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Abstract

Motivation: Over the last decade, more diverse populations have been included in genome-wide

association studies. If a genetic variant has a varying effect on a phenotype in different populations,

genome-wide association studies applied to a dataset as a whole may not pinpoint such differen-

ces. It is especially important to be able to identify population-specific effects of genetic variants in

studies that would eventually lead to development of diagnostic tests or drug discovery.

Results: In this paper, we propose PopCluster: an algorithm to automatically discover subsets of

individuals in which the genetic effects of a variant are statistically different. PopCluster provides a

simple framework to directly analyze genotype data without prior knowledge of subjects’ ethnic-

ities. PopCluster combines logistic regression modeling, principal component analysis, hierarchical

clustering and a recursive bottom-up tree parsing procedure. The evaluation of PopCluster sug-

gests that the algorithm has a stable low false positive rate (�4%) and high true positive rate

(>80%) in simulations with large differences in allele frequencies between cases and controls.

Application of PopCluster to data from genetic studies of longevity discovers ethnicity-dependent

heterogeneity in the association of rs3764814 (USP42) with the phenotype.

Availability and implementation: PopCluster was implemented using the R programming lan-

guage, PLINK and Eigensoft software, and can be found at the following GitHub repository: https://

github.com/gurinovich/PopCluster with instructions on its installation and usage.

Contact: agurinov@bu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In many genetic association studies, the phenotype is a binary vari-

able indicating the presence or absence of a trait, and logistic regres-

sion is a popular model used to test the associations between single

nucleotide polymorphisms (SNPs) and the phenotype. The model

can be used to adjust the association between each SNP and the

phenotype by various covariates, including genome-wide principal

components that describe the genetic architecture of different ethnic

groups (Solovieff et al., 2010).

While non-European ethnicities have been under-represented in

genome-wide association studies (GWAS), the number of diverse

ethnicities is increasing (Petrovski and Goldstein, 2016; Popejoy and
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Fullerton, 2016). Comparison of the ancestry distribution of the

GWAS catalog from 2009 to 2016 shows, e.g. that the percentage of

subjects of European and Jewish ancestry has decreased from 96

to 81%, and the number of subjects of Asian descent has

increased from 3 to 14% (Need and Goldstein, 2009; Popejoy and

Fullerton, 2016). Although some other ethnic groups are still highly

under-represented, their inclusion continues to increase (Mathew

et al., 2017).

Population stratification can challenge genetic association stud-

ies when the magnitude and/or direction of the effects of the allele

as well as the allele frequency vary according to ethnicity (Popejoy

and Fullerton, 2016; The PLOS Medicine Editors et al., 2016;

Torkamani et al., 2012). For example, the apolipoprotein E

(APOE) e4 allele, which is a known risk factor of Alzheimer’s dis-

ease, has different allele frequencies and effects in Europeans,

Africans and Hispanics (Campos et al., 2013; Corbo and Scacchi,

1999; Hendrie et al., 2014; Liu et al., 2013). Similarly, it has been

shown that for 25% of the SNPs associated with BMI, type 2 dia-

betes and lipid levels in Europeans, the strength of association

varies substantially in at least one non-European population

(Carlson et al., 2013). Even though a large number of these SNPs

may be in linkage disequilibrium (LD) with causal SNPs, it is im-

portant to investigate whether any of the associations are due to

true population differences rather than differences in LD between

populations.

If the association between a SNP and a trait is tested in a group

of subjects in which the genetic effect of the SNP varies with ethni-

city, ignoring the interaction between the genetic effect and the eth-

nicity may produce either a false positive (FP) or a false negative

(FN) result. For example, if the effects of the SNP are in opposite

directions in some ethnic groups, ignoring these antagonistic effects

may result in a FN result. An alternative and common situation is

when the genetic effect is significant only in a particular genetic

background that is over-represented in the analysis. Ignoring the

ethnicity effect may produce a FP association in ethnicities in which

there is no association between the SNP and phenotype.

In this paper, we introduce PopCluster—an algorithm that finds

sub-populations of study subjects in which the genetic effects of a

SNP are different. We thoroughly evaluated the false and true posi-

tive rates (TPRs) of PopCluster using real and simulated genetic

data. We also applied the algorithm to real data from four studies of

extreme longevity (EL) and the Health and Retirement Study (HRS).

We conclude by reviewing usefulness and limitations of PopCluster,

and suggest potential applications.

2 Materials and methods

2.1 Methodology
The algorithm takes the following variables as its input: genome-

wide genotype data for each subject, a list of SNPs of interest to test,

phenotype information for each subject and a list of covariates to be

included in the model, e.g. sex and age. PopCluster takes this infor-

mation to discover ethnic-specific effects of the list of SNPs of inter-

est by performing the following analyses, which are described in

detail in the next sub-sections. First, PopCluster performs principal

component analysis (PCA) of the genome-wide genotype data and

hierarchical clustering of the most informative principal components

to discover a set of nested clusters of genetic ethnicity. Next,

genome-wide principal components are recalculated in each cluster

of subjects, followed by test of the associations between the

phenotype and SNPs in each cluster. The final step of PopCluster is

pruning of redundant clusters to generate the final list of SNPs and

clusters with varying genetic effects on the phenotype.

2.1.1 Cluster generation

The cluster generation step is depicted in Figure 1. First, PopCluster

computes genome-wide principal components using the

EIGENSOFT package on the genome-wide genotype data (Price

et al., 2006). Next, hierarchical clustering is performed on subjects

using the most informative number of principal components. Scree

plot is a good way to decide on how many principal components to

use (Solovieff et al., 2010). Typically, six principal components are

sufficient to characterize the major European ethnic groups, while

up to 20 principal components may be needed to characterize more

heterogeneous ethnic groups. Since the dendrogram associated with

hierarchical clustering is a binary tree, each node (cluster) has at

most two children nodes, one parent node and one sibling node,

while the ancestors of a node are the parent node and the recursive

set of parent nodes. Therefore, a set of nested clusters is generated

by sequentially cutting all edges of the dendrogram that describe the

agglomerative clustering procedure. Only the clusters with more

than 100 subjects, and with a sibling node cluster with more than

100 subjects are included in the subsequent analyses. Figure 1 con-

tains an example of a dendrogram showing hierarchical clusters of

500 subjects. Each node in the dendrogram represents a cluster and

the number at each node is the size of the cluster. Clusters 110, 240,

350, 150, 500 above the red, dashed line have over 100 subjects and

have a sibling node with over 100 subjects and are used in the next

step of the algorithm. We chose 100 as the default minimum number

of subjects in a cluster to be taken in the next step of the analysis in

order to have an average of 25 observations in a 2�2 table for allel-

ic association. This threshold can be easily set to a different value if

needed in the input argument list to PopCluster.

In each selected cluster, PopCluster recalculates new principal

components using the EIGENSOFT package (Price et al., 2006) in

order to more specifically describe the genetic structure of the indi-

viduals in every new sub-cluster. In our example in Figure 1,

PopCluster recalculates the new principal components for clusters:

500, 150, 350, 110 and 240.

Fig. 1. Generation of clusters using genome-wide principal components. (top

left-to-right arrow): PopCluster calculates principal components from the gen-

ome-wide genotype data using the EIGENSOFT software. (middle top-to-

down arrow): subjects are clustered based on a set of principal components

using the hierarchical clustering. (bottom left-to-right arrow): PopCluster

recalculates principal components for each selected cluster

PopCluster 3047



2.1.2 Test of the associations between the phenotype and SNPs

Next, PopCluster fits logistic regression models to test the associa-

tions between the phenotype and each SNP in every cluster:

log
P

1� P

� �
¼ b0 þ b1SNPþ b2PC1 þ :::

þ bnþ1PCn þ bnþ2x1 þ :::þ bnþmþ1xm;

(1)

where P is the probability of a subject having the phenotype usually

expressed as 0 for its absence and 1 for presence; b0; b1; :::; bnþmþ1

are model parameters; and the variable SNP is typically coded by

the number of coded alleles in the genotypes, i.e. additive genetic

model. The model is adjusted by PC1,. . ., PCn and additional covari-

ates x1,. . ., xm. The statistics from the logistic regression models,

such as parameter estimates, standard errors and P-values, are saved

by PopCluster for further analysis. The summary of this step is

shown in Figure 2.

2.1.3 Pruning of redundant clusters

PopCluster was developed to identify SNPs that have varying effects

in different ethnic groups, or sub-populations. Therefore, the core of

PopCluster is a recursive algorithm to discover such clusters by com-

paring the genetic effect of each SNP in the sub-populations repre-

sented by two sibling clusters. PopCluster recursively parses the

dendrogram bottom-up for every SNP under investigation by com-

paring the genetic effects of each pair of sibling clusters that have no

children (Fig. 3).

The algorithm first checks the following conditions for each pair

of sibling clusters that have no children: (i) each cluster has at least

five cases and five controls; (ii) the minor allele frequency (MAF) of

a SNP in each cluster is >0.05; (iii) one or both of the phenotype-

SNP associations are statistically significant (P-value <0.05). All of

these conditions are user defined input parameters. If at least one of

these conditions does not hold, PopCluster removes these sibling

nodes from the list of clusters. Otherwise, PopCluster compares the

SNPs’ effects in the two sub-populations by calculating the statistic:

z ¼ b1:1 � b1:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1:1 þ d2
1:2

q ; (2)

where b1:1 and b1:2 are SNP effect estimates for two sibling clusters

using the logistic regression model in Equation (1), and d1:1 and d1:2

are their standard errors. Under the assumption of at least 100

observations per cluster, the estimates b1:1 and b1:2 are approximate-

ly normally distributed and independent and therefore z � Nð0; 1Þ
under the null hypothesis of no difference of the genetic effects.

Therefore, if jzj < za=2, where za=2 is the ð1� a=2Þ percentile of

the standard normal distribution, then we fail to reject the null hy-

pothesis. In this case, b1.1 is statistically equivalent to b1.2, thus

implying that the effects of the tested SNP in the two sibling clusters

are equivalent, and PopCluster merges these nodes into their parent

cluster, and removes them from the dendrogram. If jzj�za=2 then

b1.1 6¼ b1.2, and the results from the sibling nodes are included in the

list of final results, and all the ancestors of these nodes are removed

from the dendrogram.

The procedure parses the dendrogram until there are no sibling

nodes that are both leaf nodes. The procedure is repeated separately

for each SNP, and the output of PopCluster is a list of clusters for

each SNP with all the relevant statistics. These clusters are non-

overlapping, meaning no cluster has subjects that are in another

cluster and each of the subjects of the initial dataset is included in

one of the clusters. If no population-specific effects are identified,

the algorithm returns the original top cluster.

Reported SNP–phenotype associations are considered significant

if the association between a SNP and the phenotype [b1 in the

Equation (1)] in a cluster has a P-value less than a threshold a:

a ¼ 0:05

M�N
; (3)

where M is the total number of clusters that was reported by

PopCluster for the SNP and N is the number of SNPs tested. By

dividing 0.05 by M and N, we adjust the result for multiple

comparisons.

2.2 Genotype and phenotype data
We used two different phenotypes and two distinct genome-wide

genotype datasets to evaluate our algorithm. The first dataset is

compiled from four case-control studies of EL: the New England

Centenarian Study (Sebastiani and Perls, 2012), the Southern Italian

Centenarian Study (Malovini et al., 2011), the Longevity Gene

Fig. 2. Test of the associations between the phenotype and SNPs in each clus-

ter. Logistic regression models are fit for each SNP-cluster combinations, and

the respective statistics from the models are saved for the next step of

PopCluster

Fig. 3. A schematic of the recursive pruning of redundant clusters. The den-

drogram describing the final cluster in Figure 2 is recursively parsed bottom-

up to identify clusters in which the genetic effects are not statistically differ-

ent. Here, numbers in the dendrogram (1, 2, 3, 4 and 5) are simply labels to

distinguish between different clusters
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Project (LGP) (Atzmon et al., 2004) and the Long Life Family Study

(LLFS) (Newman et al., 2011) (Table 1). LLFS data are available via

dbGaP (dbGaP Study Accession: phs000397.v1.p1). The genotype

data for all studies were generated using Illumina SNP arrays

(Sebastiani et al., 2012) and imputed to the 1000 Genomes haplo-

types phase I using IMPUTE2 following the standard protocol and

quality control (Howie et al., 2012). All subjects provided informed

consent approved by the study institutional review boards. The com-

bined datasets contain several European ethnicities that have been

well characterized. See Supplementary Figure S1 in Sebastiani et al.

(2017b) for a characterization of European ethnicities in this dataset

using PCA. Cases are defined as individuals who lived past the one

percentile survival age from the 1900 birth year cohort based on US

Social Security Administration cohort life tables (Bell and Miller,

2005), i.e. age 96 and greater for males, and 100 years and greater

for females. The details of the genotype data and the phenotype of

EL are presented in Sebastiani et al. (2017b), Andersen et al. (2012)

and Sebastiani et al. (2016a,b, 2017c).

In this dataset we used PopCluster to analyze a list of 371 SNPs

that were previously found to be associated with EL with P-value ¡

5E-05 (Sebastiani et al., 2017b). To limit the problem of multiple

comparisons, we also used PopCluster to re-analyze the association

between the 11 SNPs in Table 2 that have been associated with EL

with genome-wide significance (P-value ¡ 5E-07) in Sebastiani et al.

(2017b).

In addition, we applied PopCluster to the multi-ethnic HRS

(Sonnega et al., 2014) on the SNPs from Table 2 to search for

ethnic-specific genetic effects on surviving past age 90. The HRS

includes self-identified ‘White/Caucasian’, ‘Black or African-

American’ and a few different groups of ‘Hispanic’ subjects.

Controls were subjects with age at last contact ¡ 81. With this defin-

ition of cases and controls, the HRS dataset included 866 cases and

8469 controls. The HRS dataset is available through the HRS web-

site (http://hrsonline.isr.umich.edu/) and dbGaP (dbGaP Study

Accession: phs000428.v1.p1).

2.3 Evaluation
We evaluated PopCluster using a combination of real and simulated

datasets. Here we outline the datasets and metrics used for the

evaluation.

2.3.1 FP rate

We used genotype data of SNPs in Table 2 from EL studies (Table

1) as one of the input parameters to PopCluster to evaluate its FP

rate (FPR). This list is a subset of the 371 SNPs described in Section

2.2.

In each simulation, we reshuffled the original labels of cases and

controls or randomly generated the case/control labels before apply-

ing PopCluster. Therefore, by design, all significant associations

detected are FPs. Specifically, we used four versions of the original

dataset: the original dataset (8961 subjects) with (i) either the same

number of cases and controls as in the original data (2138 cases and

6823 controls), and the case/control labels randomly reshuffled in

each run, or (ii) a randomly assigned even number of case and con-

trol labels: 4480 cases and 4481 controls. In addition, from the ori-

ginal dataset of 8961 subjects, related subjects from the same

families were removed by selecting only one case and one control

for each family resulting in 7689 subjects. This reduced dataset was

used with (iii) either the same number of cases and controls as in the

original data (1961 cases and 5728 controls), and the case/control

labels randomly reshuffled in each run, or (iv) a randomly assigned

even number of case and control labels: 3844/3845 cases and con-

trols. In addition to permuting case/control status in the overall

datasets, we also performed two additional simulations in which the

permutation of phenotype labels was done within each cluster in (i)

the original dataset (8961 subjects), and (ii) the reduced dataset

without related individuals (7689 subjects).

We calculated the FPR for a simulation run as

FPR ¼ FP

FPþ TN
¼

XN
i¼1

si

ki

N
(4)

where FP is the number of FPs, TN is the number of true negatives,

N is the number of SNPs provided to the algorithm (11 in the case

of our particular evaluation), si is the number of clusters (sub-popu-

lations) that were detected by PopCluster to have significant associa-

tions between a phenotype and an i-th SNP (FP), ki is the total

number of clusters detected by PopCluster for an i-th SNP

(FPþTN). Correction for multiple comparisons was incorporated

in the FPR evaluation by dividing the nominal significance level a by

the total number of clusters detected by PopCluster for each SNP [ki

in Equation (4)].

2.3.2 TPR

To estimate the TPR of PopCluster, we simulated two scenarios

with (i) a true association only in a selected subpopulation of sub-

jects, and (ii) a true association in the whole dataset. We compared

the performances of PopCluster and traditional analysis without

clustering in both simulated datasets.

In the first scenario, we simulated an allele A to be associated

with EL in the selected group of 1905 subjects with 503 cases and

1402 controls characterized by two first genome-wide principal

components calculated with the data of the studies in Table 1:

PC1�� 0:005 and PC2�0. For the rest of the subjects, the allele

Table 2. Subset of SNPs associated with EL

SNP Chr Pos (hg38) Ref/Alt Genes

rs2008465 2 10 014 127 A/G GRHL1, KLF11

rs28391193 4 110 236 842 G/A ELOVL6, HSBP1P2

rs72834698 6 26 176 289 G/A HIST1H2BD, HIST1H2BE

rs3764814 7 6 150 149 T/C USP42

rs7976168 12 83 044 780 A/G TMTC2

rs7185374 16 48 416 457 A/C SIAH1

rs5882 16 44 888 997 A/G CETP

rs6857 19 44 888 997 C/T APOE

rs59007384 19 44 893 408 G/T TOMM40

rs405509 19 44 905 579 T/G TOMM40, APOE

rs769449 19 44 906 745 G/A APOE

Note: Chr: chromosome; Pos (hg38): position of a SNP in the Genome

Reference Consortium Human Reference 38; Ref/Alt: reference and alterna-

tive alleles; Genes: closest gene/genes [annotation was done using SnpEff

(Cingolani et al., 2012)].

Table 1. Summary of studies of EL included in the analysis

Study Cases (median age, range) Controls

SICS 174 (100, 96–109) 540

LGP 308 (102, 96–113) 621

LLFS 572 (100, 96–111) 2560

NECS 1084 (103, 96–119) 3102

Total 2138 6823
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was simulated not to be associated with the phenotype

(Supplementary Fig. S1). Specifically, for the subjects with PC1��
0:005 and PC2�0 different allele probabilities were assigned to cases

and controls as

PrðAjELÞ ¼ P1;
PrðAjELÞ ¼ P2;

�
(5)

where P1 is the probability of allele A in cases; P2 is the probability

of allele A in controls. The probabilities of allele dosages 0;1; 2 were

generated assuming Hardy–Weinberg equilibrium. Various combi-

nations of probabilities P1 and P2 [Equation (5)] were tested to

evaluate sensitivity and specificity of the algorithm to different risk

differences. We chose P1 ¼ f0:05; 0:1; 0:25; 0:5g to cover various

scenarios with sufficient power with our sample size. For each P1

value, we set the probability of allele A in controls to be

P2 ¼ P1 þ g, where g is the difference in the allele frequency be-

tween cases and controls and g ¼ f0:05;0:075; 0:1; 0:125;0:15g.
Varying P1 and g resulted in 20 different combinations of probabil-

ities P1 and P2. For the rest of the subjects [PC1 > �0:005 or

(PC1 < �0:005 and PC2 > 0)], the allele A was simulated to be

associated with PC1 and PC2, but not with the phenotype by setting

P3 ¼ PrðAÞ ¼ eb0þb1�PC1þb2�PC2

1þ eb0þb1�PC1þb2�PC2
; (6)

with b0 ¼ �1; b1 ¼ �75, and b2 ¼ �50 such that probabilities P3

are not too extreme. The probabilities of allele dosages 0; 1; 2 were

again calculated assuming Hardy–Weinberg equilibrium.

Using the simulated allele data, we estimated the rate of

PopCluster to discover the true clusters using the proportion of

times the algorithm returned at least one cluster with more than

80% subjects from the region of association. In these cases, we eval-

uated the TPR of PopCluster for each of the simulation sets as

TPR ¼ TP

TPþ FN
; (7)

where TP is the number of true associations that PopCluster pre-

dicted to be significant (positive). FN is the number of true associa-

tions that PopCluster found to be insignificant (negative). We define

an association in a cluster to be true if more than 80% of subjects in

the cluster are from the region of association. An association was

significant if the P-value was less than a threshold a [Equation (3)].

We also compared the true effect size b and the estimated parameter

value in each simulated dataset to evaluate the precision of

PopCluster.

To compare the performance of PopCluster with the traditional

analysis, we also analyzed each simulated dataset using logistic re-

gression adjusted for sex and the four principal components, and we

calculated the proportion of associations found significant for each

of the parameters combinations. Note that each significant associ-

ation found with the traditional analysis is a TP association in the

subpopulation in which we simulated a true association, but a FP as-

sociation in the remaining subset.

In the second scenario, we simulated an allele A to be associated

with EL in the whole dataset using the probabilities P1 and P2

[Equation (5)]. We conducted this analysis to compare the TPR of

PopCluster and the traditional analysis when there is no heterogen-

eity in the association between the SNP and the phenotype in differ-

ent clusters. To evaluate PopCluster’s performance, we calculated

the proportion of times PopCluster returned exactly one top cluster,

and how often this cluster was identified as significant. In addition,

for the rest of the results, when PopCluster returned more than one

cluster, we calculated the average proportion of the clusters that

were identified as significant. We calculated the TPR of the trad-

itional analysis as the proportion of significant associations detected

in the simulated datasets.

3 Results

3.1 Evaluation results
3.1.1 FPR

Figure 4 summarizes the results of the FPR evaluation. Each simula-

tion was run 1000 times. On average, the estimated FPR in all six

different simulations was �4%. This low FPR shows that the correc-

tion for multiple comparisons incorporated in Equation (4) is suffi-

cient to bound the family-wise error rate by the level of significance

used in the algorithm. For additional details on this evaluation, see

Supplementary Table S1.

We also evaluated the FPR of PopCluster on a homogeneous

subset of our data—LGP (Table 1). We did this to verify the FPR

when there are no clusters in the study populations. In 100% of sim-

ulations, PopCluster returned one cluster—the whole LGP dataset—

as a final result, and the FPR in this case is equivalent to the FPR of

a traditional analysis that adjust for the population structure. On

average, the estimated FPR in this evaluation was �5%.

3.1.2 TPR

The boxplots in Figure 5 summarize the results of the evaluation of

the PopCluster’s TPR for all the combinations of probabilities of al-

lele A in cases and controls when allele A was simulated to be associ-

ated with phenotype only in selected region (scenario 1). For each

combination of parameters, simulations were run 1000 times. The

percent of simulation runs that returned at least one cluster with

more than 80% subjects in the region of association was 97.6%

(Supplementary Table S2), and the average number of these ‘true as-

sociation’ clusters was 2.6 (Supplementary Table S3). The TPR of

Fig. 4. Boxplots of the FPR in six different simulations. Mean FPR and stand-

ard deviations (in parentheses) for each of the simulations are shown on the

right of the Figure. ‘Original data shuffled’: original dataset with random

reshuffling of cases and controls in a whole dataset. ‘Original data even’: ori-

ginal dataset with equal number of cases and controls randomly generated.

‘No-relatedness data shuffled’: as ‘original data shuffled’ after we removed

related individuals. ‘No-relatedness data even’: as ‘original data even’ after

we removed related individuals. ‘Original data each cluster’: original dataset

with random reshuffling of cases and controls in each cluster. ‘No-related-

ness data each cluster’: as ‘original data each cluster’ after we removed

related individuals
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PopCluster increases with the increase in difference in allele frequen-

cies between cases and controls. High TPR values in the simulations

with larger differences in allele frequencies suggest that the algo-

rithm can detect clusters of significant association. Low TPR values

for smaller differences in allele frequencies indicate that the dataset

does not have enough power to detect those fine associations. In

addition, we find that the differences between true effect size b and

estimated b̂ are symmetrically distributed around 0 as expected

(Supplementary Fig. S2). The black circles with white centers on

boxplots in Figure 5 depict the proportion of general associations

found by the traditional analysis. These proportions are comparable

to the TPR of PopCluster; however they represent only TPR for find-

ing a general association, but every TP in this case is a FP for a group

of subjects in which allele A was simulated not to be associated with

a phenotype.

The average TPR of the traditional analysis in datasets simulated

to have an association between allele A and phenotype in the whole

dataset (scenario 2) was 100%, meaning all of the runs returned an

association as significant. The average number of times PopCluster

returned only one cluster as a result was 30% (Supplementary Table

S4). Among those single clusters, 100% of them were found to have

a significant association between the simulated allele and phenotype.

For the simulation runs that returned more than one cluster as a re-

sult, the average number of clusters that were found significant was

58%. We evaluated PopCluster’s performance in the case of allele–

phenotype association simulated in the whole dataset in three more

additional simulation set-ups that are presented in Supplementary

Tables S5–S7.

3.2 Application to real data
We used PopCluster to re-analyze the association of the set of 371

SNPs with EL in the data summarized in Table 1. We assessed

whether the algorithm could detect more significant associations

than the analysis that adjusts for population structure, and identify

sub-populations in which the associations were not significant. The

analysis identified 14 SNPs in the APOE region that reached

genome-wide level of significance in at least one cluster and al-

though none of these cluster-specific associations was more signifi-

cant than the results in the meta-analysis in Sebastiani et al.

(2017b), the analysis suggests that the effect of APOE on EL may

vary with ethnicity. In addition, PopCluster identified a large cluster

of 7401 subjects in which the association between SNP rs2008465

(Table 2) and EL was more significant than in the meta-analysis,

and smaller clusters comprising mainly North East Europeans in

which the association between rs2008465 and EL was not signifi-

cant. For complete results returned by PopCluster on the analysis of

371 SNPs and EL see Supplementary Table S9 and Figures S3–S12.

To interpret ethnic groups from PCA plots, please refer to

Supplementary Figure S13.

Below we present an example of SNP, rs3764814, with ethnic-

specific effect on EL in sub-populations of Europeans. It also

appeared to have an ethnic-specific effect on surviving past age 90 in

the HRS dataset. To account for the varying sample sizes of clusters,

we computed the power to detect significant associations in clusters

using the G*Power software (Faul et al., 2009).

3.2.1 rs3764814 and EL

This SNP is a coding SNP in the gene USP42 which is located on

chromosome 7. We recently found this SNP to be very strongly asso-

ciated with EL in Europeans ignoring population-specific effects

(Sebastiani et al., 2017b). The global MAF of rs3764814 is 0.28,

but it becomes much rarer in Europeans: 0.07. The MAF of

rs3764814 in our dataset is 0.09 and it increases 1.5 times in cente-

narians as compared to controls: 0.12 in cases and 0.08 in controls.

Table 3 summarizes the results of PopCluster analysis for

rs3764814 on EL. Supplementary Figure S14 presents a hierarchical

tree of this dataset with the clusters returned for this SNP as high-

lighted in yellow [visualized with Cytoscape (Shannon et al., 2003)].

PopCluster identified two clusters (clusters 249 and 583 in Table 3

and black dots in Fig. 6) in which the association of rs3764814 did

not reach statistical significance. Since clusters 249 and 583 are not

sibling clusters, we can only conclude that there is no significant as-

sociation of rs3764814 and EL in these two groups. Note that this is

different than saying the effects are the same. In Figure 6, the high-

lighted subjects belong to clusters for which the association between

SNP rs3764814 and EL is significant or borderline significant. Using

partially known information on subjects’ ancestry, such as birth pla-

ces and native languages of grandparents (Solovieff et al., 2010), we

identified the subjects without an association as being enriched of

Danish descent(Sebastiani et al., 2017a).

Table 3. Complete list of clusters for rs3764814 and EL

Cluster OR 95% CI P-value MAF Power, %

828 2.24 [1.49, 3.36] 9.87E-05 0.086 100

316 (583) 2.89 [1.61, 5.17] 0.0004 0.085 100

721 1.91 [1.31, 2.79] 0.0007 0.093 100

805 (2971) 2.22 [1.37, 3.60] 0.001 0.088 100

611 2.03 [1.23, 3.35] 0.006 0.075 100

2971 (805) 1.3 [1.07, 1.57] 0.009 0.089 100

1145 1.47 [1.08, 1.99] 0.01 0.105 100

126 3.75 [1.28, 11.00] 0.02 0.075 100

606 1.61 [1.07, 2.42] 0.02 0.094 100

249 1.3 [0.63, 2.71] 0.48 0.064 50

583 (316) 0.85 [0.49, 1.49] 0.57 0.071 47

Note: Cluster: label for the cluster which reflect cluster size, e.g. cluster

labeled 583 consists of 583 subjects (if in the final dendrogram structure, a

cluster has a sibling, it is reported here in parentheses).

OR: odds ratio for EL in carriers of the allele; 95% CI: 95% confidence

interval for the OR; P-value: P-value of the association; MAF: minor allele

frequency in the cluster; Power, %: power of detecting a given OR with a

given number of subjects.

Fig. 5. Boxplots of the TPR for various combinations of probabilities of allele

A in cases and controls. g is the difference in allele probabilities between

cases and controls. P(A) denotes the probability of allele A in cases. (A):

P ðAÞ ¼ 0:05. (B): P ðAÞ ¼ 0:1. (C): P ðAÞ ¼ 0:25. (D): P ðAÞ ¼ 0:5. Black circles

with white centers represent how often the traditional analysis finds a general

association to be significant
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3.2.2 rs72834698 and survival past age 90

We used PopCluster to analyze the association between SNP

rs72834698 and surviving past the age of 90 in the HRS dataset.

The analysis identified one large cluster of 8128 subjects in which

this SNP had a significant association with survival past age 90

(cluster 8128 in Table 4 and highlighted subjects in Fig. 7). Note

that this association is not significant after correction for multiple

testing. Based on self-reported ethnicity labels provided with HRS

dataset, the group of subjects that is not in this cluster (black dots in

Fig. 7) is enriched of ‘Hispanic, Mexican’ subjects. Supplementary

Figure S15 presents a hierarchical tree with clusters returned for

rs72834698 in yellow. For more results on this analysis, see

Supplementary Table S8 and Figure S16.

4 Discussion

Currently most of the genetics studies are based on data generated in

subjects of specific European ancestry, and sometimes the results of

the genetic association studies do not generalize to other populations

(Martin et al., 2017). The issue of underrepresentation of non-

European populations in genetic studies is slowly being addressed

(Popejoy and Fullerton, 2016); and it is important to adapt current

techniques to account for the different allele frequencies and genetic

effects in those populations. There are methods that have been

proposed to account for the heterogeneity of variants and phenotype

associations in different populations. For example, the generalized

linear mixed model association test accounts for population stratifi-

cation and varying binary phenotype frequencies in different popula-

tions (Chen et al., 2016). The generalized linear mixed model

association test corrects P-values and effect estimates in the genetic

association studies in the presence of non-constant mean-variance

relationship for a binary phenotype; however, it does not identify

the varying effect sizes in the populations. Another approach, XP-

BLUP, predicts individual genetic risk scores for heterogeneous sub-

jects by incorporating multi- and trans-ethnic information in the

analysis (Coram et al., 2017). The novelty of PopCluster is to pro-

vide a heuristic search to discover heterogeneous effects when the

sub-populations are unknown.

There are many consequences of not being able to identify the

varying genetic effects in the studies that consist of only or a major-

ity of European samples. This problem is particularly important in

genetic association studies that aim to discover new drug targets.

Currently there are several high-selling medications that do not help

or even hurt the majority of people who take them (Schork, 2015).

Another area that would benefit the delineation of population-spe-

cific genetic effects is genetic risk prediction. When a genetic marker

for a trait is identified using predominantly European populations,

using this marker for prediction of disease risk in non-Europeans

may result in a higher FP diagnostic rate (Manrai et al., 2016; The

PLOS Medicine Editors et al., 2016).

Various factors, such as genetics, diet, lifestyle and endemic in-

fectious diseases, contribute to varying allele frequencies and genetic

effects in different populations (Kelly et al., 2017; Petrovski and

Goldstein, 2016; Rosenberg et al., 2002). In addition, different gen-

etic markers can be associated with the same disease phenotype in

different populations (Schork, 1997). PopCluster performs the asso-

ciation studies in populations with varying genetic effects on a

phenotype to account for the diverse ancestry and environmental

backgrounds.

PopCluster can also be used as a step before performing meta-

analysis when working with multi- and trans-ethnic studies. The al-

gorithm facilitates identification of populations with heterogeneous

genetic effects. Subsequently, separate GWAS can be performed on

the detected sub-populations, and the results can be combined using

tools such as trans-ethnic meta-analysis (Morris, 2011).

In the evaluation we tested datasets with a small number of

related individuals (�14%) and the algorithm worked well in those

cases. However, when the number of related individuals is large,

proper corrections for relatedness are important. In our implementa-

tion of the algorithm, we use the R geeglm function from the

Fig. 6. Ethnic groups in which the effects of SNP rs3764814 on EL did not

reach statistical significance. The scatter plots display the principal compo-

nents PC1-PC4 calculated using genome-wide genotype data of all subjects in

the study of EL. Subjects colored in black belong to (Panel A): cluster 249,

(Panel B): cluster 583 as defined in Table 3

Table 4. Complete list of clusters for rs72834698 returned as an out-

put from PopCluster run on HRS dataset with phenotype of surviv-

ing past age 90

Cluster OR 95% CI P-value MAF Power, %

8128 (236) 1.26 [1.06, 1.50] 0.008 0.098 100

236 (8128) 0.34 [0.10, 1.16] 0.09 0.083 100

811 0.64 [0.31, 1.28] 0.21 0.075 100

160 1.01 [0.50, 2.01] 0.99 0.181 5

Fig. 7. The scatter plots display the principal components PC1-PC4 calculated

using genome-wide genotype data of all subjects in HRS study. Highlighted

subjects are the 8128 subjects from the cluster that is defined in Table 4
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geepack package (Hojsgaard et al., 2006) to fit the regression model.

If the dataset includes related individuals, PopCluster can use a gen-

eralized estimating equation to adjust for within-family correlation

(Wang et al., 2013). In our examples we only used a binary pheno-

type. However, in the implementation of PopCluster, there is an op-

tion to choose the probability distribution of the outcome in the

regression model so the algorithm can be used to analyze continuous

phenotypes.

PopCluster has several limitations that we outline below. One of

the limitations of our algorithm is that even though it finds

ethnicity-specific associations that otherwise would have been

missed, breaking the dataset into smaller clusters makes the associ-

ation testing less powerful. Additionally, if the initial dataset has a

small number of samples that belong to genetically very different

group compared to the rest of the samples, PopCluster might not be

able to identify the presence of ethnicity-dependent effects as it

would not process clusters below the root node of the dendrogram

(Fig. 1). In such situation, we recommend to remove these distinct

samples from the dataset, and re-run PopCluster on the updated set

of samples. In situations when genetic variants do not have heteroge-

neous associations with a phenotype in different populations,

PopCluster might lead to overfitting and identify differential associ-

ations between clusters. Thus, it is important to have a replication

for all the findings. Another constraint is that PopCluster accepts

the data with quality control performed beforehand. For example,

systematic differences in genotyping of the data could bias the PCA.

In our examples, we performed quality control on genome-wide

genotype data so that highly polymorphic regions and SNPs in high

LD are removed, and that the strand direction is consistent for all

the studies, etc. However, some additional sources of bias may al-

ways be possible and it might be useful to verify that the clusters rep-

resent ethnical differences if appropriate label data for some of the

subjects are known. In our examples, we verified that the clusters

represent European ethnicities using subjects and their parents’ pla-

ces of birth, or mother tongue. This step is not necessary, but it is an

addition to validating the results.

PopCluster could be extended in a few different ways. For ex-

ample, we applied hierarchical clustering to identify different popu-

lations because of its deterministic nature; however, other clustering

approaches could be used in a similar manner on a set of principal

components inferred from the genome-wide genetics data (Solovieff

et al., 2010). The current implementation of PopCluster is not

designed to analyze genome-wide genotype data and can be used to

re-analyze the associations between the SNPs that reach a certain

level of significance in a standard GWAS. For future work, we

would like to optimize the implementation of PopCluster to become

applicable to big genetic data and apply PopCluster to large datasets

with various populations and to test it in regards to different pheno-

types. We are hopeful that the use of the PopCluster’s methodology

will contribute to more precise estimate of genetic associations in

the presence of population heterogeneity and ultimately better use

of genetic findings in precision medicine.
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