

cycles in the SI, AP, and lateral directions. Table 5 shows the mean, standard deviation, and 

max tracking error based on VC-MRI estimation and prediction. The 2D cine images 

acquired were considered as the ground-truth VC-MRI slices.

4. Discussion

Our previous study demonstrated the accuracy of the ADMLP-NN method for predicting the 

1D RPM signal (Sun et al 2016). However, RPM signal only represents the motion of a 

small surface region of the body, which may not correlate well with the internal tumor 

motion as demonstrated in previous studies. As a result, RPM prediction cannot provide 

accurate information for target tracking. This study integrates several novel techniques we 

developed recently, including the ADMLP-NN prediction and the VC-MRI, to predict real-

time 3D information of the tumor motion for 4D target tracking. To our knowledge, this is 

the first time the concept of 4D target tracking is proposed and the first study to demonstrate 

its feasibility using the state-of-the-art technologies. The method is also novel in that it 

uniquely predicts the PCA curves generated from the VC-MRI estimation to predict the 3D 

DFM. The integrated system was optimized for different parameters and its efficacy for 4D 

tracking was evaluated using both simulation and patient studies.
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As shown in figure 3, PCA curves are reflective of the RPM signal’s pattern and amplitude. 

As expected, for Scenario 2 and 3, the PCA curves’ peak-to-peak amplitude decreased and 

increased, respectively, which correlates with the changes in the RPM curves.

In figure 5(a), the NCC and NRMSE between RPM 1’s predicted and estimated/true PCA 

curves as a function of prediction step-size showed that the prediction accuracy decreased 

with increasing prediction step-size (decreasing NCC, increasing NRMSE). In figure 5(b) 

the resulting predicted VC-MRI showed the same trend (decreasing VDC, increasing 

COMS). Relative to 120 ms (M = 1) prediction step-size, the VDC and COMS could 

degrade as much as 0.05 and 3 mm for prediction step-size of 600 ms (M = 5). This is 

understood by comparing figures 4(a) and 5(c)s’ predicted PCA weighting curves, where 

both predictions were made with the same parameters, except figure 5(c) shows prediction 

with a prediction step-size of M = 4. Increasing the prediction step-size resulted in noisier 

predicted PCA curves, which degraded VC-MRI prediction accuracy. Overall, stronger PCA 

weighting coefficient prediction (high NCC, low NRMSE) resulted in more accurate VC-

MRI predictions (high VDC, low COMS). The optimal prediction step-size is highly 

dependent on a system’s latency and as a result, a system with short latency would be ideal 

for accurate VC-MRI predictions.

ADMLP-NN optimization showed increasing the number of input neurons would initially 

improve prediction results by providing more features that could improve the prediction 

algorithm; however, if the number of input neurons was more than the optimal value (H = 7), 

the performance of the network would degrade due to overfit and local minimum problems. 

Furthermore, using too few MLP-NNs (T < 10) resulted in poorer accuracy and larger 

uncertainties as the adaptive boosting algorithm had fewer MLP-NNs to formulate a strong 

predictor with smaller uncertainties. Predictions were relatively robust after N = 4 or more 

hidden neurons were used. Cost function threshold had the most significant effect on 

predictions. If the cost function threshold was too small (G < 0.05) or too large (G > 0.05), 

the prediction would overfit or underfit.

Predictions for the 1st principle component prediction were stronger and more robust against 

ADMLP-NN parameter variations than the 2nd component, which is reflective of the 1st 

component’s cyclic nature. Overall, cyclic patterns had more robust and accurate 

predictions.

VDC shared the same trends as COMS, indicating VC-MRI target volume accuracy 

correlated with target positioning accuracy. Figure 10 shows predicted VC-MRI are as 

accurate as estimated VC-MRIs for various RPM signals. Relatively, predicted VC-MRIs for 

RPM 3 and 4 were less accurate than the other RPM signals. This can be attributed to RPM 

3’s high frequency and RPM 4’s abrupt change at t = 65 s affecting the prediction model. 

Additionally, Scenario 3’s predicted VC-MRIs had the poorest accuracy and largest margins 

of uncertainty. This is due to the absolute difference between the estimated and predicted 

PCA curves. NCC and NRMSE for different scenarios were similar; however, after 

unnormalizing the coefficients for VC-MRI construction, the error for Scenario 3 scaled 

more than the other scenarios, and as a result the absolute accuracy of Scenario 3’s VC-
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MRIs worsened. In contrast, Table 2 shows that ADMLP-NN VC-MRI predictions are 

unaffected by breathing hysteresis/phase shifts.

VC-MRI enables real-time volumetric MR imaging for high precision target localization 

during treatment. VC-MRI spatial resolution can be approximately 1 mm in-plane and 1–3 

mm plane-to-plane depending on the resolution of the prior 4D MRI. Currently, VC-MRI 

reconstruction takes approximately two minutes, but can potentially be accelerated to high 

temporal resolutions of 3–5 frames s−1 via graphics card and parallel processing. 

Furthermore, ADMLP-NN PCA weighting coefficient prediction can improve VC-MRI 

optimization by initializing PCA weighting coefficients at the predicted value, which would 

be near the optimal value that satisfies the data fidelity constraint. ADMLP-NN training 

takes 10–20 s and once after, can greatly improve VC-MRI optimization speeds. After the 

VC-MRI is predicted, the corresponding predicted DFM can be used to automatically 

propagate tumor contours from planning images to obtain its on-board location, removing 

the need for on-board target re-localization and thus reducing system latency. Ultimately, 

real-time 4D target tracking by VC-MRI prediction would reduce the treatment errors and 

allow for margin reduction and dose escalation in SBRT treatments.

This work was carried out using simulation and limited patient study to investigate the 

feasibility of such a technique. Additionally, respiratory signals used in the simulation study 

were based on RPM signals only, which could be different from the actual respiration 

motion of internal organs. Future work will be designed to conduct more patient studies to 

further evaluate the clinical utility of the methods comprehensively.

5. Conclusion

It is feasible to predict PCA weighting coefficients using ADMLP-NN to construct predicted 

DFMs, which can be used to generate predicted VC-MRIs for 4D target tracking. Overall, 

ADMLP-NN prediction was dependent on an optimal number of input neurons. Using more 

hidden neurons and MLP-NNs in ADMLP-NN would improve VC-MRI prediction accuracy 

and minimize its uncertainty. VC-MRI prediction accuracy was sensitive to ADMLP-NN 

cost function threshold as too small thresholds would overfit the prediction and too large 

thresholds would underfit it. Increasing the prediction step size led to degradation of the 

prediction accuracy. Patient studies showed that VC-MRIs could be predicted 330 ms ahead 

of time with 0.5–2 mm accuracy in all three Cartesian directions, which can compensate for 

treatment system latencies to achieve 4D target tracking.
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Figure 1. 
(a) Example of the 1st SI PCA weighting coefficient curve. (b) MLP-NN training flow chart 

for PCA curve prediction.
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Figure 2. 
Real-time position management (RPM) signals.
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Figure 3. 
RPM 1 PCA weighting curves generated from VC-MRI estimation for (a) Scenario 1, (b) 

Scenario 2, and (c) Scenario 3.
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Figure 4. 
(a) ADMLP-NN (M = 1 (120 ms)) predicted PCA weighting coefficient curve (red) and 

estimated/true curve (blue) for RPM 1 Scenario. (b) RPM 1 Scenario 1—Prior MRI 

(MRIprior) at end-of-expiration (EOE) phase, ground-truth on-board VC-MRI (VC-MRIGT), 

estimated on-board VC-MRI (VC-MRIEst), and predicted VC-MRI (VC-MRIPred) at end-of-

inspiration (EOI) phase.
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Figure 5. 
(a) NCC (top) and NRMSE (bottom) of RPM 1’s predicted PCA weighting coefficient 

curves for different scenarios as a function of prediction step-sizes. (b) VDC (top) and 

COMS (bottom) for RPM 1’s estimated (blue; dashed—STD) and predicted (black) VC-

MRIs as a function of prediction step-sizes for different scenarios. (c) ADMLP-NN (M = 4 

(480 ms)) predicted PCA weighting coefficient curve (red) and estimated/true curve (blue) 

for RPM 1 Scenario 1.
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Figure 6. 
(a) NCC (top) and NRMSE (bottom) of RPM 1’s predicted PCA weighting coefficient 

curves for different scenarios as a function of input neurons. (b) VDC (top) and COMS 

(bottom) for RPM 1’s estimated (blue; dashed—STD) and predicted (black) VC-MRIs as a 

function of input neurons for different scenarios.
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Figure 7. 
(a) NCC (top) and NRMSE (bottom) of RPM 1’s predicted PCA weighting coefficient 

curves for different scenarios as a function of MLP-NNs. (b) VDC (top) and COMS 

(bottom) for RPM 1’s estimated (blue; dashed—STD) and predicted (black) VC MRIs as a 

function of MLP-NNs for different scenarios.
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Figure 8. 
NCC (top) and NRMSE (bottom) of RPM 1’s predicted PCA weighting coefficient curves 

for different scenarios as a function of hidden neurons VDC (top) and COMS (bottom) for 

RPM 1’s estimated (blue; dashed—STD) and predicted (black) VC-MRIs as a function of 

hidden neurons for different scenarios.
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Figure 9. 
(a) NCC (top) and NRMSE (bottom) of RPM 1’s predicted PCA weighting coefficient 

curves for different scenarios as a function of cost function thresholds. (b) VDC (top) and 

COMS (bottom) for RPM 1’s estimated (blue; dashed—STD) and predicted (black) VC-

MRIs as a function of cost function thresholds for different scenarios.
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Figure 10. 
VDC (top) and COMS (bottom) for estimated (blue) and predicted (black) VC-MRIs as a 

function of RPM signals for different scenarios.
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Figure 11. 
ADMLP-NN (top) and linear (bottom) predicted (M = 3 (360 ms)) 1st principal 

component’s PCA weighting coefficient curve (red) and estimated/true curve (blue) for 

RPM 3 Scenario 1.
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Figure 12. 
(a) Patient estimated PCA weighting curves. (b) Optimized ADMLP-NN (M = 1 (330 ms)) 

predicted PCA weighting coefficient curve (red) and estimated/true curve (blue) for patient 

study. (c) Patient—Prior MRI (MRIprior) at EOI phase, estimated on-board VC-MRI (VC-

MRIEst), and predicted VC-MRI (VC-MRIPred), and 2D sagittal cine at EOE phase. (d) 

Liver patient tumor tracking curves based on 2D cine and VC-MRI estimation and 

prediction for an average cycle. Tracking along superior–inferior (SI) and anterior–posterior 

(AP) direction are based on sagittal cines and sagittal VC-MRI slices. Tracking along lateral 

direction is based on axial cines and axial VC-MRI slices.
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Table 1.

ADMLP-NN default and testing parameters.

ADMLP-NN parameter

Number of MLP-NNs (T) 2, 5, 8, 10, 12

Number of input neurons (H) 3, 5, 7, 9, 11

Number of hidden neurons (N) 1, 2, 3, 4, 5

Cost function threshold (G) 0, 0.05, 0.1, 0.15, 0.2

Prediction step-size (M) 1, 2, 3, 4, 5
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Table 2.

ADMLP-NN predicted VC-MRIs’ VDC and COMS for RPM 1 Scenario 1 with no hysteresis, 10% phase 

shift, and 20% phase shift between AP and SI motions.

RPM 1 Scenario 1 VDC COMS (mm)

No hysteresis 0.92 ± 0.02 1.06 ± 0.38

10% phase shift 0.92 ± 0.02 1.18 ± 0.35

20% phase shift 0.92 ± 0.01 1.10 ± 0.39
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Table 3.

Prediction accuracy of the ADMLP-NN and linear methods for RPM 3 Scenario 1with prediction step-size, M 
= 3 (360 ms).

VDC COMS (mm)

ADMLP-NN 0.88 ± 0.03 1.89 ± 0.83

Linear 0.79 ± 0.09 4.09 ± 2.31
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Table 4.

NCC and NRMSE of patient study’s PCA weighting coefficient curves.

NCC NRMSE

PC SI AP LAT SI AP LAT

1st 0.981 0.987 0.963 0.090 0.109 0.096

2nd 0.891 0.974 0.960 0.295 0.202 0.117
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Table 5.

Tumor motion tracking errors based on VC-MRI estimation and prediction in the liver patient study.

SI AP LAT

μ ± σ (mm) Errormax (mm) μ ± σ (mm) Errormax (mm) μ ± σ (mm) Errormax (mm)

Estimated 0.21 ± 0.24 0.78 0.13 ± 0.09 0.25 0.18 ± 0.09 0.28

Predicted 0.50 ± 0.47 1.58 0.40 ± 0.55 1.90 0.28 ± 0.12 0.39
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