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Abstract

Motivation: In the continuously expanding omics era, novel computational and statistical strat-

egies are needed for data integration and identification of biomarkers and molecular signatures.

We present Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO),

a multi-omics integrative method that seeks for common information across different data types

through the selection of a subset of molecular features, while discriminating between multiple

phenotypic groups.

Results: Using simulations and benchmark multi-omics studies, we show that DIABLO identifies

features with superior biological relevance compared with existing unsupervised integrative meth-

ods, while achieving predictive performance comparable to state-of-the-art supervised approaches.

DIABLO is versatile, allowing for modular-based analyses and cross-over study designs. In two

case studies, DIABLO identified both known and novel multi-omics biomarkers consisting of

mRNAs, miRNAs, CpGs, proteins and metabolites.

Availability and implementation: DIABLO is implemented in the mixOmics R Bioconductor pack-

age with functions for parameters’ choice and visualization to assist in the interpretation of the inte-

grative analyses, along with tutorials on http://mixomics.org and in our Bioconductor vignette.

Contact: kimanh.lecao@unimelb.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Technological improvements have allowed for the collection of data

from different molecular compartments (e.g. gene expression, DNA

methylation status, protein abundance) resulting in multiple omics

(multi-omics) data from the same set of biospecimens or individuals

(e.g. transcriptomics, proteomics, metabolomics). Systems biology

approaches, by incorporating data from multiple biological com-

partments, provide improved biological insights compared with

traditional single omics analyses (Kim et al., 2013; Wang et al.,

2014; Zhu et al., 2012). One reason might be that interactions be-

tween omics layers is not taken into account in single omics analysis

and prevents the reconstruction of accurate molecular networks.

These molecular networks are dynamic, changing under perturbed

conditions such as disease, response to therapy and environmental

exposures. Therefore, adopting a holistic approach by integrating

multi-omics data may bridge this information gap, and uncover net-

works that are representative of the underlying molecular mecha-

nisms (Ritchie et al., 2015; Yugi et al., 2016).
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Many strategies (component-based, message-passing, Bayesian

methods, network analysis, classification schemes) have been pro-

posed for multi-omics data integration to answer various questions,

incorporating experimental data as well as curated data from bio-

logical databases (see Supplementary Fig. S1; Bersanelli et al., 2016;

Huang et al., 2017; Meng et al., 2016; Ritchie et al., 2015; Rohart

et al., 2017; Zeng and Lumley, 2018). These include data-driven

methods for identifying novel phenotypic clusters such as Similarity

Network Fusion (Wang et al., 2014), Bayesian Consensus

Clustering (Kirk et al., 2012), and methods for extracting common

sources of variation: joint Non-negative Matrix Factorization

(Zhang et al., 2012), Joint and Individual Variation Explained

(JIVE) (Lock et al., 2013), sparse MultiBlock Partial Least Squares

(Li et al., 2012), regularized and sparse generalized canonical correl-

ation analysis (sGCCA) (Tenenhaus and Tenenhaus, 2011;

Tenenhaus et al., 2014) and Multi-Omics Factor Analysis (MOFA)

(Argelaguet et al., 2018). Other methods such as Passing Attributes

between Networks for Data Assimilation (Glass et al., 2013), Sparse

Network regularized Multiple Non-negative Matrix Factorization

(Zhang et al., 2011) and Reconstructing Integrative Molecular

Bayesian NETworks (Zhu et al., 2012) can be used to incorporate

curated data with experimental data in order to reconstruct bio-

logical networks. All of these methods are examples of unsupervised

multi-omics data integration, that is, without the need of sample

labels that categorize samples based on a certain phenotype or trait.

However, researchers are also interested in multi-omics biomarkers

that are predictive of disease, i.e. supervised methods in which

molecular patterns that span across biological domains explain or

characterize a known phenotype.

Supervised data integration approaches for the classification of

multiple phenotypes (e.g. PAM50 breast cancer phenotypes) include

multi-step approaches that concatenate all data prior to applying a

classification model, or ensemble-based in which a classification

model is applied separately to each omics data and the resulting pre-

dictions are combined based on average or majority vote (Günther

et al., 2012). These approaches can be biased toward certain omics

data types and do not account for interactions between omics layers

(Aben et al., 2016; Ma et al., 2016). Recently, classification

approaches such as Network smoothed t-statistics Support Vector

Machines (Cun and Fröhlich, 2013), Generalized Elastic Net

(Sokolov et al., 2016) and adaptive Group-Regularized ridge regres-

sion (van de Wiel et al., 2016) have incorporated curated biological

data such as protein protein interactions (PPI) data, genetic pathway

data and type of methylation probes. These methods are still limited

to single omics data such that, either the concatenation or ensemble-

based schemes must be applied to incorporate additional data types.

Other approaches include The Analysis Tool for Heritable and

Environmental Network Associations based on a Grammatical

Evolution Neural Network that integrates multi-omics data for the

prediction of clinical outcomes (Kim et al., 2013). However, the ap-

proach requires initial filtering, feature selection and modeling inde-

pendently on each omics dataset prior to integration.

We introduce Data Integration Analysis for Biomarker discov-

ery using Latent cOmponents (DIABLO), a multi-omics method

that simultaneously identifies key omics variables (mRNA,

miRNA, CpGs, proteins, metabolites etc.) during the integration

process and discriminates phenotypic groups. DIABLO maximizes

the common or correlated information between multiple omics

datasets. It is the first multivariate integrative classification

method of its kind that builds a predictive model for prediction on

new samples. The method is based on Projection to Latent

Structures (PLS), allowing for powerful visualizations. DIABLO is

highly flexible in the type of experimental design it can handle,

ranging from classical single time point to cross-over and repeated

measures studies. Modular-based analysis can also be incorporated

using pathway-based module matrices (Langfelder and Horvath,

2008) instead of the original omics matrices. We demonstrate the

capabilities and versatility of DIABLO below, both in simulated

and real multi-omics studies to identify relevant biomarkers of

various diseases.

2 Materials and methods

2.1 General multivariate integrative framework
DIABLO extends sGCCA (Tenenhaus et al., 2014) to a classification

or supervised framework. sGCCA is a multivariate dimension reduc-

tion technique that uses singular value decomposition and selects

co-expressed (correlated) variables from several omics datasets.

sGCCA maximizes the covariance between linear combinations of

variables (latent component scores) and projects the data into the

smaller dimensional subspace spanned by the components. The se-

lection of the correlated molecules across omics levels is performed

internally with ‘1 penalization on the variable coefficient vector

defining the linear combinations. Since all latent components are

scaled in the algorithm, sGCCA maximizes the correlation between

components. However, we will retain the term ‘covariance’ instead

of ‘correlation’ throughout this section to present the general

sGCCA framework.

Denote Q normalized, centered and scaled datasets Xð1Þ

ðN � P1Þ; Xð2ÞðN � P2Þ,. . ., XðQÞðN � PQÞmeasuring the expression

levels of P1; . . . ;PQ ‘omics variables on the same N samples’.

sGCCA solves the optimization function for each dimension

h ¼ 1; . . . ;H:

max
a
ð1Þ
h
;...;a

ðQÞ
h

XQ

i; j¼1; i 6¼j

ci;j covðXðiÞh a
ðiÞ
h ;X

ðjÞ
h a
ðjÞ
h Þ;

s:t: jjaðqÞh jj2 ¼ 1 and jjaðqÞh jj1�kðqÞ for all 1�q�Q

(1)

where a
ðqÞ
h is the variable coefficient or loading vector on dimension

h associated to the residual matrix X
ðqÞ
h of the dataset XðqÞ. C ¼

fci;jgi;j is a (Q�Q) design matrix that specifies whether datasets

should be connected. Elements in C can be set to zeros when data-

sets are not connected and ones where datasets are fully connected,

as we further describe in Section 2.2. In addition in (1), kðqÞ is a non-

negative parameter that controls the amount of shrinkage and thus

the number of non-zero coefficients in a
ðqÞ
h . Similar to the LASSO

(Tibshirani, 1996) and other ‘1 penalized multivariate models devel-

oped for single omics analysis (Lê Cao et al., 2011), the penalization

enables the selection of a subset of variables with non-zero coeffi-

cients that define each component score t
ðqÞ
h ¼ X

ðqÞ
h a

ðqÞ
h . The result is

the identification of variables that are highly correlated between and

within omics datasets.

The sGCCA model (1) is iterative; a first set of coefficient vectors

ðað1Þ1 ; . . . a
ðQÞ
1 Þ is obtained by maximizing (1) for h¼1 with X

ðqÞ
1 ¼

XðqÞ, before maximizing (1) for h¼2 using residual matrices

X
ðqÞ
2 ¼ X

ðqÞ
1 � t

ðqÞ
1 a

ðqÞ
1 ;1�q�Q. This process is repeated until a suffi-

cient number of dimensions (or set of components) is obtained. The

underlying assumption of sGCCA is that the major source of common

biological variation can be extracted via the first set of component

scores t
ðqÞ
1 ; . . . ; t

ðQÞ
h , while any unwanted variation due to heterogeneity

across the datasets XðqÞ does not impact the statistical model. The opti-

mization problem (1) is solved using a monotonically convergent algo-

rithm (Tenenhaus et al., 2014).
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2.2 DIABLO: supervised analysis and prediction
To extend sGCCA for a classification framework, we substitute one

omics dataset XðqÞ in (1) with a dummy indicator matrix Y (N�G)

to indicate the class membership of each sample, where G is the

number of phenotype groups. For easier use of DIABLO, we

replaced the ‘1 penalty parameter kðqÞ by the number of variables to

select in each dataset and each component, as there is a direct corres-

pondence between both parameters.

2.2.1 Input data

While DIABLO does not assume particular data distributions, all

datasets should be normalized appropriately according to each

omics platform and pre-processed if necessary (see the normal-

ization steps described in Supplementary Section S2 for each case

study). Samples should be represented in rows in the data matrices

and match the same samples across omics datasets. The phenotype

outcome y is a factor indicating the class membership of each sam-

ple and is internally transformed into a dummy matrix Y in

mixOmics. In addition, each variable is centered and scaled intern-

ally, as is conventionally performed in PLS-based models. A multi-

level variance decomposition option is available for repeated

measures and cross-over study designs, as illustrated in the asthma

study (Section 3.4).

2.2.2 Design matrix

The design matrix C is a (Q�Q) matrix with values ranging from 0

to 1, which specifies whether datasets should be connected, see (1).

In our simulation study, we evaluated two scenarios: a null design

(DIABLO_null) when no omics datasets are connected, and a full

design when all datasets are connected (DIABLO_full):

Cnull ¼
0 0 0
0 0 0
0 0 0

2
4

3
5 Cfull ¼

0 1 1
1 0 1
1 1 0

2
4

3
5

Every dataset is then connected to the outcome Y internally. For the

two case studies Breast cancer and Asthma the design matrix was

chosen based on our proposed method (see parameters tuning in

Section 2.3). Note that the design matrix is not restricted to 0 and 1

values only and a compromise between correlation and discrimin-

ation can also be modeled as described in Rohart et al. (2017).

2.2.3 Consensus class prediction for each new sample

For a new sample, a set of H predicted component scores

(t
ðqÞ
1;new; . . . ; t

ðqÞ
H;new) can be calculated for each type of omics q by using

the estimated loadings vectors aðqÞ from DIABLO. The predicted

class of a new sample for each dataset is obtained from the predicted

score using one of the distances Maximum, Centroids or

Mahalanobis as detailed in Rohart et al. (2017), which results in Q

class memberships for a new sample.

Since the different omics datasets may not all agree on a pre-

dicted class, a consensus class membership is determined using either

a majority vote, a weighted majority vote or by averaging all t
ðqÞ
h;new

for each component h across all Q datasets then applying a predic-

tion distance scheme. In case of ties in the majority vote scheme,

‘NA’ is allocated as a prediction but is counted as a misclassification

error during the performance evaluation. For the weighted majority

vote, each omics dataset is weighted by the correlation between its

latent components and the outcome, that is, stronger predictive

datasets are up-weighted as compared with weaker omics datasets.

As the class prediction relies on individual vote from each omics set,

DIABLO allows for some missing datasets Xk during the prediction

step, as illustrated in the Breast Cancer case study. We used the

Centroid distance for the weighted majority vote scheme (Breast

Cancer study) and the Maximum distance for the average vote

scheme (asthma study) as those led to best performance (see Rohart

et al., 2017 for details about distance measures and proposed voting

schemes).

2.3 Parameters tuning
There are three types of parameters to tune in DIABLO.

• The design matrix C can be determined using either prior bio-

logical knowledge, or a data-driven approach. The latter ap-

proach can use PLS that models pair-wise associations between

omics datasets (Lê Cao et al., 2008). If the correlation between

the first component of each omics dataset is above a given thresh-

old (e.g. 0.8) then a connection between those datasets is

included in C as a 1 value.
• The number of components: in several analyses we found that

G� 1 components could extract sufficient information to dis-

criminate all phenotype groups (Lê Cao et al., 2011), but this can

be assessed by evaluating the model performance across all speci-

fied components, as described below, and can be aided with

graphical outputs such as sample plots to visualize the discrimin-

atory ability of each component.
• The number of variables to select per dataset and per component.

A grid composed of a small number of variables (<50 with steps

of 5 or 10) may suffice as we did not observe substantial changes

in the classification performance during our case study analyses.

The variable selection size can also be guided according to the

downstream biological interpretation. For example, a gene set

enrichment analysis may require a larger set of features than a

literature-search interpretation.

2.4 DIABLO visualization outputs
To facilitate the interpretation of the integrative analysis, several

types of graphical outputs were proposed and implemented in

mixOmics.

Sample plots include a consensus plot that depicts the

samples by calculating the average of the components from each

dataset (Fig. 3A). Omics-specific sample plots can also be obtained

by plotting components associated to each dataset (Supplementary

Fig. S14).

Variable plots give more insights into the variables that were

selected by DIABLO. Our new circos plot represents correlations be-

tween and within selected variables from each dataset. The associ-

ation between variables is computed using a similarity score that is

analogous to a Pearson correlation coefficient (see González et al.,

2012); this association is displayed as a color-coded link inside the

plot to represent a positive or negative correlation above a user-

specified threshold. The selected variables are represented on the

side of the plot, with side colors indicating each omics type, optional

line plots represent the expression levels in each phenotypic group

(Supplementary Fig. S20).

Clustered image maps based on the Euclidean distance and the

complete linkage display an unsupervised clustering between the

selected variables (centered and scaled) and the samples

(Supplementary Fig. S15). Color bars represent the sample pheno-

typic groups (columns) and the type of omics (rows) variables (see

González et al., 2012).
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3 Results

3.1 Correlation and discrimination tradeoff
Three omics datasets consisting of 200 samples (100 in each of the 2

phenotypic groups) and 260 variables were simulated (details in

Supplementary Section S1). Each dataset included four types of variables:

30 correlated-discriminatory (corDis), 30 uncorrelated-discriminatory

(unCorDis), 100 correlated-nondiscriminatory (corNonDis) and 100

uncorrelated-nondiscriminatory (unCorNonDis) variables. DIABLO

models with either a null or full design (DIABLO_null, DIABLO_full),

each with one component set and selecting 60 variables per dataset (180

in total), were compared with existing integrative classification schemes

based on classification performance (10-fold cross-validation (CV), aver-

aged over 20 simulations) and variable selection (Fig. 1). The covariance

between datasets was held constant, with fold-change (FC) varying from

0 to 2, and noise (SD) between 0.2 and 1. When FC¼0, the error rate

was �50% for all methods regardless of noise level (Supplementary Fig.

S2). When FC¼1, DIABLO_full yielded a higher error rate than all

other methods, for noise <1. However, when noise¼1 and FC¼1, all

methods performed similarly. Finally, when FC¼2 (higher than both

the covariance and noise levels) the error rate of the DIABLO_full

model decreased further. We hypothesized that the increased error

rate between the DIABLO models was due to the covariance con-

straint used to extract a common source of variation across datasets

instead of independent sources of variation from each dataset.

Therefore, we varied the covariance value between datasets and per-

formed similar comparisons as described in Supplementary Figure

S3. We found that increasing the covariance between datasets sig-

nificantly increased the error rate for DIABLO_full, but not for

DIABLO_null. When we added a second component set in

DIABLO, allowing for additional independent information to be

included, the classification performance improved and yielded simi-

lar results in both DIABLO designs. We hence concluded from this

simulation study that the design in DIABLO achieves a tradeoff be-

tween correlation and discrimination. DIABLO_null focuses on

selecting discriminatory variables and disregards most of the correl-

ation between datasets, whereas DIABLO_full selects highly corre-

lated and discriminatory variables across all datasets. Variables

selected by DIABLO_full reflect the correlation structure

between biological datasets, and may provide a balance between

prediction accuracy and biological insight, as described in the next

sections.

3.2 Benchmark: DIABLO identifies highly

interconnected networks with superior

biological enrichment
We applied various integrative approaches to cancer multi-omics

datasets (mRNA, miRNA, and CpG): colon, kidney, glioblastoma

(gbm) and lung, to identify multi-omics biomarker panels predictive

of high and low survival times (Table 1; Supplementary Section S2)

and studied the network properties and biological enrichment of the

selected features. Component-based integrative approaches were

compared: supervised methods included concatenation and

ensemble-based schemes using sparse partial least squares discrimin-

ant analysis (sPLSDA; Lê Cao et al., 2011), DIABLO_null and

DIABLO_full, and unsupervised approaches included sGCCA,

MOFA (Argelaguet et al., 2018), and JIVE (Lock et al., 2013), see

Supplementary Section S3 for parameter settings. Each biomarker

panel consisted of 180 features across two components (based on 90

variables with the largest weights on each of the 2 components).

Across all cancer datasets, the largest overlap between biomarker

panels was observed between all supervised methods with the excep-

tion of DIABLO_full whose selection was more similar to those

identified with unsupervised methods (Fig. 2A; Supplementary Fig.

S5 for the other studies). Interestingly, we observed similarities be-

tween the features identified by DIABLO_full and the unsupervised

integrative approaches based on the following characteristics: (i)

correlation between features—a large number of connections or

edges regardless of the correlation cutoff was observed (Fig. 2B;

Supplementary Fig. S6); (ii) network attributes such as high graph

density, low number of communities and large number of triads

(Supplementary Fig. S7) and (iii) small number of densely connected

modules (Fig. 2C; Supplementary Fig. S8). The tradeoff in selecting

correlated features by DIABLO_full was at a slight expense of dis-

crimination, as can be observed in the component plots that depict

the separation of the high and low survival groups (Fig. 2C;

Supplementary Fig. S9). DIABLO_null also achieved a good separ-

ation of the survival groups, but with biomarker panel characteris-

tics similar to those of other supervised methods. Internal validation

on the benchmark datasets showed that DIABLO_null led to better

Fig. 1. Simulation study. (A) Classification error rates (10-fold CV averaged

over 20 simulations) for different FCs between groups and varying level of

noise (SD). Dashed line indicates a random performance (error rate¼50%).

(B) Types of variables selected by the different classification methods

amongst the 180 variables selected for each classification method
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cluster consistency according to phenotypic groups compared with

all other methods (Supplementary Fig. S10).

Gene set enrichment analysis based on hypergeometric tests were

conducted on each biomarker panel. Briefly, we used gene symbols

of mRNAs and CpGs of each biomarker panel and gene sets from

10 collections such a positional, curated, motif, computational,

Gene Ontology, ontologic, immunologic, and hallmark gene sets as

well as blood transcriptional modules and cell-specific gene sets

(Supplementary Section S4). DIABLO_full identified the greatest

number of significant gene sets (False Discovery Rate (FDR)¼5%)

across the gene set collections and generally ranked higher than the

other methods in colon (7 collections), gbm (5) and lung (5) cancer

datasets (Supplementary Table S1). JIVE outperformed all methods

in the kidney cancer datasets (six collections). In conclusion for this

benchmark study, DIABLO_full aims at explaining the correlation

structure between multiple omics layers and the phenotype of inter-

est, leading to the greatest number of known biological gene sets

such as pathway, functions and processes.

3.3 Competitive performance and identification

of known and novel multi-omics biomarkers

of breast cancer subtypes
On the TCGA breast cancer study we focused our analyses on charac-

terizing and predicting PAM50 breast cancer subtypes. Processing and

normalization is described in Supplementary Section S2 and Fig. S11.

3.3.1 Classification performance benchmark

First, we compared the classification error rates of DIABLO models

(DIABLO_null and DIABLO_full) with existing classification

schemes (Concatenation and Ensemble) using sPLSDA and Elastic

Net (enet) classifiers. For the purposes of this comparative

Table 1. Overview of multi-omics datasets analyzed for method

benchmarking and in two case studies

Dataset n Omics p

Colon 92 mRNA 17 814

Wang et al. (2014) High: 33 miRNA 312

Low: 59 CpGs 23 088

Kidney 122 mRNA 17 665

Wang et al. (2014) High: 61 miRNA 329

Low: 61 CpGs 24 960

Glioblastoma 213 mRNA 12 042

Wang et al. (2014) High: 105 miRNA 534

Low: 108 CpGs 1305

Lung 106 mRNA 12 042

Wang et al. (2014) High: 53 miRNA 353

Low: 53 CpGs 23 074

Breast Cancer 989 mRNA 16 851

TCGA Research

Network (2012)

Basal: 76 (102) miRNA 349

Her2: 38 (40) CpGs 9482

LumA: 188 (346) Proteins 115 (0)

LumB: 77 (122)

Asthma 28 Cell types 9

Singh et al.

(2013, 2014)

Pre: 14 mRNA modules 229

Post: 14 Metabolite modules 60

Note: The breast cancer case study includes training (test) datasets for all

omics types except proteins.

Fig. 2. Benchmark for colon cancer. (A) Number of selected features overlap-

ping between supervised and unsupervised methods. (B) Number of corre-

lated variables in the biomarker panels for various Pearson correlation

cutoffs. (C) Top: network modularity of each multi-omics biomarker panel.

Gray circles depict modules based on the edge betweenness index from the

igraph R-library. Bottom: consensus component plots depicting the separ-

ation of subjects in the high and low survival groups. Similar patterns were

observed for kidney, gbm and lung cancer datasets, see Supplementary

Figures S5–S10
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performance analysis, the proteomics dataset that was only available

for the training set was excluded to address the limitation of the

Concatenation-based scheme. Hyperparameters for all six classifiers

were tuned on the training set (mRNA, miRNA, CpGs) using 5-fold

CV repeated five times and a variable selection size grid approach

on three components (Concatenation, Ensemble) or three compo-

nent sets (DIABLO). The performance of the methods was assessed

on the independent test set (see Supplementary Section S5 for

details). DIABLO_null and DIABLO_full led to a classification error

rate of 19 and 21%, respectively, while Concatenation and

Ensemble-based methods error rate ranged from 11 to 28%

(Supplementary Table S2, all methods included three component

sets). We noted that Concatenation-based classifiers tended to be

biased towards the more predictive variables (mRNA or CpGs),

whereas DIABLO selected variables evenly across datasets and had

similar error rates between training and test datasets.

3.3.2 Identification of multi-omics biomarkers

We then applied DIABLO_full for variable selection and evaluated

its prediction performance on all omics available (mRNA, miRNA,

CpGs and proteins). The optimal multi-omics biomarker panel size

was identified as described above and detailed in Supplementary

Figure S12. Our panel consisted of 45 mRNA, 45 miRNAs, 25

CpGs and 55 proteins selected across three component sets with a

balanced error rate (BER; see Rohart et al., 2017) of 17.9 6 1.9%.

This panel identified many variables with previously known associa-

tions with breast cancer, according to MolSigDB (Liberzon et al.,

2015), miRCancer (Xie et al., 2013), Online Mendelian Inheritance

in Man (Hamosh et al., 2005) and DriverDBv2 (Chung et al., 2016).

In addition, we identified several variables that were not found in

any database and that may represent novel biomarkers of breast

cancer (Supplementary Fig. S13). Figure 3A shows that the majority

of the test samples were located within the ellipses built on the train-

ing set, suggesting a reproducible multi-omics biomarker panel from

the training to the test set (see Supplementary Fig. S14 for omics-

specific component plots). On the independent test set, a BER of

22.9% indicated a relatively good prediction accuracy of breast can-

cer subtypes. The consensus plot corresponded strongly with the

mRNA component plot, with a strong separation of the Basal (error

rate¼4.9%) and Her2 (20%) subtypes, and a weak separation of

Luminal A and Luminal B (error rates of 13.3 and 53.3%, respect-

ively) subtypes. A heatmap of the biomarker panel showed similar

results (Supplementary Fig. S15). Overall, the features of the multi-

omics biomarker panel formed a network of four densely connected

clusters of variables (Fig. 3B). The largest cluster of 72 variables (20

mRNAs, 21 miRNAs, 15 CpGs and 16 proteins) was further investi-

gated using gene set enrichment analysis as described in Section 3.2

and presented in Supplementary Figure S16. We identified many

cancer-associated pathways (e.g. FOXM1 pathway, p53 signaling

pathway), DNA damage and repair pathways (e.g. E2F mediated

regulation of DNA replication, G2M DNA damage checkpoint) and

various cell-cycle pathways (e.g. G1S transition, mitotic G1/G1S

phases). Therefore, DIABLO was able to identify a biologically

plausible multi-omics biomarker panel that generalized to test sam-

ples. The panel also included unknown molecular features in breast

cancer suggesting novel molecular features whose importance would

require further experimental validations.

3.4 Repeated measures and module-based analysis
The asthma study investigated blood molecular signatures in re-

sponse to allergen inhalation challenge (AIC) in 14 subjects. Blood

was collected pre- and 2 h post-AIC ( Singh et al., 2013, 2014). Cell-

type frequencies, leukocyte gene transcript expression and plasma

metabolite abundances were measured (Table 1). A module-based

approach (a.k.a. eigengene summarization, Langfelder and Horvath,

2008) was used to transform both gene expression and metabolite

datasets into pathway datasets to include prior biological knowledge

in DIABLO (Supplementary Section S6; Allahyar and De Ridder,

2015; Cun and Fröhlich, 2013; Sokolov et al., 2016). Consequently,

each variable represented the pathway activity expression level for

each sample rather than gene or metabolite expression in these data-

sets. We used Kyoto Encyclopedia of Genes and Genomes (KEGG)

for mRNA pathways and annotations provided by Metabolon, Inc.

(Durham, NC, USA) for the metabolites pathways (Fig. 4A).

We compared the standard DIABLO with a multilevel model

(mDIABLO) that accounts for the repeated measures (pre/post) ex-

perimental design by isolating the within-sample variation from

each of the three datasets (Fig. 4A; Supplementary Section S7;

Liquet et al., 2012). Both DIABLO approaches were applied to iden-

tify a multi-omics biomarker panel consisting of cells, gene and me-

tabolite modules that discriminated pre- from post-AIC samples on

two component sets. mDIABLO outperformed DIABLO (Area

Under the Receiver Operating Characteristic curve (AUC)¼98.5%

versus AUC¼62.2%) with greater separation between the pre- and

post-AIC samples (Fig. 4B and C). Common features (pathways)

were identified across omics types in mDIABLO but not in standard

DIABLO (Supplementary Fig. S17). For example, Tryptophan me-

tabolism and Valine, leucine and isoleucine metabolism pathways

Fig. 3. A multi-omics biomarker panel predictive of breast cancer subtypes.

(A) DIABLO consensus component plot based on the identified multi-omics

biomarker panel: test samples are overlaid with 95% confidence ellipses cal-

culated from the training data. (B) Network visualization of the biomarker

panel highlighting correlated variables (absolute Pearson’s correlation >0.4)

and four communities based on the edge betweenness index
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were identified in both the gene and the metabolite module datasets.

Groups of correlated features characterizing pre- and post-AIC sam-

ples were identified with mDIABLO (Supplementary Fig. S18).

Interestingly, the Asthma pathway was identified despite individual

gene members not being significantly altered post-AIC

(Supplementary Fig. S19) and was negatively associated with

Butanoate metabolism and positively associated with basophils, a

hallmark cell-type in asthma (Supplementary Fig. S20).

4 Discussion

DIABLO aims to identify coherent patterns between datasets that

change with respect to different phenotypes. This data-driven, holis-

tic, and hypothesis-free tool can be used to derive robust biomarkers

and, ultimately, improve our understanding of the molecular mecha-

nisms that drive disease. We found that unsupervised methods iden-

tified features that formed strong interconnected multi-omics

networks, but led to poor discriminative ability. In contrast, features

identified by supervised methods were discriminative, but formed

sparsely connected networks. The tradeoff between correlation and

discrimination is a fundamental challenge when trying to identify

biologically relevant biomarkers that are also clinically relevant

(Wang, 2011). DIABLO achieves this tradeoff by incorporating a

priori relationships between different omics data types to adequately

model potential dysregulated processes between phenotypic groups.

This may explain the superior biological enrichment of the

DIABLO_full models in our benchmarking experiments. In contrast,

biomarkers were different when we assumed no association between

datasets with DIABLO_null and existing multi-step integrative strat-

egies. Therefore, by controlling the tradeoff between correlation and

discrimination, DIABLO uncovered novel multi-omics biomarkers

that have not previously been identified using existing integrative

strategies. These novel biomarkers were part of densely connected

clusters which have prior known biological associations, further sug-

gesting their potential biological plausibility.

DIABLO assumes a linear relationship between the selected

omics features to explain the phenotypic response, an assumption

that may not apply in some biological research areas, for example

when integrating distance-based metagenomics studies, where kernel

approaches could be further explored (Mariette and Villa-Vialaneix,

2018). Selecting the optimal number of variables requires repeated

cross-validation to ensure unbiased classification error rate evalu-

ation. A grid approach was deemed reasonable and provided very

good performance results, but several iterations to refine the grid

may be required depending on the complexity of the classification

problem. The grid search algorithm is efficient, but we advise using

a broad filtering strategy to alleviate computational time when deal-

ing with extremely large datasets (i.e. >50 000 features each, see

Rohart et al., 2017). DIABLO was primarily developed for omics-

measurements on a continuous scale after normalization, and fur-

ther developments are needed for categorical data types, such as

genotype data. Finally, DIABLO, like other methods we bench-

marked is likely to be affected by batch effects and presence of con-

founding variables. Therefore, we recommend exploratory analyses

be carried out in each single omics dataset to assess these effects

prior to integration.
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