
OR I G I NA L ART I C L E

Enhanced Population Coding for Rewarded Choices
in the Medial Frontal Cortex of the Mouse
Michael J. Siniscalchi1, Hongli Wang1 and Alex C. Kwan 1,2,3

1Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA,
2Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA and 3Department
of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA

Address correspondence to Alex C. Kwan, Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite 901, New Haven, CT 06511,
USA. Email: alex.kwan@yale.edu. orcid.org/0000-0003-2169-1667

Abstract
Instrumental behavior is characterized by the selection of actions based on the degree to which they lead to a desired
outcome. However, we lack a detailed understanding of how rewarded actions are reinforced and preferentially
implemented. In rodents, the medial frontal cortex is hypothesized to play an important role in this process, based in part
on its capacity to encode chosen actions and their outcomes. We therefore asked how neural representations of choice and
outcome might interact to facilitate instrumental behavior. To investigate this question, we imaged neural ensemble
activity in layer 2/3 of the secondary motor region (M2) while mice engaged in a two-choice auditory discrimination task
with probabilistic outcomes. Correct choices could result in one of three reward amounts (single, double or omitted reward),
which allowed us to measure neural and behavioral effects of reward magnitude, as well as its categorical presence or
absence. Single-unit and population decoding analyses revealed a consistent influence of outcome on choice signals in M2.
Specifically, rewarded choices were more robustly encoded relative to unrewarded choices, with little dependence on the
exact magnitude of reinforcement. Our results provide insight into the integration of past choices and outcomes in the
rodent brain during instrumental behavior.
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Introduction
Associations between past choices and their outcomes allow
for efficient selection of actions likely to meet one’s present
goals. The mechanisms through which such associations are
implemented remain unclear. However, at the behavioral level,
it is well known that rewarded choices tend to be repeated at
the expense of those that have yielded meager or aversive
results. To gain insight into the associative mechanisms under-
lying goal-directed action selection, the present study focuses
on the question of how populations of simultaneously recorded
neurons in the cerebral cortex represent and integrate informa-
tion related to choices and their outcomes.

How does the brain selectively reinforce rewarded actions in
order to bias their future implementation? Physiological studies

in primates and rodents suggest that the frontal lobe plays an
important role in these functions. For example, the primate
prefrontal cortex is known to contain neurons that encode cho-
sen actions and outcomes (Barraclough et al. 2004; Genovesio
et al. 2006; Seo et al. 2007; Histed et al. 2009), suggesting a plau-
sible neural substrate for their association during goal-directed
behavior. Moreover, single-unit recordings have revealed that
prior reward enhances the discriminability of spiking activity
related to past (Donahue et al. 2013) and upcoming choices
(Histed et al. 2009).

Similarly, recordings from the medial frontal cortex (MFC) of
rodents have revealed neural signatures of prior choices and
outcomes (Sul et al. 2010, 2011; Hyman et al. 2017). In particular,
these studies have demonstrated neural representations of
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choice and outcome history in the most dorsal anatomical sub-
region of MFC, which is referred to as secondary motor cortex
(M2) in mice, and medial agranular or medial precentral cortex
in rats (Sesack et al. 1989; Barthas and Kwan 2017). Murine M2
has also been implicated in the flexible acquisition and initia-
tion of voluntary actions (Ostlund et al. 2009; Gremel and Costa
2013; Murakami et al. 2014; Siniscalchi et al. 2016; Barthas and
Kwan 2017; Makino et al. 2017). Based on its putative role in
instrumental behavior, M2 may serve as an important interface
for the mixing of choice- and reward-related signals in the
rodent brain. However, the details of how reinforcement might
interact with choice-related neural representations remains
unclear. One intriguing hypothesis is that a choice’s outcome
could affect the strength or persistence of its neural signature
in M2.

To explore this possibility, we trained mice on a two-choice
auditory discrimination task and then introduced a probabilistic
reinforcement schedule during testing. Simultaneous two-photon
calcium imaging enabled the characterization of task-related neu-
ral ensemble activity in M2. Three randomly interleaved out-
comes (single, double and omitted rewards) delivered following
correct responses allowed us to measure the impact of reward
on choice coding, as well as to distinguish effects of changes
in reward magnitude from those of its absolute presence or
absence. We found that rewarding outcomes boosted the fidelity
of choice signals encoded in the population activity patterns—
an effect that persisted into the subsequent trial. Importantly,
the reward-dependent enhancement of choice-related signals
depended less on differences in reward size than on the categor-
ical presence or absence of rewards. These results suggest one
plausible cortical mechanism for the reinforcement of rewarded
actions—namely, that rewarding outcomes lead to a more
robust population-level read-out of recent choice history.

Materials and Methods
Animals

All procedures were performed in accordance with the regula-
tions of the Institutional Animal Care and Use Committee at
Yale University. Animals were housed on a 12/12-h light–dark
cycle (lights off at 19:00) in groups of three to five per cage. Ten
adult (postnatal days 111–279) male mice with a C57BL/6 J
(#000664; Jackson Laboratory) genetic background were used.
Although two subjects from these experiments were also used
in an earlier study (Siniscalchi et al. 2016), the data and analy-
ses in this article have not been reported elsewhere.

Surgery

For optical imaging of neural activity, we implanted a chronic
glass window over the medial secondary motor cortex (M2).
The surgical procedures were nearly identical to those used in
our earlier studies (Phoumthipphavong et al. 2016). All subjects
were treated pre-operatively with carprofen (5mg/kg, s.c.;
#024751; Butler Animal Health) and dexamethasone (3mg/kg, s.c.;
Dexaject SP, #002459; Henry Schein Animal Health). Anesthesia
was then induced with 2% isoflurane in oxygen, and the animal
was placed on a water-circulating heating pad (TP-700; Gaymar
Stryker). Following induction, isoflurane concentration was low-
ered to 1.5% and the head was secured in a stereotaxic frame
with ear bars (David Kopf Instruments). The scalp was shaved
with electric trimmers and cleaned with a povidone-iodine surgi-
cal scrub (Betadine; Perdue Products L.P.). A narrow portion of
scalp was removed along the midline from the interaural line to a

line visualized just posterior to the eyes. The incision was
retracted to expose the dorsal aspect of the skull, which was
then scrubbed briefly with 3% hydrogen peroxide to aid in the
removal of the periosteum, and washed generously with artificial
cerebrospinal fluid (ACSF; in mM: 5 KCl, 5 HEPES, 135 NaCl, 1
MgCl2 and 1.8 CaCl2; pH 7.3). A 3-mm-diameter circular craniot-
omy was made over the right hemisphere using a high-speed
rotary drill (K.1070; Foredom), centered on a medial target within
M2 (AP +1.5mm, ML −0.5mm relative to Bregma). The dura was
left intact and was irrigated frequently with ACSF over the
remainder of the procedure. An adeno-associated virus encoding
GCaMP6s (AAV1-Syn-GCaMP6s-WPRE-SV40; Penn Vector Core)
was infused at four AP-ML coordinates through a glass micropi-
pette attached to a microinjection unit (Nanoject II; Drummond).
The injection sites formed a 200-μm-wide square centered on the
target location. Each site was injected with 46nL of virus over
3min, at a depth of 0.4mm from the dura. To minimize backflow
of the injected solution, the micropipette was left in place for
5min after each infusion. A small amount of warmed agarose
solution (Type III-A, High EEO agarose; 1.2% in ACSF; #A9793;
Sigma Aldrich) was then applied along the perimeter of the crani-
otomy to fill the space between the cranial window and the sur-
rounding tissue after implantation. The cranial window consisted
of two concentric circular glass parts, glued together with UV-
activated optical adhesive (NOA 61; Norland Products, Inc.): a
3-mm-diameter, #1 thickness prefabricated glass coverslip
(#64-0720-CS-3R; Warner Instruments) and a 2-mm-diameter
plug cut from a #1 or 2 thickness glass coverslip. The window
was carefully placed on the brain surface with the glass plug fac-
ing down, and then secured to the skull at the edge of the crani-
otomy using cyanoacrylate glue. Gentle downward pressure was
applied to stabilize the implant during this procedure, using a
wooden probe attached to the stereotaxic frame. A custom-made
stainless-steel head plate (eMachineShop) was then bonded to the
skull with dental cement (C&B Metabond; Parkell Inc.), with care
taken to cover any remaining exposed skull. Post-operative care
was provided immediately and for three consecutive days follow-
ing surgery. This consisted of analgesia (carprofen, 5mg/kg, s.c.)
and fluid support (preservative-free 0.9% NaCl, 0.5mL, s.c., up to
twice daily). All animals were given a one-week post-operative
recovery period prior to the onset of behavioral training.

Behavioral Setup

Subjects were placed in a modified acrylic tube (8486K33;
McMaster-Carr) and held head-fixed during the behavioral task
by fastening the head plate implant to a custom-made stain-
less-steel bracket (eMachineShop). This setup limits gross body
movements but allows for small postural adjustments and
movement of the hind limbs. Two lick spouts, mounted on a
3D-printed plastic part, were placed on either side of the mouth
to allow lateralized responses and corresponding delivery of
water rewards. This basic two-choice setup was modeled after
an earlier study (Guo et al. 2014). Lick spouts were fabricated
from 20-G hypodermic needles, which were cut and carefully
filed with an abrasive wheel, and then soldered to a wire lead
and connected to a battery-operated lick detection circuit
(Slotnick 2009). Output signals from the detector were digitized
with a USB data acquisition device (USB-201; Measurement
Computing) plugged into a desktop computer. Water rewards
were delivered through each spout by gravity-feed and actu-
ated with a solenoid valve (EV-2-24; Clippard) controlled by TTL
pulses from a second USB-201. Pulse duration for a single
reward (2 μL) was calibrated for each valve by sending 100
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pulses and then weighing the ejected volume (a 15–20ms TTL
pulse was typically required). On double-reward trials, 4 μL
were delivered by using either a calibrated longer duration
pulse or two single rewards separated by 100ms. Auditory sti-
muli were played through a pair of computer speakers (S120;
Logitech) placed in front of the animal. The task structure was
automated using custom scripts written for Presentation
(Neurobehavioral Systems, Inc.). During training, the behavioral
apparatus was enclosed in the cabinet of an audiovisual cart
(4731T74; McMaster-Carr) soundproofed with acoustic foam
(5692T49; McMaster-Carr). For imaging, the setup was repli-
cated within the enclosure of a two-photon microscope.

Two-choice Auditory Discrimination Task with
Probabilistic Outcomes

Mice were trained to perform a two-choice auditory discrimina-
tion task. To motivate participation, subjects were water
restricted, as follows. Six days per week, water was provided
only in a single daily training session, as a reward for correct
choices. On the remaining day, a water bottle was placed in the
home cage for 15 min. Three phases of training were used to
shape the behavior, identical to those used in our prior study
(Siniscalchi et al. 2016). During phase one, mice were habitu-
ated to head fixation and trained to lick the left or right spout
for water: each lick to either spout triggered the release of 4 μL
of water, with a minimum interval of 1 s between rewards.
After attaining >100 rewards in a single session of phase one
(1–2 days), subjects were advanced to phase two, in which they
were required to lick for a similar number of rewards at each
spout. In this case, water was only available from one ‘target’
spout at a time, with the target moving to the opposite side
each time the mouse earned three consecutive rewards from a
given target. Additionally, sound stimuli were introduced in
association with rewarded licks (‘hits’) on a given spout. The
stimuli were trains of four 500-ms-long logarithmic chirps,
with starting and ending frequencies of either 5 and 15 kHz
(‘upsweep’), or 15 and 5 kHz (‘downsweep’), respectively.
Upsweeps were played immediately following a left hit, and
downsweeps were played immediately following a right hit.
Similar to phase one, a minimum interval of 1 s was imposed
between rewards. After attaining >100 hits within a single ses-
sion of phase two (1–2 days), subjects were advanced to phase

three, in which they were trained to perform a two-choice
sound discrimination task. Unlike the earlier two phases, in
which the operant behavior was self-paced, phase three was
structured into trials with a defined response period. Each trial
began with the presentation of a 2-s-long sound cue (upsweeps
or downsweeps, randomly drawn), which indicated the target
spout for that trial. Upsweeps indicated ‘left’ and downsweeps
indicated ‘right’. To earn a water reward, the subject was
required to lick the target spout within the final 1.5 s of the cue
(the ‘response window’). The first lick to either spout within the
response window terminated the sound cue and triggered an
immediate outcome: 2 μL of water from the target spout for a
hit or playback of a 2-s-long white noise sound for an ‘error’, in
which the wrong spout was chosen. ‘Misses’ were defined as
trials in which the mouse failed to lick within the response
window. In any case, the next trial would begin 7 s after cue off-
set. Thus, trial durations ranged from 7.5 to 9 s, depending on
response time. Each session was terminated automatically
after twenty consecutive misses. For the current study, subjects
were trained on the two-choice sound discrimination task to a
high level of proficiency (>90% hit rate) and were then tested
on a task variant with probabilistic outcomes. This variant was
identical to phase three of training, except that correct
responses could result in one of three outcomes: 2 μL of water
(‘single reward’) with 80% probability, no reinforcement (‘omit-
ted reward’) with 10% probability, or 4 μL of water (‘double
reward’) with 10% probability. In a subset of sessions (5/16,
identified in Table 1), the white noise sound used in error trials
was also played at the time of an omitted reward. We analyzed
the behavioral and neural data for those sessions separately
but did not detect any obvious differences; therefore, we have
presented the pooled results.

Two-photon Calcium Imaging

The two-photon microscope (Movable Objective Microscope;
Sutter Instrument) was controlled using ScanImage software
(Pologruto et al. 2003). The excitation source was a Ti:Sapphire
ultrafast femtosecond laser (Chameleon Ultra II, Coherent).
Beam intensity was modulated using a Pockels cell (350-80-LA-
02; Conoptics) and blanked with an optical shutter (LS6ZM2;
Uniblitz/Vincent Associates). The beam was focused through a
high-numerical aperture objective (XLUMPLFLN, 20X/0.95 NA;

Table 1 Mice used in this study

Experiment Exp. number Subject Cells Trials Hit rate (%) White noise in omitted-reward trial

M2 imaging 1 L4 35 198 99.0 ✓

M2 imaging 2 L2 47 228 80.7 ✓

M2 imaging 3 M6 62 321 93.2 ✓

M2 imaging 4 M6 42 233 97.9 ✓

M2 imaging 5 M6 55 212 95.3 ✓

M2 imaging 6 M12 51 336 94.9
M2 imaging 7 M20 46 182 91.8
M2 imaging 8 M12 40 300 95.7
M2 imaging 9 M13 43 313 93.0
M2 imaging 10 M12 44 285 98.3
M2 imaging 11 M14 38 210 99.1
M2 imaging 12 M16 59 202 88.6
M2 imaging 13 M16 77 269 93.7
M2 imaging 14 M17 49 267 91.8
M2 imaging 15 M17 33 222 92.8
M2 imaging 16 M22 50 262 94.3
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Olympus). Excitation wavelength was set at 920 nm, and the
emission was collected behind a bandpass filter from 475 to
550 nm using a GaAsP photomultiplier tube (H7422P-40MOD;
Hamamatsu). The time-averaged excitation intensity after the
microscope objective was ~100mW. Time-lapse image frames
were acquired at 256× 256 pixels, with a frame rate of 3.62Hz
using bidirectional raster scanning. To synchronize the behavioral
and imaging data, a TTL pulse was sent by Presentation 1 s prior
to the start of each trial. This TTL signal was assigned as an exter-
nal trigger in ScanImage to initiate a new image file. Timestamps
of the TTL pulses along with timestamps of other behavioral
events were written to a text file by Presentation, allowing the
image files to be aligned with behavioral events.

Analysis of Behavioral Data

Timestamps of the behavioral events, including cue onsets, licks,
and reinforcement onsets, were logged to a text file by
Presentation. All further processing and analysis were done using
custom scripts written in MATLAB (MathWorks, Inc.). The number
of trials performed was defined as the number of trials in which
either spout was licked within the response window. Correct rate
was defined as the number of correct trials divided by the number
of trials performed. Miss rate was defined as the number of misses
divided by the total number of trials. The sensitivity index, or d-
prime, was calculated as the difference between the inverse of the
standard normal cumulative distribution for the correct rate on
upsweep trials and the inverse of the standard normal cumulative
distribution for the incorrect rate on downsweep trials.

Analysis of Imaging Data

Raw time-lapse image stacks corresponding to each trial were
saved as multipage TIFF files by ScanImage. As a first proces-
sing step, the raw stacks were merged to a single TIFF.
Timestamps for the first frame of each trial, as well as the
external trigger, were extracted for alignment with behavior.
The merged TIFF file was then processed for x–y motion correc-
tion using either the TurboReg (Thevenaz et al. 1998) or moco
(Dubbs et al. 2016) plug-in for ImageJ (Schneider et al. 2012).
Regions of interest (ROIs) were manually selected around cell
bodies appearing in the maximal or average projection image,
using a custom graphical user interface programmed in
MATLAB. Pixel intensity values within each ROI were summed
for each frame t to obtain F(t). The baseline fluorescence, Fo(t),
was estimated as the 10th percentile of F(t) within a 10min
moving window centered on t. ΔF/F(t) was then calculated as
the fractional change in F(t) relative to Fo(t).

Event-aligned Activity and Choice Selectivity

To obtain trial-averaged activity traces associated with a spe-
cific behavioral event (eg cue onset), we first aligned ΔF/F(t)
traces based on their timing relative to each instance of the
event and then took the mean across traces. To estimate confi-
dence intervals, we performed a bootstrapping procedure, as
follows. For N instances of a particular event, N traces were
resampled randomly with replacement and then averaged over
1000 iterations, in order to approximate the sampling distribu-
tion for the mean. Upper and lower bounds of the confidence
interval were then estimated as percentiles of this distribution.
Choice selectivity was calculated as the difference between cue-
aligned trial-averaged traces from trials in which the ipsilateral
versus contralateral spout was chosen, divided by the sum of

the two traces. Therefore, choice selectivity was a function of
time that could take values from −1 to 1, with negative values
indicating an ipsilateral preference and positive values indicat-
ing a contralateral preference. The mean choice selectivity from
2 to 4 s after cue onset was used as a scalar estimate in compari-
sons between double- and omitted-reward trials.

Multiple Linear Regression

To characterize the relationship between task variables and the
activity of individual neurons, we fit the following linear equation:
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where ΔF/F(t) is the fractional change in fluorescence at time t
relative to baseline; C(n), C(n− 1) and C(n− 2) are the choices
made on the current trial, the prior trial and the trial before
last, respectively; R(n), R(n− 1) and R(n− 2) are the outcomes for
the current trial, the prior trial and the trial before last, respec-
tively; a0,…, a9 are the regression coefficients; and ε(t) is the
error term. Choices were dummy-coded as −1 for left licks and
1 for right licks. Outcomes were dummy-coded as 0 for single-
reward trials, −1 for omitted-reward trials and 1 for double-
reward trials. Outcomes of error trials and misses were ignored
in the analysis (set to NaN in MATLAB). Regression coefficients
and their P-values were estimated for each 500ms time bin t,
within an interval from −2 to 6.5 s relative to cue onset. To
summarize the pooled results from all experiments, the pro-
portion of neurons with a P-value less than 0.01 was plotted
over time for each predictor. The binomial test was used to
determine whether this proportion was significantly different
from chance level.

Decoding: Linear Discriminant Analysis

To determine how reliably the subject’s choices were encoded
in the neural ensemble activity, we constructed and tested clas-
sifiers based on linear discriminant analysis. All classifiers
were constructed using the ‘classify’ function in MATLAB, with
the ‘type’ parameter set to ‘linear’ (the default); this classifica-
tion method fits a multivariate normal density function to each
group, using a pooled estimate of covariance. Choices, C(n),
were dummy-coded as −1 for left licks and 1 for right licks. For
each 500ms time bin t within the interval from −2 to 6.5 s rela-
tive to cue onset, the ΔF/F(t) values of all neurons were incorpo-
rated into a trial-indexed set of population activity vectors,
with each vector representing the ΔF/F(t) for all neurons in the
corresponding trial. A Monte Carlo cross-validation procedure
was then applied across trials, as follows. First, activity vectors
from a randomly drawn 80% of single-reward trials were used
as the training set to construct a classifier. The classifier was
then tested for accuracy using the activity vectors from the
remaining 20% of single-reward trials. Additionally, we tested
the accuracy of the classifier at decoding choices in other trial
types, ie double-reward, omitted-reward and error trials. To
estimate chance-level performance for each classifier, an iden-
tical classifier was constructed and tested, with the exception
that the C(n) values within the training set were first shuffled
randomly. To characterize the potential advantage of simulta-
neous recording, we compared the accuracy of classifiers
trained on actual imaging data versus ‘pseudo-ensemble’ data
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in which simultaneity had been destroyed. To build a pseudo-
ensemble, the ΔF/F(t) values for each cell were randomly shuf-
fled across all training trials with the same C(n) value.
Therefore, each pseudo-ensemble activity vector comprised ΔF/
F(t) values drawn from many different trials, while preserving
cell identity as well as choice and outcome specificities.
Classifiers trained on pseudo-ensemble data versus real data
were then compared for accuracy using the remaining
(unshuffled) test trials. For all of the analyses described in this
section, average decoding accuracy was estimated as the mean
across 30 iterations. This iterative cross-validation procedure
was repeated for each time bin t.

Decoding: Random Forests

As a second approach to decoding choices from the population
activity, we constructed and tested random forest classifiers
(Breiman 2001). Neural and behavioral data were treated in the
same manner as for the linear discriminant analysis described
above: choices, C(n), were dummy-coded as −1 and 1; time
ranged in 500ms increments from −2 to 6.5 s relative to cue
onset; and single-reward trials were split into training and test-
ing sets for 30 iterations of Monte Carlo cross-validation. For
each iteration, a random forest classifier was trained using pop-
ulation activity vectors from a random sample of 80% of trials
and then tested on the remaining 20%. The random forest algo-
rithm is a bootstrap aggregation (‘bagging’) approach consisting
of many decision trees. Each decision tree takes as input a set
of features (eg the activity of cells in the neural ensemble) and
arrives at a predicted binary response (eg left or right choice). It
does so by comparing a subset of the features to a series of cor-
responding threshold values (‘splits’) learned from the training
set through a process of greedy recursive partitioning. The
overall predicted response of the random forest is the majority
vote of the predicted responses across all trees. To construct
each decision tree, M population activity vectors were drawn
randomly with replacement from the M trials making up the
training set. Each split in the tree comprised a threshold on the
ΔF/F(t) value of one cell selected as the strongest predictor out
of a randomly drawn subset of cells. A new subset was drawn
randomly without replacement to determine each split. The
number of cells in each subset was equal to the square root of
N, where N is the total number of cells in the imaged ensemble.
To choose the number of trees, we tested a range of values and
found that classifier performance saturated beyond ~50 trees;
therefore, the number of trees was set to 100. The procedure
was implemented by calling the ‘fitensemble’ function in
MATLAB with the ‘Method’ parameter set to ‘Bag’, the ‘Type’
parameter set to ‘Classification’ and the ‘Learners’ parameter
set to ‘Tree’. Additionally, in the same manner as we did for
the linear discriminant analysis, we tested classifiers con-
structed using single-reward trials on other trial types, deter-
mined chance-level accuracy by training classifiers on shuffled
C(n)’s and characterized the advantage of simultaneous record-
ing by comparing with random forest classifiers constructed
using pseudo-ensemble data. For all decoding analyses
described in this section, average decoding accuracy was esti-
mated as the mean accuracy across all iterations. This entire
procedure was repeated for each time bin t.

Decoding: Varying the Ensemble Size

To determine how the number of neurons in an ensemble
influenced decoding accuracy, we constructed and tested

classifiers on neural data drawn from subsets of the imaged
populations. Because the smallest ensemble imaged in our
experiments had just over 30 neurons, we limited this analysis
to ensemble sizes from 1 to 30 cells. We also limited the analy-
sis to the time interval from 2 to 4 s from cue onset, the period
in which our decoding analyses showed the highest decoding
accuracy. For each ensemble size, a subset of the imaged cells
was drawn randomly without replacement to produce an
ensemble of predetermined size, and the process was repeated
for 30 draws. For each draw, a classifier was constructed using
a random subsample of 80% of trials and then tested on the
remaining trials. Decoding accuracy was estimated as the
mean across draws. This iterative procedure was repeated for
each ensemble size and for the two types of classifiers (linear
discriminant and random forest).

Experimental Design and Statistical Analysis

The structure of the task was fully automated using custom
scripts written for Presentation, which randomized the sound
cues and outcomes presented in each trial. No further blinding
was used. Sample sizes are noted in the results and figure
legends. No statistical analysis was employed to determine
sample sizes; however, they were similar to those used else-
where in the field. All behavioral and neural ensemble analyses
were performed using a sample size of N = 16 imaging sessions
from ten animals (Table 1). For analyses of single-unit activity
(Figs 4 and 5), the sample size was N= 771 cells; a subsample of
n = 226 choice-selective cells was considered in Figure 5 (see
Results). A total of seven sessions were excluded from the
study prior to neural activity analysis for the following reasons:
poor behavioral performance (overall correct rate <80%, one
session); too few trials completed and, therefore, fewer than
five trials for at least one outcome type (three sessions); and
residual movement artifacts after image motion correction
(three sessions). All statistical analyses were performed in
MATLAB (MathWorks, Inc.). A paired design was used for com-
parisons across outcome conditions, and the likelihood P of a
false positive was estimated with a Wilcoxon signed-rank test.
P < 0.05 was taken to indicate a significant difference. No cor-
rections were made for multiple comparisons, but P-values are
noted explicitly in the Results. For the multiple linear regres-
sion analysis (Fig. 4), the significance threshold for each predic-
tor was set at α = 0.01. Significant proportions were determined
using a binomial test, with α = 0.01. For neural ensemble analy-
ses, chance-level accuracy of decoding choices from the neural
activity was determined by testing classifiers constructed using
shuffled choices.

Results
Two-choice Discrimination Task with Probabilistic
Outcomes

Water-restricted mice were trained to perform a two-choice
auditory discrimination task under head restraint (Fig. 1A).
Subjects were required to choose between two lick spouts
placed on either side of the mouth, only one of which (the
‘target’) would be rewarded on a given trial. One of the two
sound cues was presented at the start of each trial, indicating
the target spout. The sound cues were trains of four 500-ms-
long logarithmic chirps, with starting and ending frequencies
of either 5 and 15 kHz (‘upsweep’) or 15 and 5 kHz (‘down-
sweep’), respectively. Upsweeps indicated ‘left’ and down-
sweeps indicated ‘right’. Licking either spout triggered an
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immediate outcome: delivery of a water reward if the target
spout was chosen (‘correct’) or playback of a 2-s-long white
noise sound if the wrong spout was chosen (‘error’). To study
the influence of reward on behavior and neural activity, correct
responses were reinforced probabilistically with one of three
water amounts: 2 μL (single reward) with 80% probability, 4 μL
(double reward) with 10% probability, and 0 μL (omitted reward)
with 10% probability. In a subset of sessions, the white noise
sound used in error trials was also played at the time of an
omitted reward (Table 1). Each session was terminated auto-
matically after 20 trials without a response (‘misses’).

The use of probabilistic outcomes allowed us to systemati-
cally investigate neural and behavioral effects of reward during
sensorimotor decision making. In particular, the inclusion of
omitted-reward trials permitted the effects of reward absence
to be explicitly characterized during correct trials, thus elimi-
nating differences in decision accuracy as a potential confound.
Additionally, the influence of reward size (single reward vs.
double reward) could be compared to that of its categorical
presence or absence (single reward or double reward vs. omit-
ted reward).

We obtained 16 imaging sessions from 10 mice while they
performed this task (range: 1–3 sessions per mouse; Table 1).
Figure 1B shows the behavioral performance from one such ses-
sion. Subjects made 259± 11 choices per session, with an overall
correct rate of 94± 1% (mean± SEM; Fig. 1C) and a sensitivity
index (d’) of 3.4± 0.2. Within each session, they encountered an
average of 195± 9 single-reward trials, 24± 1 double-reward

trials and 25± 2 omitted-reward trials, and made 16± 3 errors.
Correct rates were similar for upsweep (94± 2%) and downsweep
(94± 1%) trials. Thus, subjects maintained a high level of accu-
racy following the introduction of variable outcomes.

Outcome-dependent Behavioral Adjustments on
Multiple Timescales

Subjects were well-trained in auditory discrimination before
probabilistic outcomes were introduced, and the optimal stim-
ulus–response relationships remained the same. Therefore,
behavioral adjustments based on the new distribution of out-
comes would not increase the overall amount of reward
obtained. This raises an important question: were subjects
aware of the different outcomes? Two lines of evidence indi-
cate that they were. First, the number of licks to the target
spout during the period following reward delivery increased in
a graded manner with the volume of water reward given
(Fig. 2A). On average, 13.9 ± 0.8 licks were registered at the tar-
get spout in single-reward trials (mean± SEM, N = 16 sessions).
Relative to single-reward trials, the mean number of licks per
trial rose by 21± 4% in double-reward trials (vs. single-reward
trials: P = 0.001, Wilcoxon signed-rank test, N = 16 sessions)
and decreased by 48 ± 3% in omitted-reward trials (vs. single-
reward trials: P = 4 × 10−4, Wilcoxon signed-rank test, N = 16
sessions). Because the different outcome types were inter-
leaved randomly across correct trials, these results indicate

Figure 1. Two-choice auditory discrimination task with probabilistic outcomes. On each trial, mice were required to lick the target spout (left or right) indicated by a

sound cue (upsweep or downsweep, respectively). Correct responses were rewarded probabilistically with one of three water amounts. (A) Flow diagram of the trial struc-

ture on correct trials. Each trial began with one of the two sound cues. The first lick to the target spout within 0.5–2 s following cue onset (Response window) immediately

triggered one of three outcomes (Reinforcement): single reward (1×), double reward (2×) or omitted reward (0×), with probabilities 80, 10 and 10%, respectively. The next

trial would begin 7 s after cue offset. (B) Behavioral performance from an example session (Experiment 1 in Table 1). Occurrences of each sound cue (top), choice (middle)

and outcome (bottom) are displayed in raster form according to trial number. Errors occurred when the non-target spout was chosen for the first lick within the response

window. Misses were defined by the failure to respond within the response window. (C) Summary of behavioral performance. Gray triangles, individual sessions. Black

crosshairs, mean ± SEM. (D) Number of occurrences of each outcome per session. For all figures, N = 16 sessions from 10mice unless otherwise noted.
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that the mice could detect changes in reward volume and
adjusted their consummatory licking accordingly.

Second, behavioral performance varied as a function of the
prior trial’s outcome. The most notable effect was on the num-
ber of misses (Fig. 2B). The likelihood of a miss was 7± 1% for
trials following a single reward (mean± SEM, N = 16 sessions).
It was significantly lower at 4 ± 1% for trials following a double
reward (P = 0.04, Wilcoxon signed-rank test, N = 16 sessions)
but significantly higher at 11 ± 2% if reward was omitted in the
previous trial (vs. single-reward trials: P = 0.005, Wilcoxon
signed-rank test, N = 16 sessions). However, when subjects did
respond, the correct rate was consistently high at 95± 1, 95 ± 2
and 95 ± 1% for trials following a single, double and omitted
rewards, respectively (Fig. 2C; mean ± SEM, N = 16 sessions).
Taken together, the observed adjustments in licking and the
effect on miss rate in the subsequent trial provide clear evi-
dence that the mice monitored trial outcomes. Notably, the
magnitude of reinforcement affected subjects’ willingness to
respond, but did not influence the accuracy of decisions.

Persistent Decline in Performance Associated with
Errors

Errors were uncommon in these experiments. However, infer-
ence to the causes of residual inaccuracy could help to illumi-
nate internal processes underlying decision making. Our task
design permitted us to examine and rule out two potential
sources of error. First, errors could have resulted mainly from

stochastic fluctuations in perceptual performance. In this case,
the likelihood of a correct response should not depend signifi-
cantly on recent performance history. Thus, similar levels of
performance would be expected in trials following errors and
correct responses. However, relative to correct responses, errors
were associated with deficits in both decision accuracy and
willingness to respond in the subsequent trial. Correct rate
dropped to 86± 3% in trials following an error (Fig. 2C; vs.
single-reward trials: P = 0.01; vs. omitted-reward trials: P = 0.01;
Wilcoxon signed-rank test, N = 16 sessions), and miss rate
increased to 23± 5% (Fig. 2B; vs. single-reward trials: P = 0.004;
vs. omitted-reward trials: P = 0.04, Wilcoxon signed-rank test,
N = 16 sessions). We also asked whether the likelihood of an
error could be explained by outcome-dependent processes,
such as exploration following the absence of an expected
reward. This hypothesis is not supported by the observation
that error rates following correct trials were similar regardless
of the prior trial’s outcome (Fig. 2C). Collectively, our results
suggest that the drop in task performance associated with
errors tends to persist and cannot be solely accounted for by
the trial outcome.

Single-unit Activity Related to Choices and Outcomes in
Mouse M2

To characterize neural activity in M2 while mice engaged in
the task, we simultaneously imaged the brain at cellular reso-
lution using a two-photon microscope (Denk et al. 1990)

Figure 2. Subjects adjusted their behavior based on trial outcome. (A) Mean lick density across sessions as a function of time for the left and right spouts, averaged

separately from trials in which the sound cue was an upsweep (top row) or downsweep (bottom row), and outcome was single reward (solid), double reward (dotted)

or omitted reward (dashed). Black error bar, 95% confidence interval for time of outcome. (B) Fraction of trials missed immediately following each outcome. Gray trian-

gles, individual sessions. Black crosshairs, mean ± SEM. Wilcoxon signed-rank test: *P < 0.05, **P < 0.005, n.s., not significant. (C) Fraction of trials with a correct

response immediately following each outcome.
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(Fig. 3A). An adeno-associated virus encoding GCaMP6s (AAV1.
Syn.GCaMP6s.WPRE.SV40) was injected into layer 2/3 of M2,
and a chronic glass window was implanted for optical imaging
(Fig. 3B). GCaMP6s is a genetically encoded calcium indicator
that exhibits an approximately 25% rise in fluorescence inten-
sity per action potential in cortical pyramidal neurons (Chen
et al. 2013). In 16 imaging sessions, we recorded fluorescence
transients from an average of 48 ± 3 neurons in layer 2/3 of M2
(mean ± SEM, range: 33–77 cells; Fig. 3C). All imaging was done

in the right hemisphere; therefore, left and right licks were
always contralateral and ipsilateral to the imaged neurons,
respectively.

Many M2 neurons exhibited changes in fluorescence follow-
ing the sound cue, indicating task-driven neural activity.
Figure 3D shows a neuron with preferential activity on trials in
which the left spout was chosen. The activity of the same neu-
ron was also monotonically modulated by reward size: activity
was highest for double rewards, moderate for single rewards

Figure 3. Two-photon calcium imaging of choice- and outcome-related signals in secondary motor cortex (M2). (A) Schematic representation of experimental setup

for behavior with simultaneous two-photon imaging. (B) Schematic representation of preparation for in vivo two-photon imaging of M2. PrL, prelimbic cortex; Cg1, cin-

gulate area 1; M1, primary motor cortex. (C) An example field-of-view in layer 2/3 of M2 containing GCaMP6s-expressing neurons. The image is a mean projection of

the full time-lapse image stack from Experiment 13 in Table 1. (D) Mean fluorescence traces from an example cell, aligned to the sound cue and averaged across dif-

ferent subsets of trials. In the leftmost three panels, traces from left (red) and right (blue) trials are overlaid for each trial outcome. The rightmost two panels display

the same data, with traces from single- (solid), double- (dotted) and omitted-reward trials (dashed) overlaid for each chosen action. Shading, 90% confidence interval.

(E–F) Same as D for two additional cells.
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and lowest for omitted rewards. The influence of choice and
outcome on this neuron was approximately additive. However,
other neurons had more complex responses. Some neurons
showed a choice preference on single- and double-reward trials
that was not observed on omitted-reward trials, suggesting a
choice–outcome interaction (Fig. 3E). Other neurons only exhib-
ited significant choice preference during omitted-reward trials
(Fig. 3F). These results highlight the diversity of choice- and
outcome-related signals in M2 at the level of individual
neurons.

Persistence of Choice- and Outcome-related Signals

To more systematically characterize choice- and outcome-
related signals in M2 neurons, we used multiple linear regres-
sion analysis. For each cell, we fit a linear equation (see
Materials and Methods) to estimate the dependence of its fluo-
rescence intensity on the following predictors: choice, outcome,
and the interaction of choice and outcome; for the current trial,
last trial, and the trial before last (Fig. 4A). The analysis
revealed choice-dependent activity in a substantial fraction of
M2 neurons (210/771 cells, 27%; P < 0.01 for the corresponding
regression coefficient in at least five consecutive time-bins,
binomial test; Fig. 4B). Dependence on outcome (42 cells, 5%;
Fig. 4C) or a choice–outcome interaction (25 cells, 3%; Fig. 4D)
was evident in comparatively fewer cells. Notably, significant
fractions of M2 neurons continued to show choice- and
outcome-dependent signals well into the next trial, persisting
even after the next choice was made (black bars denoting P <
0.01, binomial test, middle panel, Fig. 4B–D).

The observation that M2 neurons can represent chosen
actions across more than one trial led us to ask whether cur-
rent and prior choices are represented at the single-unit level
by the same or different populations. To address this question,
we quantified the number of neurons with a significant regres-
sion coefficient only for the current choice (P < 0.01 for a1, the
regression coefficient for the current choice estimated 2 s after
cue onset, and P ≥ 0.01 for a2, the regression coefficient for the
prior choice estimated at the time of cue onset), only for the
prior choice (P ≥ 0.01 for a1 and P < 0.01 for a2) and for both
the current and prior choices (P < 0.01 for both a1 and a2). We
found that most choice-dependent M2 neurons were sensitive
exclusively to the current (147/771 cells, 19%) or prior (66/771
cells, 9%) choice (Fig. 4E). Within the small proportion of neu-
rons sensitive to both current and prior choices (36/771 cells,
5%), the corresponding regression coefficients were correlated
and generally did not change signs (Fig. 4F). Therefore, the
choice preferences of these cells were maintained across time-
points in consecutive trials. Taken together, these results indi-
cate that very few of the choice-selective neurons in M2 repre-
sent both the current and prior choice during the period
immediately following cue onset.

Effect of Outcome on Choice Selectivity of Individual M2
Neurons

To further characterize choice representations in M2, we focused
on the 226 ‘choice-selective’ neurons whose activity was found
in the multiple linear regression analysis to be significantly
modulated by choice, or the interaction of choice and outcome,
or both. For each of these neurons, fluorescence traces were first
averaged across subsets of trials according to whether the con-
tralateral (left) or ipsilateral (right) spout was chosen (trial-aver-
aged traces for each cell during single reward, left trials are

shown in Fig. 5A). A time-varying choice selectivity index
was then calculated as the normalized difference between
the two mean traces. During the period following cue onset
in single-reward trials, the majority of choice-selective neu-
rons preferred the contralateral choice (134/226, 59%; Fig. 5B).
Similar to the degree of temporal variation observed across
neurons in their trial-averaged activity traces, peak choice
selectivity was also temporally distributed across neurons
relative to the sound cue (Fig. 5A,B).

Unexpected outcomes signify inaccuracies within a subject’s
internal representation of the environment, including the val-
ues assigned to specific actions. Such information can be cru-
cial to instrumental behavior. Thus, we asked whether choice
representations in M2 were modified when low-probability
outcomes occurred. Specifically, we examined double- and
omitted-reward trials, which occurred a similar number of
times per session. The choice selectivity of individual neurons
clearly varied by trial type, as evidenced by the degree of scatter
from the unity line in Figure 5C. Nevertheless, across the
choice-selective neurons, the choice selectivity values for dou-
ble- and omitted-reward trials were significantly correlated
(correlation coefficient = 0.31, P = 5 × 10−6, N = 226 cells).
Notably, choice selectivity magnitudes were reduced on omit-
ted reward as compared to double-reward trials (P = 5 × 10−5,
Wilcoxon signed-rank test; Fig. 5D). Extending this analysis to
include all imaged neurons yielded similarly correlated choice
selectivity values (correlation coefficient = 0.20, p = 2 × 10−8, N =
771 cells) and a similar reduction in choice selectivity magni-
tudes for omitted reward relative to double-reward trials (P =
0.002, Wilcoxon signed-rank test). These results indicate that
trial outcomes can substantially influence choice representa-
tions in M2. In particular, the absence of an expected reward in
omitted-reward trials was associated with weaker representa-
tions of chosen actions at the level of single neurons.

Reward Omission Weakens Ensemble-level Choice
Representations

Frontal cortical neurons often exhibit complex patterns of selec-
tivity for task variables, and mounting evidence suggests that the
associated neural representations may be best understood by
focusing on the activity of large populations of neurons, rather
than single units. Therefore, relative to the single-unit analyses
presented above, the measure of accuracy at decoding choices
from ensemble activity could provide a more reliable estimate of
the choice information available to downstream brain areas.

To test the effect of trial outcomes on population-level
choice representations in M2, we trained linear classifiers on
the ensemble activity recorded during single-reward trials and
then compared their accuracy for decoding choices across trials
with different outcomes (see Materials and Methods). Baseline
decoding accuracy was estimated with a Monte Carlo cross-
validation procedure, using ensemble activity patterns from
single-reward trials as training and testing sets. For each of 30
iterations, a classifier was constructed from a random sample
of 80% of these trials and then tested on the remaining fraction.
Decoding accuracy for the other outcome types was estimated
by testing the same classifiers on the ensemble activity associ-
ated with the full set of double-reward, omitted-reward and
error trials.

The choices made in correct trials could be decoded from
the population activity with above chance-level accuracy at
every time-point in the current trial following the animal’s
response (Fig. 6A–C, left; black bar denotes P < 0.05, Wilcoxon

4098 Cerebral Cortex, 2019, Vol. 29, No. 10



signed-rank test, vs. shuffle). An ensemble representation of
the chosen action could also be detected for at least 1 s into the
subsequent trial (Fig. 6A–C, right). For example, in single-
reward trials, a maximal decoding accuracy of 78± 2% was
reached at 1.75 s after cue onset (mean± SEM, N = 16 sessions;

Fig. 6A, left). At the time of the next cue onset, accuracy
remained above chance, at 63± 2% (mean ± SEM, N = 16 ses-
sions; Fig. 6A, right). By contrast, in error trials, the decoding
accuracy increased gradually from the time of cue onset (r =
0.87, p < 0.0001, Spearman rank correlation) and only rose to

Figure 4. Sustained representations of choices and their outcomes in M2. (A) A schematic representation of the multiple linear regression model that was fit to the

fluorescence of each neuron in each 500ms time bin. (B) The proportion of cells with significant choice-dependent activity as quantified by the regression model, plot-

ted as a function of time. The regression model accounted for the influence of choices made on the current trial (left), the last trial (middle) and the trial before last

(right), as well as the additional predictors shown in C–D. Significance of each predictor was tested at α = 0.01. Black bars, bins in which the proportion of cells with

significant regression coefficients was above chance level (P < 0.01, binomial test). Gray shading, the significance threshold for the binomial test. Black error bar, 95%

CI for time of outcome. N = 771 cells from 16 sessions from 10 mice. (C) Same as B for trial outcome. (D) Same as B for the interaction of choice and outcome. (E) The

proportion of neurons with a significant regression coefficient for the choice made in the current trial only, in the prior trial only, and in both the current and prior

trials. (F) Scatter plot of the neurons with significant regression coefficients for both the current and prior choice. The coefficient for the current choice, a1, is plotted

against the coefficient for the prior choice, a2. Right inset, the same plot expanded to show the five data points outside the range of the main axis.
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significance late in the trial (Fig. 6D, left). It reached a maxi-
mum of 66± 4% at the time of the next sound cue (mean± SEM,
N = 16 sessions; Fig. 6D, right).

For explicit comparisons of decoding accuracy across out-
come conditions, we computed the mean accuracy over all
time-points in the current and subsequent trial (Fig. 6E). Relative
to single-reward trials, mean decoding accuracy dropped signifi-
cantly in omitted-reward (P = 0.004, Wilcoxon signed-rank test,
N = 16 sessions) and error trials (P = 0.002, Wilcoxon signed-rank
test, N = 16 sessions), with no detectable difference in double-
reward trials (P = 0.8, Wilcoxon signed-rank test, N = 16
sessions).

It seems unlikely that the choice information present in M2
ensemble activity would be read out by the brain in exactly the
same manner as a linear classifier. Therefore, we sought an
alternative approach to determine whether the results would
generalize to other methods of decoding. Specifically, we
turned to random forest classification, a bootstrap aggregation
method based on decision trees. Random forest classifiers oper-
ate on a fundamentally different principle than linear classi-
fiers (see Materials and Methods), but overall, they yielded very
similar results. In particular, comparisons of mean decoding
accuracy again revealed marked differences between single-
reward trials and omitted-reward or error trials (P = 0.006 and
0.003, respectively, Wilcoxon signed-rank test, N = 16 sessions),
but no difference between single- and double-reward trials (P =
0.2, Wilcoxon signed-rank test, N = 16 sessions; Fig. 6F). Thus,
the results of two distinct classification approaches support the
same conclusion: that choice information was encoded with
higher fidelity during trials in which choices were rewarded.
More specifically, increases in reward magnitude (ie double
reward) had little impact on decoding accuracy, whereas
reward absence in omitted-reward and error trials significantly

diminished the accuracy with which chosen actions could be
decoded from neural ensemble activity patterns in M2.

Simultaneous Recording Improves Decoding Accuracy

Our measurements of neural activity came from two-photon
calcium imaging, which enabled the simultaneous acquisition
of fluorescence transients from ensembles of at least 30 neu-
rons. This allowed us to address an important, unresolved
methodological question: does simultaneous recording confer a
decoding advantage, relative to recording from each cell indi-
vidually and then combining the data post hoc in silico?

As a basis for comparison, we generated ‘pseudo-ensemble’
data for each session, in which the activity traces from each
neuron were shuffled across single-reward trials where the
same action was chosen. Thus, the correspondence between
individual neural activity traces and left or right choices was
preserved. However, at the population level, the ensemble activ-
ity patterns no longer reflected simultaneously recorded activ-
ity. In particular, the shuffle should preserve co-fluctuations in
neural activity related to the sound cue, choice and outcome of
a given trial, while disrupting the residual correlations.

To determine the extent to which correlations in neural activity
were disrupted by the shuffling procedure, we first determined the
correlation between each pair of neurons across trials, using the
mean cellular fluorescence over the time interval from 2 to 4 s after
cue onset (Fig. 7A). As expected, pairwise correlations were reduced
within the pseudo-ensembles (Fig. 7B). Across all sessions, the
mean Pearson correlation coefficient decreased from 0.173±0.020
in simultaneously recorded ensembles to 0.022± 0.007 in pseudo-
ensembles (P = 4× 10−4, Wilcoxon signed-rank test; Fig. 7C, left).
The mean magnitude of correlation also decreased, from 0.192±
0.017 in simultaneously recorded ensembles to 0.054± 0.005 in

Figure 5. Choice representations in M2 are modified by trial outcome. (A) Heat map of trial-averaged fluorescence as a function of time for all choice-selective neurons

during single-reward, left trials. Cells are sorted by the center-of-mass of their trial-averaged fluorescence traces. n = 226 cells with significant encoding of choice or

an interaction of choice and outcome as determined by multiple linear regression (see Methods). (B) Heat map of choice selectivity for the neurons in A as a function

of time during single-reward trials. Choice selectivity was calculated as the normalized difference between mean fluorescence traces from left and right trials. Red

and blue shadings indicate preference for left and right choices, respectively. Cells are sorted first by mean choice preference and then by the center-of-mass of their

choice selectivity traces. (C) Scatter plot of the neurons in A, plotting the choice selectivity of each cell in omitted-reward trials against double-reward trials. CC,

Pearson correlation coefficient. (D) Empirical cumulative distribution of choice selectivity magnitudes for double-reward (solid) and omitted-reward (dotted) trials.
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pseudo-ensembles (P = 4× 10−4, Wilcoxon signed-rank test; Fig. 7C,
right).

Figure 7D shows the accuracy of decoding choices from
actual and pseudo-ensemble data as a function of time during
single-reward trials. To directly compare the two conditions,

we again focused on the time interval from 2 to 4 s after cue
onset, when decoding accuracy was highest. Over this interval,
linear classifiers constructed with either simultaneous or
pseudo-ensemble activity from 30 cells could decode choices
with high accuracy, at 75 ± 2 and 72 ± 2%, respectively (mean ±

Figure 6. The accuracy of decoding chosen actions from the neural ensemble activity is diminished during omitted-reward and error trials. Choices were decoded

using classifiers based on linear discriminant analysis, and accuracy was estimated with Monte Carlo cross-validation (repeated random subsampling). (A) The accu-

racy of decoding choices made on single-reward trials (left), or trials in which the previous outcome was single reward (right), plotted as a function of time. Data are

presented as mean± SEM. Chance-level accuracy (black dashed line) was determined by testing classifiers constructed using shuffled choices. Black horizontal bars,

bins significantly different from chance (P < 0.05, Wilcoxon signed-rank test). Black error bar, 95% confidence interval for time of outcome. (B-D) Same as A for double-

reward, omitted-reward, and error trials. Results from single-reward trials are overlaid for visual comparison (gray triangles). Lower gray bars, bins with a significant

difference in decoding accuracy relative to single-reward trials. (E) Mean decoding accuracy across all time-points shown in A–D for each trial outcome. Gray triangles,

individual sessions. Black crosshairs, mean± SEM. Wilcoxon signed-rank test: **P < 0.01; n.s., not significant. (F) Same as E using random forest classifiers.
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SEM, N = 16 sessions; black and red bars denoting P < 0.01 vs.
shuffle, Wilcoxon signed-rank test, Fig. 7E). In a head-to-head
comparison, decoders constructed from simultaneous activity
outperformed pseudo-ensemble decoders by 4.0± 0.8% (mean±
SEM, N = 16 sessions). Random forest classifiers also exhibited a
significant simultaneity effect, although it was slightly smaller
than for linear classifiers. Decoding accuracy for ensemble and
pseudo-ensemble activity was 76± 2 and 73± 2%, respectively,
with a mean difference of 3.3± 0.5% in a head-to-head compari-
son using an ensemble size of 30 cells (mean± SEM; Fig. 7H).

Additionally, we assessed the impact of ensemble size on
decoding accuracy by training and testing classifiers using

random samples of 1 to 30 neurons. Classifiers constructed
from either ensemble or pseudo-ensemble data could decode
choices with an accuracy exceeding chance for every ensemble
size tested (Fig. 7E, black and red bars bar denoting P < 0.01 for
ensembles and pseudo-ensembles, respectively, Wilcoxon signed-
rank test). In both cases, mean decoding accuracy increased as
function of ensemble size (ensembles: r = 0.997, P = 0; pseudo-
ensembles: r = 0.996, P = 0; Spearman rank correlation). However,
the marginal change in decoding accuracy dropped rapidly
(Fig. 7F). For ensembles, it decreased from 3.6± 0.7 to 1.3± 0.4%
after the second and tenth cell was added, respectively (mean±
SEM; P = 0.02, Wilcoxon signed-rank test). For pseudo-ensembles,

Figure 7. Simultaneous recording imparts a decoding advantage that increases as a function of ensemble size. The accuracy of decoding choices from the activity of

simultaneously imaged ensembles of neurons was compared to that of pseudo-ensembles in which simultaneity was disrupted by shuffling the activity traces from

each neuron across trials in which the same choice was made. Only correct trials resulting in a single reward were used for this analysis. Classification accuracy was

tested using Monte Carlo cross-validation (repeated random subsampling). Chance-level accuracy was determined by testing classifiers constructed using shuffled

choices. (A) Pearson correlation matrix for all cells from one example session, under three conditions: with simultaneity preserved (‘ensemble’), after shuffling across

trials with the same chosen action (‘pseudo-ensemble’), and after shuffling across trials irrespective of chosen action (‘full scramble’). Correlations were estimated

from cellular fluorescence averaged over the interval from 2 to 4 s following cue onset. (B) Histogram of the Pearson correlation coefficients estimated for all pairs of

cells imaged in all experiments, using simultaneous ensembles (top) and pseudo-ensembles (bottom). (C) Mean pairwise correlation (left), and pairwise correlation

magnitude (right) across all sessions. Gray lines, means from individual sessions. Black crosshairs, grand mean± SEM. (D) Performance of decoders based on linear

discriminant analysis, plotted as a function of time for single-reward trials (left), or trials in which the previous outcome was a single reward (right). Accuracy of

ensemble classifiers (black circles) is overlaid with that of pseudo-ensemble classifiers (red triangles) for visual comparison. Black dashed line, chance-level accuracy.

(E) Decoder performance as a function of the number of cells used to decode the chosen action. Performance of ensemble (black circles) and pseudo-ensemble (red tri-

angles) classifiers was estimated as the mean classification accuracy over the interval from 2 to 4 s following cue onset in single-reward trials. The number of cells

was varied from 1 to 30 by drawing cells randomly from the full ensemble or pseudo-ensemble without replacement. Black dashed line, chance-level accuracy.

Horizontal bars, bins in which ensemble (black, upper bar) or pseudo-ensemble (red, lower bar) classifiers performed significantly better than chance (P < 0.05,

Wilcoxon signed-rank test). (F) Marginal percentage point change in decoding accuracy, plotted as a function of ensemble size for ensembles (black) and pseudo-

ensembles (red). (G) Difference in accuracy of the ensemble and pseudo-ensemble decoders shown in E–F, plotted as a function ensemble size. Black horizontal bars,

bins in which the accuracy of ensemble and pseudo-ensemble classifiers differed significantly (P < 0.05, Wilcoxon signed-rank test). (H–K) Same as D–G for random

forest classifiers. Data in D–K are presented as mean± SEM.
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it decreased from 3.1± 0.7 to 0.6 ± 0.4% (mean± SEM; P = 0.02,
Wilcoxon signed-rank test).

Interestingly, the decoding advantage associated with
simultaneous recording was also related to ensemble size. The
difference in mean decoding accuracy was significant for all
ensemble sizes larger than nine cells (Fig. 7G, black bar denot-
ing P < 0.01, Wilcoxon signed-rank test) and increased as a
function of the number of cells up to the largest ensemble size
examined (r = 0.97, P = 0, Spearman rank correlation). An
identical analysis using random forests yielded similar results
(Fig. 7I–K).

Taken together, our analyses reveal that choices can be
decoded more accurately from simultaneously recorded popu-
lation activity, relative to pseudo-ensembles in which the cor-
relations in neural activity associated with simultaneity have
been disrupted. This difference increased with the number of
neurons in an ensemble, across the range of ensemble sizes
tested. Moreover, the marginal decoding accuracy decreased
rapidly regardless of whether ensembles or pseudo-ensembles
were used—a result consistent with high levels of redundancy
in the population code for chosen actions in M2.

Discussion
How does the outcome of a chosen action influence how it is
represented in the brain? In this study, we used a two-choice
discrimination task with probabilistic outcomes to investigate
this question in the M2 region of the murine MFC. The results
help to illuminate how information related to choices and their
outcomes are integrated within the frontal lobe. M2 neurons
were found to robustly encode rewarded choices; however,
choice-related signals diminished when a rewarding outcome
was omitted. Furthermore, an increase in the magnitude of
reinforcement had far less impact on choice representations
than did its categorical presence or absence. The preferential
encoding of rewarded choices in M2 provides a plausible mech-
anism that may underlie its established role in the learning
and implementation of reinforced actions during instrumental
behavior.

Cortical Representation of Prior Choices in Rodents

Optimal performance in the discrimination task required the
subject to choose strictly based on auditory cues. In principle,
information about past actions could be discarded or ignored.
Therefore, in these well-trained animals it was somewhat sur-
prising to observe robust and persistent choice representations,
both at the level of single neurons (Figs 4 and 5) and ensembles
(Figs 6 and 7). However, similar task-irrelevant information
coding has been reported elsewhere—in the monkey prefrontal
cortex (Genovesio et al. 2014), as well as in the posterior parie-
tal cortex of rodents (Morcos and Harvey 2016). At the behav-
ioral level, response biases based on choice and outcome
history have been observed in human subjects during percep-
tual tasks even after extensive training (Frund et al. 2014;
Abrahamyan et al. 2016). Our findings and previous results
therefore suggest that under some circumstances, higher-order
cortical areas continue to monitor past choices and outcomes,
even if task performance does not strictly require such
information.

Previous studies have reported that neurons in the rodent
MFC encode past choices (Sul et al. 2011; Siniscalchi et al. 2016)
and their outcomes (Kargo et al. 2007; Sul et al. 2011; Yuan et al.
2015). However, sustained choice-related signals are not unique

to this brain region. They have also been found in other nodes
of the frontal-striatal network including the dorsomedial stria-
tum (Kim et al. 2013) and orbitofrontal cortex (Sul et al. 2010),
as well as the posterior parietal cortex (Hwang et al. 2017). This
is not to say that all cortical regions exhibit persistent signals
associated with chosen actions. For example, our previous
study detected only very brief choice signals in the mouse pri-
mary visual cortex (Siniscalchi et al. 2016). Similarly, choice sig-
nals like those found in dorsomedial striatum lasted only
transiently in dorsolateral striatum (Kim et al. 2013). This point
is notable because M2 and other medial frontal areas send
dense projections to dorsomedial striatum, while afferents in
dorsolateral striatum come mostly from primary motor cortex
(Reep and Corwin 1999).

The extended time course of the choice signals we observed
could serve as an eligibility trace that keeps recently performed
actions available for learning. In the current study, the repre-
sentation of choice-related information in M2 neurons per-
sisted into the middle of the next trial (Fig. 6A). It is worth
noting that our previous study detected significant choice-
related signals over an even longer duration—up to two trials
after the corresponding action was chosen (Siniscalchi et al.
2016). Interestingly, the prior study employed a rule-switching
task in which subjects were required to monitor choices and
their outcomes. This raises an intriguing possibility: that the
temporal scale of choice history signals may depend on the
task demands (Bernacchia et al. 2011; Donahue et al. 2013).
Namely, the optimal learning rate depends on the volatility of
the environment (Behrens et al. 2007; Farashahi et al. 2017). If
the persistence of choice representations is indeed a flexible
parameter, then it could allow the system to adapt to changes
in volatility by serving as a point of adjustment for the tempo-
ral integration of choice information.

Enhanced Population Coding for Rewarded Choices

Our results reveal that neural representations of chosen actions
in mouse M2 are outcome-dependent. This finding agrees in prin-
ciple with a previous study demonstrating that rewarded choices
are more reliably encoded relative to unrewarded choices in the
primate supplementary eye field and dorsolateral prefrontal
cortex during a matching-pennies task (Donahue et al. 2013).
Interestingly, the effect was not evident in recordings from the
same set of neurons during a visual search task in which a visuo-
spatial cue instructed the correct response at the beginning of
each trial. The critical difference between these two tasks may be
the presence of an instructive cue—a feature which the visual
search task shares with the task used in our current study.
Notably, we did find a robust reward-associated enhancement of
choice coding under these circumstances. One possible explana-
tion is that, in contrast to visuospatial instruction, the cues used
in our auditory discrimination task only came to be associated
with the correct choice through learning. Therefore, the reward-
associated enhancement we observed may reflect an action-
monitoring process associated with the maintenance of arbitrary
sensorimotor associations—a process which may be unnecessary
during the less demanding visual search task. Another possible
explanation regards our use of ensemble decoding, which may be
more sensitive than decoding from single units and can thus
be expected to detect smaller differences between outcome
conditions.

In general, the neural correlates of choice and outcome his-
tory have been studied using binary outcome conditions in
which a reward is either provided or withheld on a given trial.
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We sought to extend the results of these prior studies by com-
paring effects of multiple reward magnitudes. Additionally, we
were able to dissociate effects of performance and outcome by
measuring the impacts of unexpected reward omissions and
windfalls in mice trained to a very high level of proficiency
(>90% accuracy).

At the behavioral level, reward size affected consummatory
licking as well as the likelihood of a response to the next cue,
but failed to influence the accuracy of responses (Fig. 2A–C).
This suggests that infrequent changes in reward magnitude
impacted motivation without significantly influencing choices.
Moreover, the neural ensemble representations of chosen
actions did not differ between single- and double-reward trials.
Instead, the greatest contrast was found between rewarded
and unrewarded choices. Our results therefore suggest that the
influence of outcome on choice representations in M2 is driven
less by the magnitude of reward than by its explicit presence or
absence. However, because actions were reinforced immedi-
ately in our task design, it remains possible that floor or ceiling
effects could have limited the outcome sensitivity of the
choice-selective population.

What physiological mechanisms underlie the outcome
dependence of choice signals observed in M2? One intriguing
possibility concerns the role of neuromodulation, which may
directly reconfigure the local network dynamics, or act on
inputs to M2. In particular, dopaminergic (Schultz et al. 1997)
and cholinergic (Hangya et al. 2015) neurons are known to carry
signals related to reward. Furthermore, reward-dependent acti-
vation of dopaminergic projections to nearby primary motor
cortex have been implicated in motor skill learning (Hosp et al.
2011; Leemburg et al. 2018). It is therefore interesting to specu-
late on whether similar mechanisms might contribute to asso-
ciative learning (Takehara-Nishiuchi and McNaughton 2008)
and more specifically, to the auditory-motor associations nec-
essary for performance of the task presented here. In any case,
the impact of neuromodulators on motor cortical choice signal-
ing will comprise an exciting topic for future research.

Persistent Neural and Behavioral Effects Associated
with Errors

The actions chosen on error trials were decoded least accu-
rately from the corresponding ensemble activity (Fig. 6E,F). This
result is consistent with an earlier study that revealed dis-
rupted MFC ensemble representations for choices and their
outcomes during periods when rats committed multiple errors
in a radial arm maze (Lapish et al. 2008; Hyman et al. 2013). The
discretized trial structure of our auditory discrimination task
allowed us to build upon this prior result by measuring the reli-
ability of ensemble representations into the next trial.
Furthermore, the inclusion of omitted-reward trials allowed
direct comparisons of ensemble representations associated
with correct and incorrect choices, independent of the associ-
ated outcomes.

Another previous study demonstrated a tight relationship
between sustained error signals in MFC and behavioral perfor-
mance in the next trial, measured as post-error slowing during
a timing task (Narayanan et al. 2013). Similarly, our analysis
revealed not only an error-related decrement in the fidelity of
neural choice representations, but also a behavioral perfor-
mance decrement following error trials that could not be
explained by reward omission alone. These results may provide
some insight into the sources of error for these well-trained
subjects. Specifically, the prolonged time course of the neural

and behavioral effects associated with errors suggests that they
may have arisen in part due to factors that spanned multiple
trials—such as periods of hypo- or hyper-arousal. In any case,
these results together with prior studies indicate that errors are
often associated with persistent internal states that can impact
subsequent behavioral performance.

Simultaneous Recording Confers a Modest Decoding
Advantage in M2

Prior theoretical work has demonstrated that correlated vari-
ability in neural populations can either degrade or enhance
population coding, depending on the interaction between sig-
nal and noise correlations (Averbeck and Lee 2003; Averbeck
et al. 2006). The analysis shown in Fig. 7 revealed that chosen
actions could be decoded more accurately from simultaneously
recorded ensembles, relative to pseudo-ensembles in which the
correlations in neural activity associated with simultaneity
(ie noise correlations) had been disrupted. In particular, the
observed effect of simultaneity seems to have resulted from
the preservation of largely positive correlations in trial-to-trial
neural variability unrelated to the chosen action (Fig. 7B,C).
Possible sources of noise correlations in our recordings could
include unobserved behavior such as whisking, features of the
network architecture, or changes in internal state associated
with motivation or arousal.

The effect of simultaneity increased with the number of neu-
rons in an ensemble, across the range of ensemble sizes tested
(Fig. 7G). Notably, an earlier study in the primate supplementary
motor area found no statistically significant effect of correlated
spike-count variability on the encoding of movements by ensem-
bles of three to eight neurons (Averbeck and Lee 2006). Our analy-
ses only revealed a consistent simultaneity effect for ensembles
larger than nine neurons, which may highlight the utility of
large-scale recordings for addressing this question. However,
it should be emphasized that even for ensembles of 30 cells,
the comparative advantage for ensembles was modest (4%),
and choices could still be decoded from pseudo-ensembles
with above chance-level accuracy at every ensemble size.
Furthermore, estimated correlations between neurons tend to
strengthen at longer timescales (Averbeck and Lee 2003).
Hence, the wider time-bins used in our study (500 vs. 66ms),
as well as the slower dynamics associated with calcium imag-
ing could explain why our analyses were more sensitive to
correlated variability. We also found that marginal decoding
accuracy decreased rapidly as cells were added to the popula-
tion, for both ensembles and pseudo-ensembles (Fig. 7F,J).
This result suggests a high level of redundancy in M2 popula-
tion codes, similar to previous results found in the rat primary
motor cortex during a simple reaction time task (Narayanan
et al. 2005).

Insights into the Role of M2 in Goal-directed Behavior

The choice selectivity magnitudes of individual neurons
(Fig. 5D) and the accuracy of decoding choices from ensemble
activity (Fig. 6E,F) both decreased from double- to omitted-
rewarded trials, and then further decreased in error trials. How
do the observed physiological changes ultimately impact
behavior? Causal perturbations aimed at addressing this ques-
tion will require a more detailed understanding of how geneti-
cally (Kvitsiani et al. 2013; Pinto and Dan 2015; Kamigaki and
Dan 2017) or anatomically identified subtypes of frontal cortical
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neurons (Li et al. 2015; Chen et al. 2017; Otis et al. 2017) contrib-
ute to the choice signals observed in our experiments.

Goal-directed behavior requires the capacity to adjust the
current policy for action selection according to the impact of
past choices on the likelihood of a desired outcome. Our results
demonstrate that sustained neural representations of chosen
actions in mouse M2 are sensitive to their resultant outcomes,
such that rewarded choices are more robustly encoded. In turn,
the preferential encoding of rewarded choices could allow the
frontal cortex to bias the influence of recent, positively rein-
forced actions on future decisions. This proposed mechanism
would help to explain effects of lesioning (Passingham et al.
1988; Gremel and Costa 2013) and inactivation (Siniscalchi et al.
2016; Makino et al. 2017) that have implicated M2 more broadly
in the learning and implementation of voluntary behavior. In
summary, our results contribute to a growing body of evidence
supporting a role for MFC, and M2 more specifically, in the flex-
ible execution of goal-directed actions.
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