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Aims To test whether human immunodeficiency virus (HIV) infection and subclinical cardiovascular disease (sCVD) are
associated with expression of CXCR4 and other surface markers on classical, intermediate, and non-classical
monocytes in women.

....................................................................................................................................................................................................
Methods
and results

sCVD was defined as presence of atherosclerotic lesions in the carotid artery in 92 participants of the Women’s
Interagency HIV Study (WIHS). Participants were stratified into four sets (n = 23 each) by HIV and sCVD status
(HIV-/sCVD-, HIV-/sCVDþ, HIVþ/sCVD-, and HIVþ/sCVDþ) matched by age, race/ethnicity, and smoking status.
Three subsets of monocytes were determined from archived peripheral blood mononuclear cells. Flow cytometry
was used to count and phenotype surface markers. We tested for differences by HIV and sCVD status accounting
for multiple comparisons. We found no differences in monocyte subset size among the four groups. Expression of
seven surface markers differed significantly across the three monocyte subsets. CXCR4 expression [median fluores-
cence intensity (MFI)] in non-classical monocytes was highest among HIV-/CVD- [628, interquartile range (IQR)
(295–1389)], followed by HIVþ/CVD- [486, IQR (248–699)], HIV-/CVDþ (398, IQR (89–901)), and lowest in
HIVþ/CVDþ women [226, IQR (73–519)), P = 0.006 in ANOVA. After accounting for multiple comparison
(Tukey) the difference between HIV-/CVD- vs. HIVþ/CVDþ remained significant with P = 0.005 (HIV-/CVD- vs.
HIVþ/CVD- P = 0.04, HIV-/CVD- vs. HIV-/CVDþ P = 0.06, HIVþ/CVDþ vs. HIVþ/CVD- P = 0.88, HIVþ/CVDþ vs.
HIV-/CVDþ P = 0.81, HIVþ/CVD- vs. HIV-/CVDþ, P = 0.99). All pairwise comparisons with HIV-/CVD- were
individually significant (P = 0.050 vs. HIV-/CVDþ, P = 0.028 vs. HIVþ/CVD-, P = 0.009 vs. HIVþ/CVDþ). CXCR4
expression on non-classical monocytes was significantly higher in CVD- (501.5, IQR (249.5–887.3)) vs. CVDþ (297,
IQR (81.75–626.8) individuals (P = 0.028, n = 46 per group). CXCR4 expression on non-classical monocytes
significantly correlated with cardiovascular and HIV-related risk factors including systolic blood pressure, platelet and T
cell counts along with duration of antiretroviral therapy (P < 0.05). In regression analyses, adjusted for education level,
study site, and injection drug use, presence of HIV infection and sCVD remained significantly associated with lower
CXCR4 expression on non-classical monocytes (P = 0.003), but did not differ in classical or intermediate monocytes.
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Conclusion CXCR4 expression in non-classical monocytes was significantly lower among women with both HIV infection and
sCVD, suggesting a potential atheroprotective role of CXCR4 in non-classical monocytes.
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Introduction

Infection with the human immunodeficiency virus (HIV) is associated
with an increased risk of early-onset and rapidly progressive cardiovascu-
lar disease (CVD), even among virally suppressed patients on effective
antiretroviral therapy (ART).1–3 Higher incidences of stroke, myocardial
infarction, and advanced subclinical cardiovascular disease (sCVD) have
been observed in HIV-infected compared to uninfected individuals.4 The
mechanism for increased CVD risk in HIV-infected individuals is likely
multifactorial, involving both traditional CVD- and HIV-related risk fac-
tors. For example, HIV replication and exposure to certain antiretroviral
medications like protease inhibitors may have unfavourable influences
on the lipid profile.5,6 ART has been associated with progression of sub-
clinical atherosclerosis in some large-scale studies.7 HIV-positive patients
are also characterized by a higher frequency of concomitant traditional
risk factors like smoking or hyperlipidaemia.8

It is especially important in women with HIV to further investigate risk
factors for accelerating CVD to prevent adverse cardiovascular out-
come,9,10 as women are underdiagnosed regarding CVD.11–13 There are
significant gender differences in screening and diagnosis of CVD.11,12 Even
though sex-specific symptoms, traditional and novel risk factors along with
expanded understanding of the sex-specific pathophysiology of CVD have
been acknowledged in recent years, ischaemic heart disease continues to
be the leading cause of morbidity and mortality in women in western coun-
tries, especially in women with HIV.11 Traditional CVD risk factors are less
frequent in women11–14 resulting in unfavourable impact on diagnosis, pre-
vention, and treatment strategies. Interestingly, there are also significant
disparities in CVD burden among subgroups of women, who are socially
disadvantaged because of race, ethnicity, income level, and education.11–14

Preventive strategies and early treatment of cardiovascular risk factors,
e.g. statins or antiplatelet therapy, have been recommended in high-risk
HIV-positive patients. Such treatments may also have pleiotropic effects
and reduce circulating levels of pro-inflammatory proteins and cytokines,
slowing down inflammatory processes in atherogenesis and inhibiting
atheroprogression.15 However, underlying mechanisms of endothelial
cell dysregulation and atherosclerotic plaque formation remain elusive.15

Persistent innate immune activation mediated by platelets and mono-
cytes may contribute to atherogenesis and atheroprogression in persons
with HIV.16,17 Monocytes are key players in atherogenesis, from the for-
mation of the earliest asymptomatic atherosclerotic lesions to plaque
rupture with potentially fatal outcomes.18,19 Three distinct monocyte
subpopulations have been defined based on their surface receptor ex-
pression of CD14 and CD16: classical (CD14þþCD16-), intermediate
(CD14þCD16þ), and non-classical (CD14dimCD16þþ) mono-
cytes.20,21 Specific monocyte subsets are believed to be differentially in-
volved in the pathogenesis and outcome of acute coronary syndromes,
heart failure, and stroke, amongst other conditions.22–26 Although a
subset-specific contribution of monocytes has been proposed in recent
years, monocyte heterogeneity has not been analysed thoroughly in the
context of HIV-related sCVD.16,17,27 Experimental studies have suggested
a causative role of monocytes in atherogenesis,25 but several epidemio-
logic analyses have shown inconsistent associations between circulating

monocyte counts, phenotypes and CVD in HIV infection.7,8,16,28 Baker
et al. showed in a prospective cohort of 436 patients with and without
HIV infection that higher frequencies of CD16þ monocytes were associ-
ated with a greater likelihood of progression of coronary artery calcium
(CAC) after adjusting for traditional and HIV-related risk factors.29

Surface marker expression on monocytes was not associated with pres-
ence or progression of CAC.29 Another study of 51 patients with HIV
and 49 matched controls revealed that surface expression of the chemo-
kine receptor CX3CR1 and the integrin CD11b can serve as independent
predictors of carotid intima-media thickness (cIMT) progression in HIV
infection.16 In contrast, Longenecker et al.30 found no association be-
tween cIMT of individuals with HIV and the proportions of monocyte
subsets in peripheral blood. However, increased proportions of CD16þ
monocytes have been associated with cardiovascular events and the oc-
currence of acute coronary syndromes in the general population22,31 and
therefore, could be markers of advanced rather than premature sCVD.

Clarifying the immunologic mechanisms and cell types that contribute
to premature sCVD among individuals with HIV may help tailor CVD
risk assessment in this population. We tested the associations of mono-
cyte characteristics, including subset size, phenotype, and surface marker
expression, with HIV serostatus and presence of sCVD in 92 women
who participated in the Women’s Interagency HIV Study (WIHS).

Methods

For a detailed description of the study design, patient collective, assessment
of clinical parameters, flow cytometry and cell sorting, and statistical analysis,
please see Supplementary material online.

Representative fluorescence-activated cell-sorting plots showing gating of
monocytes to define subsets by CD14 and CD16 expression are illustrated
in Supplementary material online, Figure S1.

Results

Median age of the 92 WIHS participants was 51.5 years [interquartile
range (IQR 47–58)]. The majority (96%) was of either black race or
Hispanic ethnicity, and 86% reported a history of smoking. Among the
HIV-infected participants, 85% were on highly active antiretroviral ther-
apy (HAART) and the median CD4þ T-cell count was 550.5 cells/mL
(IQR 284–792). Clinical characteristics of the participants by matched
group (HIV-/sCVD-, HIV-/sCVDþ, HIVþ/sCVD-, and HIVþ/sCVDþ)
are summarized in Table 1. The numbers of classical, non-classical, and in-
termediate monocytes isolated from PBMCs were not significantly differ-
ent among the groups (Supplementary material online, Figure S2).

Surface marker expression on
monocyte subsets in all WIHS
participants

The surface markers CXCR4, CCR5, CCR2, CD11b, CD163, CD36,
and CX3CR1 were evaluated in classical, intermediate, and non-classical
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Table 1 Demographic and clinical characteristics of study participants

HIV2/sCVD2,

N 5 23

HIV1/sCVD2,

N 5 23

HIV2/sCVD1,

N 5 23

HIV1/sCVD1,

N 5 23

P-value

Demographic and behaviour-related characteristics

Age at baseline vascular study visit (years) (median, IQR) 45 (40–50) 43 (40–51) 45 (43–52) 48 (43–53) 0.61

Black race or Hispanic ethnicity 22 (96) 22 (96) 22 (96) 22 (96) 1.00

Any history of smoking 20 (87) 19 (83) 20 (87) 20 (87) 1.00

Any current substance usea 10(43) 11 (48) 10 (43) 12 (52) 0.68

Hepatitis C virus infection status 6 (26) 12 (52) 9 (39) 13 (57) 0.15

Study site <0.01

Bronx, NY 14 (61) 19 (83) 7 (30) 11 (48)

Brooklyn, NY 6 (26) 2 (9) 2 (9) 10 (43)

Washington, DC 1 (4) 0 (0) 1 (4) 0 (0)

Los Angeles, CA 1 (4) 0 (0) 5 (22) 1 (4)

San Francisco, CA 1 (4) 1 (4) 3 (13) 0 (0)

Chicago, IL 0 (0) 1 (4) 5 (22) 1 (4)

Education 0.94

Completed high school 15 (65) 13 (57) 14 (61) 13 (57)

Did not finish high school 8 (35) 9 (39) 9 (39) 10 (43)

HIV-related risk factors

CD4þ count, cells/mL (median, IQR) – 585 (382–816) – 535 (265–792) 0.72

CD4/CD8 ratio (median, IQR) – 0.8 (0.3–1.3) – 0.6 (0.3–1.0) 0.46

Undetectable HIV-1 RNA level 14 (61) – 13 (57) 0.76

Current ART use 1.00

HAART – 20 (87) – 19 (83)

ART only – 1 (4) – 2 (9)

No ART – 2 (9) – 2 (9)

Cardiometabolic risk factors

Body mass index (median, IQR) 30.5 (27–38) 29 (26–35) 28 (24–32) 29 (24–34) 0.36

Total cholesterol, mg/dL (median, IQR) 172 (148–183) 170 (138–200) 171.5 (145.5–204) 199.5 (170.5–221) 0.02

LDL cholesterol, mg/dL (median, IQR) 96 (72–112) 93.5 (67–123) 88.5 (65–116.5) 116.5 (94.5–131) 0.04

HDL cholesterol, mg/dL (median, IQR) 55 (44–60) 54 (42–59) 49.5 (43–59.5) 46 (40–55.5) 0.51

History of high cholesterol 16 (69.6) 17 (73.9) 21(91.3) 23 (100) 0.01

Current use of cholesterol medications 0 (0) 0 (0) 5 (22) 10 (43) <0.0001

History of cholesterol medication use 1 (4) 0 (0) 7 (30) 11 (48) <0.0001

Systolic blood pressure, mmHg (median, IQR) 125 (111–138) 122 (109–134) 128 (118–151) 127 (109–139) 0.38

History of hypertension 12 (52) 10 (43) 17 (74) 17 (74) 0.07

Current hypertensive medication use 10 (43) 11 (48) 14 (61) 15 (65) 0.39

History of diabetes 6 (26) 4 (17) 8 (35) 4 (17) 0.50

Creatinine, mg/dL (median, IQR) 0.8 (0.7–0.9) 0.9 (0. 8–1.0) 0.9 (0.7–1.0) 0.9 (0.7–1.2) 0.81

Current aspirin use 4 (17) 4 (17) 6 (26) 10 (43) 0.18

Self-reported menopause 10 (43) 13 (57) 9 (39) 15 (65) 0.22

Inflammatory biomarker levels

sCD163, ng/mL (median, IQR) 630 (464–1253) 987 (700–1305) 772 (465–1118) 961 (700–1429) 0.06

sCD14, ng/mL (median, IQR) 1682 (1401–1943) 2123 (1842–2275) 1696 (1584–2219) 2027 (1779–2670) <0.01

IL-6, pg/mL (median, IQR) 1.9 (0.8–2.5) 1.5 (1.0–2.8) 1.7 (1.1–2.4) 1.3 (1.1–2.7) 0.95

Galectin-3, ng/mL (median, IQR) 9.4 (8.1–11.1) 8.7 (5.9–12.8) 8.6 (7.2–10.4) 9.9 (7.7–12.8) 0.52

Galectin-3 binding protein, ng/mL (median, IQR) 9.2 (4.9–17.6) 15.4 (5.4–29.7) 10.5 (4.0–13.1) 14.4 (7.7–17.7) 0.15

hsCRP (median, IQR) 1.9 (0.7–4.8) 2.0 (0.9–7.7) 1.8 (0.9–4.3) 2.5 (1.3–7.4) 0.74

Characteristics of human immunodeficiency virus (HIV)-infected and HIV-uninfected women in the Women’s Interagency HIV Study stratified by presence of subclinical cardiovas-
cular disease.
Values are n (%) or median and interquartile range (IQR). Each group contains 23 participants, who were matched by age, race/ethnicity, smoking status, and age of specimen.
ART, antiretroviral therapy; HAART, highly active antiretroviral therapy; HDL, high-density lipoprotein; hsCRP, high sensitive C-reactive protein.
aSubstance use includes intravenous drug, crack, and cocaine use.

Loss of CXCR4 on non-classical monocytes in participants of WIHS 1031
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..monocytes (Supplementary material online, Figure S3). Based on
ANOVA, there were differences in the expression of many of the ana-
lysed surface markers among the three subsets of monocytes
(Supplementary material online, Figure S3). The differences in the expres-
sion of the chemokine receptors CX3CR1, CCR5 (CD195), CCR2
(CD192) and the scavenger receptor CD36 were expected based on
published work.27,32 However, the differences in CD163 (haemoglobin–
haptoglobin receptor), CXCR4 and the integrin CD11b are new findings.

Surface marker expression on
monocyte subsets stratified by HIV
and sCVD status

We further assessed the expression of surface markers of interest by
HIV and sCVD status within each of the three monocyte subsets. After
accounting for multiple comparisons, only CXCR4 expression in non-
classical monocytes remained significantly different across the four par-
ticipant groups. Figure 1A–C shows the association of HIV and sCVD sta-
tus with CXCR4 expression within classical (1A), intermediate (1B), and
non-classical (1C) monocytes. The expression of CXCR4 on non-
classical monocytes [given as median fluorescence intensity (MFI)] was
highest among HIV-/sCVD- women [median 628, IQR (295–1389)], fol-
lowed by HIVþ/sCVD- [median 486, IQR (248–699)], HIV-/sCVDþ
[median 398, IQR (89–901)], and lowest in HIVþ/sCVDþ women [me-
dian 226, IQR (73–519)], (P = 0.006 for overall comparison in ANOVA
analysis). After accounting for multiple comparison (Tukey) the compari-
son between HIV-/sCVD- vs. HIVþ/sCVDþ remained significant with
P = 0.005 (HIV-/sCVD- vs. HIVþ/sCVD- P = 0.04, HIV-/sCVD- vs. HIV-/
sCVDþ P = 0.06, HIVþ/sCVDþ vs. HIVþ/sCVD- P = 0.88, HIVþ/sCVDþ
vs. HIV-/sCVDþ P = 0.81, HIVþ/sCVD- vs. HIV-/sCVDþ, P = 0.99).

In pairwise comparisons, shown in Figure 2A–F as dot plots,
CXCR4 expression on non-classical monocytes was significantly higher

in HIV-/sCVD- women vs. (Figure 2A) HIV-/sCVDþ (P = 0.050),
(Figure 2B) HIVþ/sCVD- (P = 0.028), and (Figure 2C) HIVþ/sCVDþ
(P = 0.009). There were no differences in the comparison of (Figure 2D)
HIV-/sCVDþ vs. HIVþ/sCVD- (P = 0.827), (Figure 2E) HIV-/sCVDþ vs.
HIVþ/sCVDþ (P = 0.266), and (Figure 2F) HIVþ/sCVD- vs. HIVþ/
sCVDþ (P = 0.265).

Interestingly, CXCR4 expression on non-classical monocytes was sig-
nificantly higher in sCVD- [median 501.5, IQR (249.5–887.3)] compared
to sCVDþ women [median 297, IQR (81.75–626.8), n = 46 per group,
P = 0.028] illustrated in Figure 3.

CXCR4 expression on non-classical
monocytes significantly correlated
with several cardiovascular and
HIV-related risk factors

Spearman’s rank correlation analysis to evaluate correlations of CXCR4
expression on non-classical monocytes with cardiovascular and HIV-
related risk factors among the whole cohort, given in Figure 4A–P,
showed that CXCR4 expression on non-classical monocytes is

i. negatively correlated with systolic blood pressure (r = -0.212, P = 0.042)
and platelet count (r = -0.277, P = 0.022), while positively correlated with
left ventricular mass (r = 0.268, P = 0.038), all known CVD risk factors
(Figure 4A–C),

ii. positively correlated with the duration of ART (r = 0.338, P = 0.022) and
HAART (r = 0.307, P = 0.038 in HIVþ subjects, Figure 4D,E),

iii. positively correlated with CD4 T cell counts (r = 0.270, P = 0.024) and
the CD4 to CD8 T cell ratio (r = 0.299, P = 0.044, Figure 4F,G),

iv. negatively correlated with the CD8 T cell count (r = -0.295, P = 0.013)
and with apoptotic T cells (as detected by activated caspase-3,
CD4 Casp3 r = -0.547, P = 0.001, CD8 Casp3 r = -0.326, P = 0.006,
Figure 4H–J),

Figure 1 CXCR4 is differentially expressed on monocyte subsets in WIHS participants stratified by HIV and sCVD status. CXCR4 was evaluated by
flow cytometry on classical (A), intermediate (B), and non-classical (C) monocytes isolated from frozen PBMCs from WIHS participants stratified by HIV
and sCVD status (n = 23 per group). The graphs depict the differential distribution of CXCR4 surface marker expression measured by median fluores-
cence intensity (MFI) in the different subsets of monocytes and among the different groups of participants stratified by HIV and sCVD status as dot plots
[median and interquartile range (IQR) are shown]. ANOVA analysis was performed. For this analysis, a P-value <_0.050 was considered significant, indi-
cated by *. For this analysis, a P-value <_0.007 was considered significant after adjustment for multiple testing, indicated by ** (Tukey).
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..v. not correlated with other cardiovascular risk parameters including
(Figure 4K) high-sensitive C-reactive protein (hsCRP) (r = -0.096,
P = 0.361), (Figure 4L) Framingham risk score (r = -0.152, P = 0.148),
(Figure 4M) total cholesterol (r = -0.105, P = 0.364), (Figure 4N) LDL
(r = -0.171, P = 0.147), (Figure 4O) HDL (r = -0.009, P = 0.941), and
(Figure 4P) triglycerides (r = -0.088, P = 0.447).

Furthermore, we performed subgroup analysis of CXCR4 expression
on non-classical monocytes and its correlation with traditional cardio-
vascular and HIV-related clinical risk factors of the four participant
groups stratified by HIV and sCVD status. Data are shown in
Supplementary material online, Figures S4, S5, S6, and S7 for each group,
respectively. Interestingly, we found a negative correlation of CXCR4
expression on non-classical monocytes with the Framingham risk score
in HIV-/sCVD- participants of the WIHS (Supplementary material online,
Figure 4I). CXCR4 expression correlated positively with the duration of
ART (r = 0.452, P = 0.030) in HIVþ/sCVD- participants (Supplementary
material online, Figure S6D).

CXCR4 expression on non-classical
monocytes was significantly associ-
ated with the presence of HIV infec-
tion and subclinical cardiovascular
disease in women

In unadjusted regression analysis, lower CXCR4 expression on non-
classical monocytes was significantly associated with the presence of
sCVD (Table 2). Here, b is defined as mean difference in MFI of CXCR4
expression in each group compared with the reference group of HIV-/
sCVD- participants. After accounting for education, study site, and his-
tory of IDU, lower CXCR4 expression on non-classical monocytes
remained significantly associated with the presence of sCVD: HIVþ/
sCVDþ vs. HIV-/sCVD- [b, -472 U, 95% confidence interval (CI) (-782
to -161), P = 0.003]; HIV-/sCVDþ vs. HIV-/sCVD- [b, -308 U, 95% CI

Figure 2 Pairwise comparison of CXCR4 expression on non-classical monocytes from WIHS participants stratified by their HIV and sCVD status.
CXCR4 was evaluated on non-classical monocytes as in Figure 1 (n = 92; 23 per group) and expressed as MFI. T-test was performed for paired group
comparison. The graphs depict the different distribution of CXCR4 expression on non-classical monocytes between the groups as dot plots [median and
interquartile range (IQR) are shown]. For this analysis, a P-value <_0.050 was considered significant, indicated by *, P-value <_0.010 indicated by **

Loss of CXCR4 on non-classical monocytes in participants of WIHS 1033
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(-645 to 30), P = 0.074]; HIVþ/sCVD- vs. HIV-/sCVD- [b, -552 U, 95%
CI (-863 to -242), P = 0.001] (overall P = 0.003).

Discussion

In our study, we found differential surface marker expression on three
subsets of monocytes in our sample of HIV-infected and uninfected
women. Specifically, we showed that both HIV infection status and sub-
clinical cardiovascular disease were associated with reduced CXCR4 ex-
pression on non-classical monocytes. Furthermore, Spearman’s rank
correlation analysis revealed correlations of CXCR4 expression on non-
classical monocytes with traditional cardiovascular and HIV-related risk
factors.

Non-classical monocytes play key roles in vascular homeostasis. In
particular, non-classical monocytes show patrolling behaviour and ac-
tively patrol the vascular endothelium of arteries.33,34 Although patrol-
ling is seen under homeostatic conditions, it is influenced by triggers of
the inflammatory response.35,36 Human non-classical monocytes have
been shown to patrol in mouse microvessels35 and carotid arteries.33,34

In mice, non-classical monocytes are atheroprotective,36,37 but it is not
known whether this translates to humans. Patrolling non-classical

monocytes play an important role in several disease settings including
atherosclerosis. They probably function to remove damaged cells and
debris from the vascular endothelium.33 These cells have also been asso-
ciated with wound healing and the resolution of inflammation in dam-
aged tissues.35,36

In our study, we described the association of reduced chemokine re-
ceptor CXCR4 expression on non-classical monocytes with presence of
sCVD. The CXCL12/CXCR4 chemokine ligand/receptor axis plays a
key role in cell trafficking during atherogenesis and atheroprogression.
Several animal studies have suggested an atheroprotective role for
CXCL12/CXCR4 interactions.38–41 CXCR4 is the chemokine receptor
for CXCL12 and macrophage migration inhibitory factor (MIF), a
chemokine-like molecule with a known pro-atherogenic role.39 CXCR4
is deeply involved in circadian changes in blood monocyte levels42 and
thought to be required for disposal of aged leucocytes.43

CXCR4 is also a co-receptor for HIV entry in the infection by T-tropic
and M-tropic HIV-1 strains.44,45 CXCR4 expression has been associated
with susceptibility of monocytes to HIV infection and atherosclero-
sis.46,47 Therefore, CXCR4 is a key target in the investigation of
chemokine-dependent inflammatory response in HIV infection and
sCVD.47 CXCR4 in non-classical monocytes had not been previously in-
vestigated in HIV-infected individuals.

Similar to the findings of Longenecker et al.,30 we did not find an asso-
ciation between HIV and the proportions of monocyte subsets in periph-
eral blood with subclinical atherosclerosis of carotid arteries. In contrast,
Baker et al. showed that a higher percentage of CD16þ monocytes
were associated with a greater likelihood of progression of CAC.29

Increased proportions of CD16þ monocytes have been associated with
cardiovascular events and the occurrence of acute coronary syndromes
in non-HIV studies.22,31,48 While expression of certain surface markers
on monocytes was not associated with presence or progression of CAC
in the Baker study, CXCR4 was not investigated.36 Another study
revealed that surface expression of CX3CR1 on CD16þ and CD11b on
total monocytes can serve as independent predictors of cIMT progres-
sion in HIV infection,16 which we did not find in our cohort. A recent
study of treated individuals with HIV showed that cIMT correlated with
the count of non-classical monocytes at baseline and with plasma levels
of MCP-1 and TNF-a.49

CD16þ monocyte (comprising non-classical and intermediate mono-
cyte) numbers have also been positively correlated with vulnerable pla-
ques in patients with coronary artery disease, and levels of CD16þ

monocytes have been found to be significantly decreased in patients re-
ceiving statin treatment.26,31 These studies did not distinguish between
CD14dimCD16þ (non-classical) and CD14þCD16þ (intermediate) sub-
sets but grouped these two subsets into CD16-positive monocytes. A
recent study of >900 patients suggested that it is mainly the
CD14þCD16þ intermediate monocytes that are positive predictors for
cardiovascular events, whereas the CD14dimCD16þ non-classical mono-
cyte subset showed no correlation.50

Among women with HIV, reduced CXCR4 expression on non-
classical monocytes was associated with presence of subclinical carotid
artery disease even after adjustment for confounders. Monocyte migra-
tion requires signalling via chemokine receptors like CCR2, CX3CR1,
and CXCR4 (in response to ligands CCL2, CX3CL1, CXCL12, and MIF,
respectively).16,20,38,46 These chemokine and adhesion receptors are dif-
ferentially expressed on different subsets of monocytes.40,51

Furthermore, chemokines and their receptors play a critical role in HIV
infection, acquired immunodeficiency syndrome (AIDS), and atheroscle-
rosis.47 Non-classical monocytes have lower expression of CXCR4 than

Figure 3 CXCR4 expression on non-classical monocytes is
significantly different between sCVDþ and sCVD- WIHS participants
regardless of HIV staus. CXCR4 was evaluated on non-classical
monocytes among WIHS individuals stratified by sCVD status (n = 46
per group). The graphs depict the different distribution of CXCR4
expression on non-classical monocytes between the groups as dot
plots [median and interquartile range (IQR) are shown]. T-test was
performed for two groups’ comparison. For this analysis, a P-value
<_0.050 was considered significant (*).
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Figure 4 CXCR4 expression on non-classical monocytes correlates with traditional cardiovascular and HIV-related clinical risk factors. Spearman’s rank
correlation analysis was performed to evaluate correlations of CXCR4 expression on non-classical monocytes with cardiovascular and HIV-related risk fac-
tors among the whole cohort. Values are presented as Spearman’s rank correlation coefficient r. CXCR4 expression on non-classical monocytes is (A) nega-
tively correlated with systolic blood pressure (BPsys, r = -0.212, P = 0.042) and (B) blood platelet count (r = -0.277, P = 0.022) and (C) positively correlated
with left ventricular mass (r = 0.268, P = 0.038), (D) the duration of ART (r = 0.338, P = 0.022) and (E) HAART (r = 0.307, P = 0.038 in HIVþ subjects) as well
as with (F) blood CD4 T cell counts (CD3CD4 r = 0.270, P = 0.024) and (G) the CD4 to CD8 T cell ratio (r = 0.299, P = 0.044). CXCR4 on non-classical
monocytes was negatively correlated with (H) the blood CD8 T cell count (CD3CD8, r = -0.295, P = 0.013) and with (I, J) apoptotic T cells [as detected by
activated caspase-3, (I) CD4 Casp3 r = -0.547, P = 0.001, (J) CD8 Casp3 r = -0.326, P = 0.006]. There was no significant correlation of CXCR4 expression on
non-classical monocytes with other cardiovascular risk factors as (K) hsCRP (r = -0.096, P = 0.361), (L) Framingham risk score (r = -0.152, P = 0.148), (M) to-
tal cholesterol (r = -0.105, P = 0.364), (N) LDL (r = -0.171, P = 0.147), (O) HDL (r = -0.009, P = 0.941),
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..classical monocytes. That CXCR4 expression on non-classical mono-
cytes from HIV-infected individuals with CVD is even lower may there-
fore reflect an unfavourable monocyte phenotype or may impair their
function. As regression analysis indicated that reduced expression of
CXCR4 is associated with sCVD in our cohort and is an independent
phenomenon. It would be of interest to extend these findings with a

prospective longitudinal study determining whether the identified
marker CXCR4 is predictive of clinical CVD. These results may contrib-
ute to future diagnostic and therapeutic approaches for the diagnosis
and treatment of sCVD in HIV-positive individuals. Understanding the
underlying pathogenesis of CVD in HIV patients, including the role of
changes in monocyte phenotype, underpins the development of

Figure 4 Continued.
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..predictive models that will be useful for disease management in chronic
HIV infection.

Women, in particular, are underdiagnosed regarding cardiovascular
diseases. There are significant gender differences in screening and diag-
nosis of CVD as it has been defined as a men’s disease for decades.11–14

Even though sex-specific symptoms, traditional and novel risk factors
and expanded understanding of the sex-specific pathophysiology of
CVD have been acknowledged in recent years, ischaemic heart disease
continues to be the leading cause of morbidity and mortality in women
in western countries, especially in women with HIV.58–64 Therefore,
novel biomarkers to detect high-risk patients at an early stage of the dis-
ease are of great clinical interest for an improved risk assessment, espe-
cially in women, who less frequently show traditional risk factors for
advancing CVD.

Currently prediction of subclinical CVD such as early atherosclerosis
in patients with HIV is limited to evaluation of risk factor profiles, which
might underestimate the risk of the occurrence of adverse CV events in
patients with HIV.52

Interestingly, there are also significant disparities in CVD burden
among certain subgroups of women, who are socially disadvantaged,

which relates to differences in risk factor prevalence, treatment strate-
gies according to evidence-based guidelines, and other social and envi-
ronmental factors.58–66 As gender disparities are multifactorial, they
reflect under-representation of women at risk of CVD in research, with
the resultant unfavourable impact on women’s cardiovascular outcome.
For example, women with acute coronary syndrome undergo coronary
angiography and revascularization less frequently than men.58–66

Women with CVD are usually older than men when CVD is diagnosed
and present more often with unspecific symptoms like dyspnoea, nausea,
or vomiting than typical angina pectoris. Traditional risk factors (smoking,
diabetes mellitus, and dyslipidaemia) are less frequent in women.58–66

Furthermore, common disorders of pregnancy (gestational hypertension
and diabetes) or endocrine disorders (polycystic ovary syndrome and
early menopause) are associated with accelerated development of CVD.
To further investigate potential, maybe even gender-specific risk factors
for adverse cardiovascular outcome is especially important in women
with HIV, who are at high risk to develop CVD.9,53,54

This study was based on the WIHS cohort. A similar cohort for HIV-
infected men is the Multicenter AIDS Cohort Study (MACS). Our study
generates the testable hypothesis that CXCR4 expression on non-

Figure 4 Continued.
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classical monocytes may be negatively correlated with CVD also in men
which requires further investigations.55

It has been described that CXCR4 expression in CD4þ and CD8þ T
cells as well as CD14þ monocytes was significantly reduced in
HIV-positive individuals when compared with uninfected controls.46

Down-modulation of CXCR4 has been correlated with HIV disease pro-
gression, which further supports the reciprocal role that CXCR4 plays in
cellular activation.45,46 This down-regulation of the chemokine receptor
expression is associated with elevated levels of the endogenously pro-
duced CXCR4 ligand chemokine CXCL12. CXCL12 governs differentia-
tion of haematopoietic progenitors into either endothelial or
macrophage-foam cells. CXCL12 ligates CXCR4 and CXCR7 and regu-
lates monocyte/macrophage functions,48–51 in particular cell migration,
adhesion, and survival.47,51

Our data suggest that loss of CXCR4 expression on non-classical
monocytes may increase the risk of atherogenesis. A potential mecha-
nism for this protective role of CXCR4 might be the maintenance of ar-
terial integrity and preservation of endothelial barrier function, a known
function of non-classical monocytes.33,36,56,57 It is possible that enhancing
these potentially beneficial functions of CXCR4 by selective modulators
could open novel therapeutic options, but more research is needed to
corroborate this.

Given the cross-sectional nature and limited sample size of our study,
one limitation of our findings is that they are hypothesis-generating, and
therefore, the results should be replicated both longitudinally and in
other study populations, including in men. Furthermore, our explana-
tions for underlying pathomechanisms are speculative and will require
further evidence. Finally, other unmeasured confounding parameters
may be present; nonetheless, our careful matching of specimens and use
of regression account for major known confounders including age, race,
smoking status, and socioeconomic status.

Our findings show that subclinical atherosclerosis in women with
HIV-related sCVD is associated with lower expression of CXCR4 on
non-classical monocytes, and that surface markers are differentially
expressed among monocyte subsets in women with and without HIV
and with and without sCVD. Our study suggests that monocyte surface
markers, including those on non-classical monocytes, may serve as novel
biomarkers and predictors of sCVD in treated individuals with HIV.
These findings highlight the important role for monocyte subsets in the
progression of HIV-related cardiovascular pathology and need to be in-
vestigated in further large-scale studies.

Supplementary material

Supplementary material is available at Cardiovascular Research online.
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Table 2. Association between HIV/sCVD status and CXCR4 expression in non-classical monocytes in regression analysis

Model 1: unadjusted Model 2: adjusted for education, study site, history of injection drug use

Difference in mean MFI (95% CI) P-value Difference in mean MFI (95% CI) P-value

HIV-/sCVD- Ref. – Ref. –

HIVþ/sCVD- -436 (-761 to -111) 0.009 -552 (-863 to -242) 0.001

HIV-/sCVDþ -412 (-737 to -87) 0.014 -308 (-645 to 30) 0.074

HIVþ/sCVDþ -557 (-882 to -232) 0.001 -472 (-782 to -161) 0.003

The study was designed as a case-control observational study. Four groups of participants of the WIHS cohort were stratified by their HIV and sCVD status (HIV-sCVD- vs.
HIV-sCVDþ vs. HIVþsCVD- vs. HIVþsCVDþ) and were matched based on participant age, smoking status, race/ethnicity, and age of the specimen collection date of PBMC
samples.
Regression analysis of these matched samples adjusted for education, study site, and history of injection drug use. Presence of HIV infection and sCVD remained significantly
associated with lower CXCR4 expression on non-classical monocytes.
Test for overall difference by HIV/sCVD status: Model 1, P = 0.006; Model 2: P = 0.003.
Groups in each model were matched by age, race/ethnicity, smoking status, and specimen collection date. Test for overall difference by HIV/sCVD status: Model 1, P = 0.006;
Model 2: P = 0.003.
MFI, median fluorescence intensity; sCVD, subclinical cardiovascular disease.
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