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Abstract
In autism spectrum disorders (ASDs), the majority of neuroimaging studies have focused on the analysis of cortical
morphology. White matter changes remain less understood, particularly their association to cortical structure and function.
Here, we focused on region that has gained only little attention in ASD neuroimaging: the superficial white matter (SWM)
immediately beneath the cortical interface, a compartment playing a prominent role in corticogenesis that incorporates
long- and short-range fibers implicated in corticocortical connectivity. Studying a multicentric dataset of ASD and
neurotypical controls, we harnessed surface-based techniques to aggregate microstructural SWM diffusion features.
Multivariate analysis revealed SWM anomalies in ASD compared with controls in medial parietal and temporoparietal
regions. Effects were similar in children and adolescents/adults and consistent across sites. Although SWM anomalies were
more confined when correcting for cortical thickness and surface area, findings were overall robust. Diffusion anomalies
modulated functional connectivity reductions in ASD and related to symptom severity. Furthermore, mediation models
indicated a link between SWM changes, functional connectivity, and symptom load. Analyses targeting the SWM offer a
novel perspective on the interplay between structural and functional network perturbations in ASD, highlighting a
potentially important neurobiological substrate contributing to its diverse behavioral phenotype.
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Introduction
Autism spectrum disorders (ASDs) are common and lifelong
neurodevelopmental conditions characterized by atypical social
cognition, communication, repetitive behaviors/interests, as
well as sensory anomalies. While there are several histopatho-
logical reports of atypical cortical organization, neuronal migra-
tion, and white matter architecture (Avino and Hutsler 2010;
Courchesne et al. 2011; Stoner et al. 2014), suggesting that ASD
is associated with perturbations of different stages of cortico-
genesis, the brain basis of this condition remains elusive.
Particularly, biological factors giving rise to its diverse

functional impairments and behavioral symptoms have been
incompletely understood.

Neuroimaging, and in particular magnetic resonance imag-
ing (MRI), lends a versatile window to study the brain at a mac-
roscopic as well as microstructural level (Lariviere et al. 2018)
and to identify substrates of typical and atypical neurodevelop-
ment. Using quantitative structural analyses, several studies
mapped alterations in cortical morphology in children and
adults with ASD relative to typically developing controls.
Despite variability in the location of findings (Bernhardt, Di
Martino, et al. 2017), studies show rather consistently cortical

© The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

Cerebral Cortex, October 2019; 4415–4425

doi: 10.1093/cercor/bhy321
Advance Access Publication Date: 3 November 2018
Original Article

http://www.oxfordjournals.org
http://orcid.org/0000-0002-1847-578X
http://orcid.org/0000-0002-1847-578X
http://orcid.org/0000-0002-1847-578X


thickening in ASD, particularly in frontal and temporal regions
(Valk et al. 2015; Khundrakpam et al. 2017; van Rooij et al.
2018), decreases in surface area (Ecker et al. 2013; Hong et al.
2018), together with reduced intensity contrast along the corti-
cal interface (Andrews et al. 2017; Hong et al. 2018).
Collectively, these findings are indicative of perturbations in
both vertical and horizontal cortical organization, potentially
secondary to atypical corticogenesis and corticocortical net-
work formation.

During neurodevelopment, the white matter emerges from
the intermediate zone that is transiently located between the
subventricular zone and cortical plate (Budday et al. 2015).
Given its crucial role in supporting neuronal migration and in
mediating connectivity between cortical areas, analysis of the
white matter may provide a unique opportunity to track abnor-
mal congenital processes in ASD, especially those occurring in
corticocortical connectivity formation. The assessment of this
compartment may also help contextualizing cortical morpho-
logical changes, given theoretical and empirical works suggest-
ing an intricate interplay between white matter properties and
cortical geometry in healthy individuals as well as those suffer-
ing from other neurodevelopmental conditions (White and
Hilgetag 2011; Henderson and Robinson 2014). In ASD, recent
studies leveraged diffusion-weighted imaging (DWI), a tech-
nique sensitive to regional tissue microstructure and fiber
architecture through an analysis of water displacement proper-
ties (Beaulieu 2002; Jones et al. 2013; Jbabdi et al. 2015). Notably,
DWI studies in ASD have focused mainly on deep fiber tracts,
such as the corpus callosum and long-range fascicles (Travers
et al. 2012; Aoki et al. 2013; Koldewyn et al. 2014). While sup-
porting an association between ASD and alterations in white
matter networks in vivo, the majority of DWI analyses has not
directly examined the relation between white matter changes
and neocortical morphology, except for a recent study suggest-
ing an association between altered gyrification and structural
connectivity (Ecker et al. 2016). Likewise, despite the overall
assumption that structural connections largely determine func-
tional dynamics (Honey et al. 2007), there have been no
attempts to consolidate ASD-related changes in white matter
integrity to cortical functional connectivity.

One region that has received only little attention in the neu-
roimaging of ASD is the superficial white matter (SWM), a com-
partment immediately beneath the cortical interface. In
addition to its important role in genesis and maturation of the
folded cortex (Toro and Burnod 2005; Herculano-Houzel et al.
2010), its spatial proximity ensures intrinsic correspondence to
the cortical ribbon, making it an ideal candidate for integrative
studies on cortical gray matter morphology, function, and
white matter organization in ASD. Notably, as the SWM harbors
both short- and long-range fibers mediating corticocortical con-
nectivity (Parent and Carpenter 1996; Schüz and Braitenberg
2002; Oishi et al. 2008, 2011), likely contributing to functional
network alterations and behavioral symptomatology in ASD.
The current study investigated this so-far underrecognized
zone based on a multicentric sample of individuals with ASD
and typically developing controls. We harnessed multimodal
image coregistration and postprocessing techniques for tar-
geted surface placement and DWI parameter sampling within
the SMW, allowing for the aggregation of in vivo markers of tis-
sue microstructure and fiber architecture (Liu et al. 2016).
Multivariate analysis synthesized spatial patterns of diffusion
anomalies in this compartment in ASD relative to controls and
established the relation to alterations in cortical morphology.
To assess the link between SWM changes and those in cortical

function and behavior, we build correlative and mediation
models to examine the interplay between changes in SWM dif-
fusivity, functional connectivity, and symptom severity within
our ASD group.

Methods
Subjects

Our study was based on a subsample from the Autism Brain
Imaging Data Exchange II (ABIDE-II) dataset (Di Martino et al.
2017). Similar to previous studies (Hong et al. 2018), we selected
those sites that contained children and adults ASD or typically
developing controls and those for which DWI and T1-weighted
data were available. Following automated cortical surface
extraction and quality control (see “Quality control and inclu-
sion criteria” in the following), our sample included 110 indivi-
duals from 3 sites: 1) NYU Langone Medical Center (NYU: 30
ASD, 19 controls); 2) Institut Pasteur and Robert Debré (IP: 12
ASD, 21 controls); 3) Trinity Center for Health Sciences (TCD: 11
ASD, 17 controls). While ASD and control subjects had compa-
rable male/female ratios (P > 0.43), they differed in age (ASD vs.
controls mean ± SD = 12.2 ± 6.3 years vs. 16.7 ± 8.3; P < 0.01, t =
3.16). Individuals with ASD had a DSM-V diagnosis of Autistic
Disorder, Asperger’s Disorder, or Pervasive Developmental
Disorder Not-Otherwise-Specified, established by the Autism
Diagnostic Observation Schedule, ADOS (Lord et al. 2000), and/
or the Autism Diagnostic Interview-Revised, ADI-R (Lord et al.
1994). For details on site-specific inclusion and exclusion crite-
ria, see http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.
html.

MRI Acquisition

High-resolution T1-weighted images (T1w), diffusion-weighted
images (DWI), and resting-state functional MRI (rs-fMRI) were
available from all sites. NYU data were collected on a 3 T
Siemens Magnetom Allegra scanner (T1w: TR = 2530ms;
TE = 3.25ms; TI = 1100ms; flip angle = 7°; axial slices = 128;
matrix = 256 × 192; FOV = 256mm; slice thickness = 1.33mm;
voxels = 1.3 × 1.0 × 1.3mm3; DWI: TR = 5200ms; TE = 78ms;
flip angle = 60°; axial slices = 50; slice thickness = 3mm; vox-
els = 3.0×3.0×3.0mm3; directions = 64; b0 = 1000 s/mm2;
rs-fMRI: 180 measurements; TR = 2000ms; TE = 30ms; flip
angle = 82°; matrix = 80 × 80; FOV = 240mm; voxel size = 3.0 ×
3.0 × 4.0mm3). IP data were collected on a 1.5 T Phillips
Achieva scanner (T1w: TR = 25ms; TE = 5.6ms; flip angle =
30°; axial slices = 170; matrix = 240 × 240, slice thickness =
1.0mm; FOV = 240mm; voxels = 1.0 × 1.0 × 1.0mm3; DWI:
TR = 5407mm; TE = 86ms; flip angle = 90°; axial slices = 45;
slice thickness = 2.5mm; voxels = 2.50×2.57×2.50mm3; direc-
tions = 32; b0 = 1000 s/mm2; rs-fMRI: 85 measurements;
TR = 2700ms; TE = 45ms; flip angle = 90 °; matrix = 64 × 63;
FOV = 230mm; voxel size = 3.59 × 3.65 × 4.0mm3). TCD data
were acquired on a 3 T Philips Intera Achieva (T1w:
TR = 8.4ms; TE = 3.9ms; TI = 1150ms; matrix = 256×256;
FOV = 230mm; slice thickness = 0.9mm; flip angle = 8°;
voxels = 0.9 × 0.9 × 0.9mm3; DWI: TR = 20 244ms; TE = 79ms;
matrix = 124 × 124; FOV = 248; slice thickness = 2mm; flip
angle = 90° voxels = 1.94 × 1.94 × 2.0mm3; directions = 61; b0
= 1500 s/mm2; rs-fMRI: 210 measurements; TR = 2000ms; TE =
27; matrix = 80 × 80; FOV = 240; slice thickness = 3.2mm; flip
angle = 90° voxels = 3 × 3 × 3.2mm3).
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MRI Preprocessing

a. Structural MRI. We used FreeSurfer (v5.3; https://surfer.nmr.
mgh.harvard.edu/fswiki) for T1w MRI processing, with
details described elsewhere (Dale et al. 1999; Fischl , Sereno
and Dale 1999; Fischl, Sereno, Tootell, et al. 1999; Fischl and
Dale 2000). In brief, FreeSurfer automatically reconstructed
geometric models approximating the inner and outer corti-
cal interfaces based on a series of volume- and surface-
based processing steps. Following surface extraction, indi-
vidual surfaces were registered to fsaverage5, a group-level

template with 20 484 surface points, via alignment of corti-
cal folding patterns. Surface extractions were visually
inspected, and segmentation inaccuracies manually cor-
rected by a rater blind to diagnostic category (BH).

b. DWI. Processing was based on MRTrix3 (v0.3.15; http://www.
mrtrix.org/) and involved correction for head motion and
eddy currents as well as estimation of diffusion parameters,
that is, fractional anisotropy (FA) and mean diffusivity (MD).
Preprocessed data were visually inspected by one rater blind
to diagnosis (BH), and subjects with no or faulty DWI data
were removed. Each subject’s white matter boundary

Figure 1. (A) To sample diffusion parameters in the SWM, we propagated the inner cortical boundary inward along a Laplacian potential field toward the ventricles

(Left panel). Group-averaged SWM-FA and -MD maps in typically developing controls are shown (Right panel). (B) Multivariate comparisons on overall SWM diffusion

anomalies (aggregating in FA and MD) in ASD compared with controls. Post hoc analysis in clusters of findings supported consistency across the included sites (i.e.,

NYU, IP, TCD), characterized by increased MD and reduced FA. (C) Surface-wide univariate analysis, showing marked and bilateral MD changes and more restricted

FA anomalies. Findings with black outlines were corrected for multiple comparisons. Uncorrected trends are superimposed in semitransparent.
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derived from T1w MRI was coregistered to the DWI b0 image
using a boundary-based registration by maximizing the
intensity difference at the cortical interface (Greve and
Fischl 2009).

c. rs-fMRI. Processing procedures were based on the Pre-
processed Connectomes initiative (http://preprocessed-
connectomes-project.org/abide/) and used C-PAC (https://
fcp-indi.github.io/). Procedures included slice-time correc-
tion, head motion correction, skull stripping, and intensity
normalization. Statistical corrections removed effects of
head motion (Friston et al. 1996), white matter and cerebro-
spinal fluid signals [using “CompCor,” based on the top 5
principal components (Behzadi et al. 2007)], as well as lin-
ear/quadratic trends. After band-pass filtering (0.01–0.1 Hz),
we coregistered rs-fMRI and T1w data in MNI152 space
through combined linear and nonlinear transformations.
Surface alignment was verified for each case and we inter-
polated voxel-wise rs-fMRI time series along mid-thickness
surfaces. We resampled rs-fMRI surface data to fsaverage5
and applied surface-based smoothing. For each subject, we
performed a visual scoring of surface extractions for struc-
tural MRI and evaluated temporal derivatives and frame-
wise displacement metrics for rs-fMRI (Jenkinson et al. 2002;
Power et al. 2012).

Quality Control and Inclusion Criteria

Across the 3 sites, a total of 143 subjects had T1w and DWI
images (including bvecs and bvals) available. We excluded 21
cases based on data quality (e.g., head motion, low T1w tissue
contrast, artifacts on DWI data). Coregistrations of individual
SWM surfaces to DWI space were visually inspected, leading to
further exclusion of 12 participants with poor alignment. Our
final cohort, thus, consisted of 110 total participants: 53 ASD
(age: 12.2 ± 6.3 years, 45 males) and 57 typically developing con-
trols (age: 16.7 ± 8.3 years, 44 males).

Surface-based Feature Generation

a. SWM surface generation and diffusion parameter sampling.
As in previous studies in drug-resistant epilepsy and
healthy controls (Liu et al. 2016; Valk et al. 2016), we com-
puted a Laplacian potential field between the white–gray
matter interface and the ventricular walls to guide place-
ment of a SWM surface running approximately 2mm below
the gray/white matter boundary (Fig. 1A). This depth was
chosen to target both the U-fiber system and terminations
of long-range bundles that lie between 1.5–2.5mm below
the cortical interface (Schüz and Braitenberg 2002). The
Laplacian field ensured an isomorphic mapping between
points on the SWM surface and those on the overlying cor-
tex, allowing for seamless integration of gray and white
matter metrics. SWM surfaces were mapped to DWI space
using previously estimated coregistrations. Voxel-wise FA
and MD values were interpolated to all surface points along
this newly mapped SWM surface. Measurements were reg-
istered to fsaverage5 and smoothed using a 20-mm full-
width-at-half-maximum (FWHM) surface-diffusion kernel.
Unlike voxel-based isotropic smoothing, kernels operating
within the cortical manifold reduce measurement noise
while respecting cortical anatomy (Chung et al. 2001; Lerch
2005).

b. Cortical morphological parameterization. We measured
“cortical thickness” as the distance of corresponding vertices

between the inner and outer cortical interfaces. As for SWM
parameters, we resampled thickness to fsaverage5 and
smoothed measures via 20-mm FWHM kernels. Along the
white matter interface, we also measured average “surface
area” of the 6 triangles surrounding a given vertex. To
account for interpolation effects during surface registration
(Winkler et al. 2012), we computed this metric on surfaces
already resampled to fsaverage5. As for the other markers,
surface area was smoothed using with a 20-mm FWHM
kernel.

Multimodal Analyses

As in previous work (Bernhardt, Bernasconi, et al. 2016; Hong
et al. 2016), analyses were carried out in SurfStat (Worsley et al.
2009) for Matlab (2017; The Mathworks).

a. Analysis of SWM diffusivity. Multivariate linear models at
each cortical surface point i assessed the differences in a
multivariate aggregate MVi, based on FA and MD between
ASD and controls.

β β β β
β

= + ∗ + β ∗ + ∗ + ∗
+ ∗

MV SiteSex Age Motion

Group
i 0 1 2 3 4

5

Models corrected for “Sex” and “Age” given their effects
on brain morphology and diffusion properties (Phillips et al.
2013; Ritchie et al. 2018), “Site” to account for systematic dif-
ferences in acquisition parameters, and average root-mean-
square displacement of each DWI volume compared with
the previous one as an index of head motion (Taylor et al.
2016; Baum et al. 2018). Parallel univariate models evaluated
between-group differences in FA and MD.

b. Assessment of cortical morphology. We evaluated differ-
ences in cortical thickness and surface area between ASD
and controls using linear models. As in the diffusion
parameter analysis, models testing for differences in corti-
cal thickness controlled for “Sex,” “Age,” and “Site.”

β β β β β= + ∗ + ∗ + ∗ + ∗CT Sex Age Site Groupi 0 1 2 3 4

In keeping with recent ASD studies (Ecker et al. 2013;
Hong et al. 2018), the model testing for differences in sur-
face area additionally controlled for “Total White Matter
Volume.”

β β β β β
β

= + ∗ + ∗ + ∗ + ∗
+ ∗

SA Sex Age Site Group

WMVOL
i 0 1 2 3 4

5

c. Controlling for variations in cortical morphology. To
account for morphological variability in diffusion parameter
comparisons, we corrected for “Cortical Thickness” and
“Surface Area” at each surface point and repeated the above
models on the residual SWM data.

d. Relationship to functional connectivity and symptom sever-
ity. We carried out a series of post hoc functional connectiv-
ity analyses (focusing on those clusters showing DWI
alterations in ASD compared with controls, see a). Each clus-
ter’s functional connectivity was calculated as Pearson’s cor-
relation coefficient between the average time series of the
cluster and time series of every other cortical vertex. Fisher
r-to-z transformations rendered correlation coefficients
more normally distributed. For each cluster, we ran surface-
wide linear models that compared its connectivity strength
between ASD and controls, controlling for age, sex, site, and
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mean framewise displacement to account for head motion
(Power et al. 2012). Within ASD, we correlated interindividual
differences of SWM anomalies with individual differences in
functional connectivity (i.e., z-scored functional connectiv-
ity, relative to controls), to examine whether ASD individuals
with more severe SWM alterations also displayed more
marked functional connectivity changes. To capture overall
ASD-related SWM anomalies, we built a single composite
score that captured the degree of FA decreases and MD
increases in single subjects. To this end, we calculated the
mean of the average z-scored FA reduction and z-scored MD
increase in clusters of significant diffusion MRI findings,
both relative to healthy controls. To furthermore examine
associations to behavioral symptoms of ASD, we correlated
interindividual differences in SWM measures with ADOS
scores in ASD and finally built path analytical models using
a freely released Matlab toolbox (https://github.com/canlab/
MediationToolbox), evaluating the role of functional connec-
tivity on the relation between diffusion anomalies and ADOS
scores.

e. Correction for multiple comparisons. Surface-based analy-
ses were corrected using random-field theory for nonisotro-
pic images (Worsley et al. 1999) with a threshold of
familywise error of PFWE < 0.05 (cluster defining threshold,
CDT = 0.01).

Data Availability

All data used in this study are openly shared via FCP/INDI, with
further information on the included sites found at http://fcon_
1000.projects.nitrc.org/indi/abide/abide_II.html.

Results
SWM Diffusion Anomalies

Multivariate diffusion parameter analysis mapped a high load
of SWM anomalies in ASD compared with controls (PFWE < 0.05;
Fig. 1B) in bilateral medial parietal cortices encompassing pre-
cuneus and posterior cingulate (PCU-PCC) as well as the right
temporoparietal junction (TPJ).

Post hoc analysis in clusters confirmed similar effect sizes
across the 3 included sites (FA Cohen’s d = 0.76/0.74/0.32, MD
d = 0.53/0.67/0.83 [NYU/IP/TCD]; Fig. 1B). Separately analyzing
children (age < 12.5 [median]) and adolescents/adults (age ≥
12.5) revealed comparable effects (children: FA/MD d = 0.54/0.67;
adolescents/adults: FA/MD d = 0.65/0.59), indicating consistent
SWM diffusion changes across age groups. Diffusion anomalies
in all clusters were typified by reduced FA (left/right PCU-PCC d
= 0.2/0.48, right TPJ d = 0.74) and increased MD (left/right PCU-
PCC d = 0.72/0.65, right TPJ d = 0.61) in ASD. Univariate analysis
(Fig. 1C) indicated that MD findings were more widespread,
including bilateral medial parietal and temporoparietal regions,
while FA changes appeared restricted to the right TPJ. In a sepa-
rate analysis, we also assessed axial and radial diffusivity
(Supplementary Fig. 1); across all clusters, ASD showed consis-
tent increases in radial diffusivity compared with controls while
the right PCC additionally revealed increased axial diffusivity.

Relation to Cortical Morphology

We mapped surface-wide changes in cortical thickness and
surface area in ASD relative to controls (Fig. 2A). Although of no
significant differences in both parameters after correction for
multiple comparisons, we observed tendencies for cortical

thickening in temporolimbic and medial frontal areas (P <
0.025), in keeping with earlier reports on ABIDE subsamples
and recent meta-analyses (Valk et al. 2015; Khundrakpam et al.
2017; van Rooij et al. 2017).

Furthermore, we observed tendencies of decreases in sur-
face areas in prefrontal, insular, and temporal regions, also
confirming earlier findings (Ecker et al. 2013; Hong et al. 2018).
Importantly, although the extent of SWM anomalies in ASD
compared with controls was reduced after controlling for corti-
cal thickness and surface area at each cortical vertex (Fig. 2B),
effects in right hemisphere clusters persisted after correcting
for morphological variations, specifically in the PCC/PCU and
TPJ clusters.

Relation to Functional Connectivity and Behavioral
Symptoms

To explore functional associations, we carried out a seed-based
resting-state functional connectivity analyses from clusters of
multivariate SWM anomalies (Fig. 3A). In controls (Fig. 3B),
PCC-PCU clusters were closely integrated into the DMN, show-
ing high functional connectivity to bilateral medial frontal and
parietal regions, as well as superior temporal and angular corti-
ces. Seeding from the right TPJ, on the other hand, we observed
connections to other temporal, cingulate, midline parietal, and
insular regions.

Statistically comparing ASD with controls (Fig. 3C) revealed
connectivity reductions in the former, with left PCC-PCU dis-
connected from more distant targets in prefrontal and premo-
tor areas, while right PCC-PCU showed connectivity reductions
to the adjacent cuneus. Right TPJ regions also showed reduc-
tions in functional connectivity to proximal cortical areas,
notably posterior insular and superior parietal cortices. As for
the diffusion parameter findings, connectivity reductions were
consistent across sites (Fig. 3D).

In the ASD group, interindividual differences in SWM anom-
alies in both right hemispheric clusters correlated with the
overall degree of functional connectivity reductions to those
target areas (i.e., adjacent cuneus, and the posterior insular and
superior parietal cortices). In other words, individuals with ASD
who showed more marked SWM anomalies (defined by multi-
variate composite scores of FA and MD) also displayed more
marked reductions in functional connectivity (SWMTPJ: r =
−0.38, P < 0.0025; SWMPCC/PCU: r = −0.25, P < 0.037, Fig. 3E ).

Overall SWM profile (averaged score of SWMTPJ and SWMPCC/

PCU) was also associated to more severe ASD symptoms, as
indexed by total ADOS (r = 0.27, P < 0.04). Separate univariate
analyses suggested that results were mainly driven by FA (r =
−0.24, P = 0.054), not MD (P > 0.4). Finally, correlations between
SWM anomalies and total ADOS scores were found to be par-
tially mediated by reduced functional connectivity (z = 1.93, P <
0.06), suggesting a disease-related path between SWM altera-
tions, functional connectivity reductions, and behavioral symp-
toms (Fig. 4). Separate assessments on specific ADOS scores
revealed that the observed mediation was mainly attributable
to the social cognition domain (mediation effect: z = 1.84, P <
0.07 for social cognition; P > 0.1 for communication and
repeated behavior domains).

Discussion
The current work targeted the SWM, the so-far largely
neglected compartment in autism based on multimodal in vivo
imaging. Our surface-based analyses of different diffusion MRI
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parameters in a multicentric dataset of ASD and typically
developing controls revealed atypical SWM organization in
medial parietal and lateral posterior temporal regions in ASD.
Analysis across different sites indicated high consistency of
findings, as did separate assessments in children, adolescents,
and adults. Although the extent of findings was slightly
reduced after correcting for MRI-derived cortical thickness and
surface areas, anomalies remained largely robust against cor-
rection for morphological variations. The pattern of SWM
changes observed in the current study may thus indicate
partially overlapping, yet also distinct developmental perturba-
tions as those affecting vertical and horizontal cortical morpho-
logical organization. Assessing coregistered resting-state fMRI
data at an interindividual level, we also observed that SWM
findings correlated with intrinsic functional connectivity
changes, supporting a potential contribution to previously
reported functional network alterations in ASD. Finally, SWM
changes parametrically related to ADOS symptom load, and
this effect was found to be mediated by functional anomalies,
suggesting that SWM anomalies may serve as a potential sub-
strate of atypical functional connectome organization and the
phenotypic expression of ASD.

Immediately subjacent to the cortical ribbon and serving as
a corridor for neuronal migration during development, the
SWM represents an important candidate area to assess effects
of typical and atypical cortical organization and corticocortical
network formation. Its pivotal role in cortical connectivity is
indeed reflected in the SWM harboring both short-range associ-
ation fibers, such as the U-fiber system arching through the
cortical sulci to connect adjacent gyral regions, as well as

termination fibers of long-range tracts running throughout the
deep white matter (Schüz and Braitenberg 2002; Vergani et al.
2014). Interestingly, while its overall components are already
fully formed throughout the prenatal corticogenic phase, large-
scale changes still occur in the SWM even after birth. In fact,
this compartment is thought to show marked and protracted
changes in connectivity and myelination patterns both for
long-range corticosubcortical projection and short-range
U-fiber networks in the first years of life (Parazzini et al. 2002),
possibly to support the parallel emergence and maturation of
functional systems. Indeed, the SWM has increasingly been
recognized to contribute to multiple perceptual and higher level
cognitive abilities, ranging from sensory and attentional func-
tion (Nazeri et al. 2015) to social and meta-cognitive awareness
(Valk et al. 2016). Notably, despite the absence of neuroimaging
work on this compartment in ASD, changes in the SWM have
recently been highlighted in studies focusing on childhood neu-
rodevelopment (Wu et al. 2014), aging (Phillips et al. 2013), and
prevalent disorders associated with aberrant corticogenesis,
including temporal lobe epilepsy (Liu et al. 2016) and malforma-
tions of cortical development (Hong et al. 2017).

Comparing ASD with controls, we observed SWM diffusion
anomalies in the former group, characterized by increased MD
together with FA reductions in medial parietal and lateral tem-
poroparietal regions. Findings were consistent across the 3
included sites albeit variable effect sizes in each of them.
Although lack of additional histopathological and quantitative
MRI markers renders specific microstructural and architectural
interpretations difficult, post hoc analysis revealed mainly
increased radial diffusivity (i.e., a diffusion degree along non-

Figure 2. (A) Alterations in cortical morphology (cortical thickness and surface area) in ASD compared with controls. (B) Persistence of SWM diffusion anomalies after

correcting for cortical thickness and surface area at each vertex. For details on the statistical thresholds, see Figure 1.
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primary directions) across significant clusters, a pattern of find-
ings compatible with reductions in fiber packing and demyelin-
ation together with increases in extracellular space (Alexander
et al. 2007). This is supported by effects that were, while gener-
ally robust when correcting for morphological variations, some-
what diminished when cortical thickness and surface area
were statistically controlled for. A plausible factor in the partial
interaction between cortex morphology and SWM alterations
may be the overall number of connections a given cortical
region with a predefined thickness and surface area can emit
and receive. This finding would also be in line with recent
reports on coupled mechanisms affecting deep WM connectiv-
ity and cortical shape complexity in ASD (Schaer et al. 2013;

Ecker et al. 2016). Furthermore, they complement histological
data showing reductions in long-range axons with co-occurring
increases in short-range connections in ASD (Zikopoulos and
Barbas 2010, 2013).

Advances in resting-state fMRI methodologies have resulted
in a surge of studies assessing functional network anomalies in
ASD relative to neurotypical cohorts, contributing to the notion
that autism may be associated to a “miswired connectome”
(Di Martino , Fair, et al. 2014). Despite little consensus in loca-
tion of findings and direction of changes (Uddin et al. 2010;
Deen and Pelphrey 2012; Keown et al. 2013; Yahata et al. 2016;
Heinsfeld et al. 2018; Lariviere et al. 2018), the literature gener-
ally suggests a predominance of reductions in corticocortical

Figure 3. (A) Seed clusters for functional connectivity. (B) Functional connectivity maps in healthy controls (HC). (C) Surface-based differences in seed-based func-

tional connectivity in ASD versus controls. (D) Consistency of effect across the 3 included sites. (E) Post hoc correlations between SWM diffusion changes and average

functional connectivity reductions.
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connectivity in ASD. This is particularly the case for transmodal
regions participating in high-level cognitive and social pro-
cesses, notably default mode network core regions in medial
parietal and the lateral temporal/temporoparietal cortices
(Di Martino, Yan, et al. 2014), that is, those regions highlighted
by our fully unconstrained and surface-wide DWI analysis. Post
hoc analyses from clusters of significant SWM diffusion anom-
alies confirmed functional connectivity reductions in ASD rela-
tive controls across all of them. Furthermore, and beyond the
colocalization of structural and functional connectivity anoma-
lies, we observed an association between the degree of SWM
anomalies and those in intrinsic functional connectivity in
ASD, specifically in right hemisphere seeds, suggesting that
SWM changes may represent an important substrate of interin-
dividual differences in the perturbation of corticocortical func-
tional interactions. Notably, connectivity reductions did not
seem to follow a specific anatomical distance distribution, sug-
gesting that functional decoupling may affect both short- and
long-range components of the corticocortical resting-state fMRI
connectome.

The loco-regional network effects seen in the SWM might
have important implications for cortical information processing
in ASD. Correlating SWM changes to ADOS scores, we could
indeed gather evidence for an association between diffusion
anomalies in the subjacent white matter and overall symptom
severity. Furthermore, associations were found to be partially
mediated by fMRI anomalies, indicating that functional connec-
tivity perturbations downstream to the SWM changes might
indeed have contributed to this association. The associations
with total symptom scores were mainly driven by the sociocog-
nitive subscale of the ADOS, overall in agreement with the
implication of PCC/PCU and TPJ (i.e., those areas showing diffu-
sion anomalies correlated to ADOS) in sociocognitive processes
related to “theory of mind” and more generally cognitive per-
spective taking in neurotypical cohorts and ASD. Indeed, task-
based fMRI studies have shown a rather consistent involve-
ment of midline parietal and lateral temporoparietal areas dur-
ing mentalizing tasks in typically developing children and
adults (Saxe and Kanwisher 2003; Mitchell et al. 2006; Van
Overwalle 2009; Mar 2011; Bzdok et al. 2012; Gweon et al. 2012;
Schurz et al. 2014), suggesting a contribution of these areas to
sociocognitive functioning. Such findings have been comple-
mented by morphometric and MRI covariance data supporting

a relationship between these regions’ morphology and interre-
gional structural network embedding on the one hand, and
phenotypic variations in social cognitive functions on the other
hand (Valk et al. 2016; Valk, Bernhardt, Bockler, et al. 2017;
Valk, Bernhardt, Trautwein, et al. 2017). In line with the long-
standing association of ASD to “atypical theory of mind” (Frith
and Frith 2005), task-based fMRI in the condition revealed atyp-
ical activations during cognitive perspective-taking tasks in
these regions (Castelli et al. 2002; Kennedy and Courchesne
2008; Kana et al. 2009; Lombardo et al. 2011). Moreover, resting-
state findings have supported rather consistent connectivity
perturbations of midline parietal (Di Martino, Yan, et al. 2014;
Joshi et al. 2017) and temporoparietal areas in ASD (Uddin et al.
2013). Together with structural covariance findings indicating
anomalies in the large-scale morphological coordination
(Bernhardt et al. 2014), these results collectively support a dis-
rupted structure–function network embedding of these regions
in ASD.

We close by noting that our work also provides practical
insight that surface-based SWM profiling information can be
easily integrated with widely used markers of cortical morphol-
ogy and functional connectivity. As our findings have shown in
ASD, microstructural and architectural organization of the
SWM may overall contribute to large-scale cortical function
and behavioral symptoms in neurodevelopmental conditions.
In other neurological or psychiatric disorders such as epilepsy
(Liu et al. 2016), Huntington’s disease (Phillips , Joshi, Squitieri,
et al. 2016), Alzheimer’s disease (Phillips , Joshi, Piras, et al.
2016), psychosis (Makowski et al. 2018), and schizophrenia
(Zhuo et al. 2016), similar analyses discovered functionally rele-
vant structural compromise in the SWM, unveiling both com-
mon and distinct patterns of their tissue anomalies. Given the
increasing availability of large transdiagnostic samples such as
the healthy brain network (Alexander et al. 2017) and recent
initiatives to transcend traditional diagnostic categories (Insel
2014), further studies are recommended that assess specificity
of our findings for ASD and that clarify commonalities across
disorders.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.

Figure 4. Correlation between SWM diffusion anomalies and total ADOS scores (left). Functional connectivity was found to mediate the relation between diffusion

anomalies and ADOS scores (right)
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