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ABSTRACT

Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary
battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse
models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex
anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental
principles about how the immune system controls both acute and chronic viral infections. They led to a more complete
understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction
of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses
affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only
surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many
feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the
discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for
HIV cure and vaccine development.
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FRIEND VIRUS INTRODUCTION AND
BACKGROUND

‘In 1956, at a meeting of the American Association for Cancer
Research in Atlantic City, Charlotte Friend reported on the iso-
lation of a virus that produced a fatal leukemia when inocu-
lated into adult mice. This was a time when the concept of

viruses causing cancer was still viewed with extreme skepti-
cism and the presentation of such data by a young woman not
long out of graduate school was met with disbelief and deri-
sion’ (Diamond 1994). Not only did Dr Friend prove to be correct,
but Friend virus (FV) became a primary tool for studying viral
leukemogenesis, oncology and host resistance to infection. In
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her original report, Dr Friend tested seven different strains of
mice and found only two strains were susceptible to leukemia.
This finding elicited a great deal of interest in determining the
genetics of host susceptibility and resistance, but Mendelian
studies were complicated by the fact that in most genetic
crosses, susceptibility and resistance were controlled by multi-
genic factors (Fieldsteel, Dawson and Bostick 1961; Franker and
Quilligan 1966; Mirand 1966; Mirand, Grace and Buffett 1966; Lilly
1967). In the mid 1960s, Frank Lilly mapped the first FV sus-
ceptibility trait to chromosome 17, linked to the major histo-
compatibility complex (MHC) of the mouse (Lilly, Boyse and Old
1964; Lilly 1966). This was only the second viral susceptibility
trait ever mapped. At that time, the MHC was known to con-
trol graft acceptance and rejection between mouse strains, but
the mechanisms of action were not understood, and the link to
virus susceptibility and resistance was very intriguing. Then in
1974, landmark papers by Zinkernagel and Doherty elucidated
the connection between the MHC and T cell responses to viral
infection. Their studies suggested that discrimination between
self and non-self in tissue grafts extended to T cell recognition
of ‘altered self’ in virally infected cells (Zinkernagel and Doherty
1974a,b), a phenomenon now understood to be a viral peptide
(non-self) bound to MHC molecules (self). In collaboration with
Jack Stimpfling in 1974, Bruce Chesebro used MHC recombinant
mice to map an FV resistance trait to a specific gene within
the MHC, H-2Db. Within the next few years the immunologi-
cal mechanisms of genetic resistance were uncovered, includ-
ing roles for H-2Db-restricted T cell responses (Friedman, Lilly
and Nathenson 1974; Blank, Freedman and Lilly 1976; Chese-
bro and Wehrly 1976a,b; Chesebro and Wehrly 1978; Chesebro
and Wehrly 1979; Plata and Lilly 1979) and Rfv3-dependent B
cell responses (Chesebro and Wehrly 1979; Chesebro et al. 1979;
Chesebro et al. 1981).

As immunological studies moved into the era of molecu-
lar immunology, several key findings allowed the development
of tools that enabled the study of FV resistance at a much
more detailed and mechanistic level. The discovery that MHC
molecules presented peptides to T cells (reviewed in van Bleek
and Nathenson (1992); Blum, Wearsch and Cresswell (2013) and
Roche and Furuta (2015)) led to the identification of the FV
DbGagL peptide presented by H-2Db class I molecules (Chen
et al. 1996), and the FV env122–141 peptide presented by H2-Ab

class II molecules (Iwashiro et al. 1993; Shimizu et al. 1994).
These peptide identifications further enabled the development
of tetramers to quantify FV-specific CD4+ and CD8+ T cells
(Schepers et al. 2002) as well as the development of TCR trans-
genic mice carrying CD8+T cells specific for DbGagL (Ohlen et al.
2002) and CD4+ TCR transgenic mice specific for FV env122–141

(Antunes et al. 2008). Use of these immunological tools has
greatly advanced the discovery of immunological mechanisms
of resistance to FV infection with relevance to human immu-
nity in several chronic viral infections. In addition to the adap-
tive immune responses required for resistance to FV, innate and
intrinsic immune responses also play important roles and will
be reviewed as well.

Although FV is often referred to as a retrovirus, it is actu-
ally a complex of two viruses, replication competent Friend
murine leukemia virus (F-MuLV), which is sometimes referred
to as the helper virus, and a replication defective virus called
spleen focus-forming virus (SFFV) (Kabat 1989). F-MuLV is clas-
sified as a simple gammaretrovirus with a standard arrange-
ment of 2 LTRs flanking gag, pol and env genes (Troxler, Ruscetti
and Scolnick 1980). An alternate CUG start site (Prats et al.
1989) is used to produce an additional protein, glycosylated gag

Table 1. Resistance (in decreasing order) of commonly used mouse
strains for FV studies.

Resistance genes

Mouse strain (abbreviation) MHC1 FV22

Rfv3
(Apobec3)3

C57BL/10 (B10) H-2b/b FV2r/r Rfv3r/r

C57BL/6 (B6) H-2b/b FV2r/r Rfv3r/r

(A.BY x B10)F1 (Y10) H-2b/b FV2s/r Rfv3s/r

(A/Wy x B10)F1 (Y10.A) H-2a/b FV2s/r Rfv3s/r

(Balb/c x B10)F1 H-2d/b FV2s/r Rfv3s/r

A.BY H-2b/b FV2s/s Rfv3s/s

A/Wy H-2a/a FV2s/s Rfv3s/s

Balb/c H-2d/d FV2s/s Rfv3s/s

1The most potent resistance gene in MHC is H-2D, and homozygous H-2Db/b

alelles provide for the best CD8+ T cell responses. The H-2b alelle of MHC class

II gene, H-2A is also resistant. H-2b/b homozygous mice are more resistant than
heterozygous mice (Hasenkrug et al. 1994).
2The r alelle is resistant (LF-Stk), s is susceptible (SF-Stk). FV2 susceptibility
is dominant because one copy of the SF-Stk gene product allows interaction

with SFFV gp55, which induces erythroproliferation, splenomegaly, and hep-
atomegaly
3The r alelle is resistant, s is susceptible. Rfv3 resistance is dominant because
one copy of Apobec3 provides enough transcription to provide Apobec-mediated

functions as discussed in the Apobec3 chapter.

(glycogag), which is expressed on viral particles and the sur-
face of infected cells (Evans, Dresler and Kabat 1977; Fujisawa
et al. 2001; Nitta et al. 2010). Interestingly, the defective SFFV is
the predominant pathogenic component in FV infection of adult
mice. SFFV encodes a defective env protein (gp55) with onco-
genic properties (Li et al. 1987; Li and Baltimore 1991). The gag
and pol genes of SFFV are also defective so SFFV must co-infect
a cell infected with replication competent F-MuLV (helper) in
order for the SFFV genome to get packaged and form transduc-
ing virions. The cellular tropism of FV is broad and FV can infect
any dividing cell except hepatocytes, which do not express the
mCAT-1 receptor for viral entry (Closs et al. 1993). That said, the
preferred target for FV is nucleated erythroid precursors. Spread
of virions is greatly enhanced by the binding of SFFV gp55 to
the erythropoietin receptor and the short form of the stem cell
kinase receptor (SF-Stk, previously known as Fv2) (Li et al. 1987;
Persons et al. 1999; He et al. 2010). These gp55/Epo-Stk interac-
tions deliver potent proliferative signals to nucleated erythroid
progenitors significantly magnifying the erythroid target popu-
lation of dividing cells and resulting in gross splenomegaly, hep-
atomegaly and bone marrow hypertrophy. In fact, mice with the
long form of Stk (LF-Stk), which does not interact with gp55,
are highly resistant to FV-induced splenomegaly and disease
(Table 1). FV also infects B cells and myeloid cells, whereas infec-
tion levels of T cells are much lower (Windmann et al. 2019). In
resistant mice, infected erythroid precursors are efficiently elim-
inated by T cells, but the infected immune cell populations can
partly escape from T cell killing. Infected T and B cells subse-
quently accumulate in B cell follicles (Windmann et al. 2019), a
specific immunological niche that cytotoxic cells usually can’t
excess and that also harbors the viral reservoir in HIV infected
humans or SIV infected monkeys (Connick et al. 2014; Fukazawa
et al. 2015).

In susceptible mice that fail to mount rapid T helper cell,
CD8+ T cell and B cell responses, the SFFV genome eventu-
ally integrates into and activates the Spi-1 transcriptional factor
gene (Moreau-Gachelin, Tavitian and Tambourin 1988; Paul et al.
1989; Lavigueur and Bernstein 1991; Paul et al. 1991; Schuetze
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et al. 1992; Hegde, Hankey and Paulson 2012), inactivates the
p53 tumor suppressor gene (Munroe, Peacock and Benchimol
1990; Johnson and Benchimol 1992; Johnson, Chung and Benchi-
mol 1993), and produces a malignant erythroleukemia in a
multistage manner (Cmarik and Ruscetti 2010). Although ery-
throleukemias in humans are rare, insights from FV-induced
erthroleukemias have also revealed much about the develop-
ment of acute myeloid leukemias in humans. In a similar
manner to FV-induced erythroleukemia, at least two oncogenic
events are required, one that bestows a proliferative advan-
tage and one that disrupts normal differentiation as recently
reviewed (Boddu et al. 2018; Moreau-Gachelin 2008). In addi-
tion to the Stk gene described above, a number of other non-
immunological host genes involved in resistance and suscepti-
bility to FV-induced leukemia have been described and reviewed
(Chesebro, Miyazawa and Britt 1990; Hoatlin and Kabat 1995;
Moreau-Gachelin 2008; Boddu et al. 2018), but this review focuses
on the nature of the immune responses that result in suscepti-
bility or resistance to FV infection.

FV has been a powerful tool for studying immunologi-
cal resistance to retroviral infection because it infects adult,
immunocompetent mice, and different mouse strains have
varying resistance to FV infection (Table 1). Studies with such
strains have been used to define not only the determinants of
genetic resistance, but also the immunological mechanisms of
that resistance. Whereas highly susceptible strains of mice such
as Balb/c never recover from acute FV infection and develop
rapid erythroleukemia, resistant mice recover from acute infec-
tion within a few weeks, but then go on to develop a life-long
chronic infection. Thus, resistant mice are powerful tools to
not only study mechanisms of resistance to acute infection,
but also mechanisms by which retroviruses evade complete
eradication and establish and maintain chronicity. Such mech-
anisms of immunological resistance to acute infection rang-
ing from intrinisic immunity to innate and adaptive immu-
nity will be discussed. Studies of chronic FV in resistant mouse
strains yielded the first insights that responses by CD4+ regu-
latory T cells (Tregs) suppressed critical CD8+ T cell responses
during infections and thereby promoted the establishment of
chronic FV (reviewed in Hasenkrug, Chougnet and Dittmer
(2018)). This review will also discuss the involvement of co-
inhibitory molecules and other suppressive immune cell pop-
ulations in the promotion of chronic FV infection.

In addition to the complex nature of FV, an additional com-
plication was discovered in 2008 (Robertson et al. 2008a). Since
in vivo passaged FV complex was always more virulent than cul-
tured virus stocks from cloned viruses, studies requiring highly
pathogenic virus were historically done using mouse-passaged
swarm stocks. An unintended consequence of the use of in
vivo passaged stocks was the propagation of an endemic mouse
virus, lactate dehydrogenase-elevating virus (LDV). Evidence
indicated that LDV was present in FV stocks as early as 1963
(Riley 1963) and may have been a component of the FV complex
from its first isolation. LDV is a positive-stranded, enveloped
RNA virus classified in the order Nidovirales, which also con-
tains coronaviruses (Drosten et al. 2003; Ksiazek et al. 2003; Peiris
et al. 2003). Its name derives from its capacity to rapidly infect
and cytolyse a subset of macrophages that clear excess lac-
tate dehydrogenase from the circulation (Inada and Mims 1985).
LDV induces rather dramatic effects on the immune system.
Among the reported effects are impaired antigen presentation
by macrophages (Isakov, Feldman and Segal 1982), polyclonal
B cell activation (Coutelier and Van Snick 1985), NK cell acti-
vation (Markine-Goriaynoff et al. 2002), impaired delayed-type

hypersensitivity responses (Inada and Mims 1986), and inhibited
cellular immune responses (Howard et al. 1969). These immuno-
suppressive effects of LDV allow FV titers to reach much higher
levels before the infection comes under immunological control
(Robertson et al. 2008a; Duley et al. 2012). Consequently, much
lower doses of FV were required to establish chronic FV infec-
tions in the presence of LDV than in its absence. Furthermore,
the LDV-induced polyclonal activation of B cells expands the
population of dividing target cells for virus entry.

These impacts from LDV explain why in vivo passaged FV
stocks were more virulent than in vitro cloned stocks. Thus,
studies after 2008 must specify whether the virus stocks con-
tained LDV or not. A prominent example of the effects of LDV
is that Rfv3-mediated promotion of virus-neutralizing antibod-
ies turned out to be highly dependent on the presence of LDV
in the stock. LDV is a potent inducer of type I interferons (IFN
I) via TLR7 signaling (Ammann et al. 2009), and Apobec3 (Rfv3)-
mediated antibody effects are dependent on type I IFN signaling
and observable only in the presence of LDV (Barrett et al. 2017).

VIRUS SENSING

The host immune system is able to sense invading pathogens by
a variety of germline-encoded receptors. These pattern recog-
nition receptors (PRR) recognize pathogen-associated molec-
ular patterns, which are highly conserved molecular struc-
tures of pathogens. A well-characterized family of PRRs are the
Toll-like receptors (TLRs) that are located on cellular or endo-
somal membranes. Endosomal TLR3, TLR7/8 and TLR9 sense
viral nucleic acid components like double-stranded RNA, single-
stranded RNA or non-methylated CpG-containing DNA, respec-
tively (reviewed in Akira and Takeda (2004) and Beutler (2009)).
Cytosolic DNA and RNA sensors, such as cyclic GMP-AMP syn-
thase (cGAS), retinoic acid inducible gene I (RIG-I) and Melanoma
Differentiation-Associated protein 5 (MDA5), also detect replica-
tion intermediates of many viruses (Gao et al. 2013; Sun et al.
2013). Virus sensing induces the production of IFN I, which
in turn leads to the expression of hundreds of interferon-
stimulated genes (ISGs) eliciting an antiviral state in the infected
as well as surrounding cells.

Many in vitro studies revealed that multiple PRRs such as
TLR3, TLR7/8 and cGAS are able to sense murine retroviruses.
This is possible because in the retroviral replication cycle single-
stranded and double-stranded (hairpin RNA loops) viral RNAs as
well as viral DNA and even RNA/DNA hybrids exist. During acute
FV infection, TLR3 is an important sensor involved in the con-
trol of viral replication (Gibbert et al. 2014). Up to 10 days post FV
infection, mice deficient in TLR3 had significantly higher viral
loads compared to wild-type mice (Gibbert et al. 2014). During
acute FV infection, TLR3 signaling was critical for the activation
of myeloid dendritic cells (DCs), which subsequently resulted
in increased cytotoxicity of CD8+ T cells and natural killer (NK)
cells mediating the reduction in viral loads. In contrast, TLR7 and
myeloid differentiation primary response 88 (MyD88), an impor-
tant adaptor molecule for the signaling pathway of all TLR family
members, except TLR3, were not required for viral control dur-
ing initial FV infection. However, after 2 weeks of FV infection
MyD88−/− mice failed to control the virus due to an impaired
humoral immune response (Browne and Littman 2009; Kane
et al. 2011; Gibbert et al. 2014). MyD88 and TLR7-dependent sens-
ing of murine leukemia viruses (MLV) was crucial for the devel-
opment of neutralizing antibody responses, but T cell responses
were only partially dependent on this pathway (Browne and
Littman 2009; Kane et al. 2011). TLR3 is mainly expressed by
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myeloid DCs, indicating that antigen presenting cells are pri-
marily activated by TLR3, whereas TLR7 is highly expressed by
different B cell subsets, and thus the humoral immune response
depends on TLR7 signaling. Indeed, another study showed that
TLR7 is an important sensor in FV infection that facilitates the
induction of germinal center B cells (Browne 2011). Also, CD4+

helper T cell responses are diminished in FV-infected TLR7−/−

mice, whereas CD8+ T cell responses are TLR7 independent
(Browne 2011). In a subsequent study, the same authors sug-
gested that TLR7 sensing might also be critical during early FV
infection because TLR7 sensing influenced IgM antibody produc-
tion, but the differences in viral loads between TLR7−/− and wild-
type mice were rather small (Browne 2013).

Recent work implies that retroviral reverse transcripts are
also detected by cellular DNA sensors such as cyclic GMP-
AMP synthase (cGAS), DExD/H-box helicase 41 (DDX41) and
interferon-inducible protein 16 (IFI16). IFI16, DDX41 and cGAS
interact with and signal through STING, which results in the
transcription of several genes including type I IFNs. It was
already shown, that cGAS and DDX41 are required for the cytoso-
lic DNA exonuclease three prime repair exonuclease (TREX)1-
dependent expression of type I IFNs in MLV infection (Gao et al.
2013; Stavrou et al. 2015). While cGAS senses double-stranded
viral DNA, DDX41 seems to sense viral RNA/DNA hybrids gen-
erated at the first step of murine leukemia virus reverse tran-
scription, and both sensors were required for potent anti-viral
innate immunity (Stavrou et al. 2018a). The RNA sensor zinc-
finger antiviral protein induces the degradation of MLV tran-
scripts by the exosome (Lee et al. 2013), whereas other cytosolic
RNA sensors like Rig-I or MDA5 do not affect replication of MLV
or FV (Gibbert et al. 2010; Lee et al. 2013).

In conclusion, many DNA- and RNA-sensors are able to rec-
ognize replication intermediates of murine retroviruses (Fig. 1).
For some of these PRRs their individual role in host innate and
adaptive immune responses were defined. However, it is likely
that additional pathways exist that efficiently sense murine
retroviruses and initiate protective immune responses. As many
of these sensors are completely independent, countermeasures
by the virus may be compensated for by other PRRs. Tar-
geting these different PRRs during retroviral infections might
improve host immune responses and control viral replication,
which offers novel approaches for antiretroviral immunothera-
pies (Olbrich et al. 2002; Gibbert et al. 2010).

INTRINSIC IMMUNE RESPONSES

Type I Interferons

During many viral infections, the initial host response is the
induction of IFN I. The type I IFN family consists of numer-
ous IFNα subtypes, IFNβ, IFNε, IFNκ and IFNω that all bind to
the same Interferon-α/β-receptor (IFNAR), which is composed of
the two subunits IFNAR1 and IFNAR2. The type I IFN response
is initially induced by sensing of viral nucleic acids by vari-
ous pattern recognition receptors leading to the expression of
the early IFN I subtypes IFNβ and IFNα4 (Erlandsson et al. 1998;
Marie, Durbin and Levy 1998). The binding of IFN to its recep-
tor results in the activation of the Janus kinase (JAK) and sig-
nal transducer and activator of transcription (STAT) signalling
pathway, which induces the transcription of several hundred
genes, so called IFN-stimulated genes (ISG). These gene prod-
ucts have various biological functions and some of them can
directly suppress viral replication, viral protein translation, or
viral infectivity (Clemens and Elia 1997; Stark et al. 1998). ISGs

that have been shown to directly restrict retrovirus replication
are APOBEC, Tetherin and Tripartite motifs (TRIMs) (reviewed in
Malim and Bieniasz (2012)).

IFN I also inhibit cell or tumor proliferation or regulate innate
and adaptive immune responses. They improve host immune
responses by the activation of natural killer (NK) cells (Trinchieri
et al. 1981; Salazar-Mather, Ishikawa and Biron 1996), stimula-
tion of the antigen presentation machinery (Epperson et al. 1992;
Hermann et al. 1998), including maturation of DCs (Le Bon et al.
2003), and augmentation of CD8+ T cell (Honda et al. 2005; Le Bon
et al. 2006a,b) and B cell differentiation (Le Bon et al. 2001; Le Bon
et al. 2006b). In contrast, they can also counteract overwhelming
immune responses by the induction of anti-inflammatory IL-10
(Aman et al. 1996) or the surface expression of PD-1 (Terawaki
et al. 2011) to limit the risk of tissue damage by the host immune
system.

Many viruses evolved different mechanisms to evade the
host IFN response to promote their replication and persistence
(Randall and Goodbourn 2008). During acute FV infection the
type I IFN response is quite weak and no systemic induction of
type I IFN is detectable. However, low level expression of IFNA
mRNA could be found in spleen cells at 72 hours post FV infec-
tion (Gerlach et al. 2006). The IFNα subtypes α1 and α6 were
expressed at higher levels in splenocytes during acute FV infec-
tion compared to α4 and α9 (Gerlach et al. 2009). Furthermore,
mRNA of IFNα-induced ISGs was detected in spleens and bone
marrow from FV-infected mice (Gerlach et al. 2009; Gibbert et al.
2012; Halemano et al. 2013a) indicating that local expression of
IFNα and a subsequent ISG response is elicited during acute
FV infection. It was previously reported that Moloney murine
leukemia virus-based retroviral replicating vectors (RRV) did not
induce measurable type I IFN responses. Furthermore, Moloney
RRV even suppressed IFN I induction by other viral vectors, indi-
cating that they actively counter-regulate type I IFN responses
(Lin et al. 2014). This is also likely for FV infection, but the exact
molecular mechanism for poor induction of type I IFNs by FV
remains elusive. The exogenous application of IFNα subtypes
or IFN-inducing TLR ligands during FV infection resulted in effi-
cient viral control (Gerlach et al. 2009; Gibbert et al. 2010; Gibbert
et al. 2012; Halemano et al. 2013a). In these experiments, the sub-
types IFNα1, α4, α9 and α11 were shown to have the strongest
anti-FV activity in vivo (Gerlach et al. 2009; Gibbert et al. 2012).
Harper et al. showed that IFNα treatment inhibits acute FV repli-
cation at least in part through the anti-viral effector molecule
Apobec3 (Harper et al. 2013) (Fig. 1).

Apobec3

The APOBEC3 (A3) proteins are deoxycytidine deaminases that
gained major attention when it was discovered that members
of this family are counteracted by the HIV-1 protein Vif (Sheehy
et al. 2002). HIV-1 Vif binds and targets various A3 members
for degradation via the ubiquitin-proteasome pathway (Sheehy,
Gaddis and Malim 2003; Stopak et al. 2003). In humans, there
are 7 hA3 members (A-H) (Arjan-Odedra et al. 2012). By con-
trast, mice only encode one APOBEC3 gene (mA3), making it
straightforward to derive mA3 knockout (KO) mice (Okeoma et al.
2007; Santiago et al. 2008). Mouse APOBEC3 is a double-domain
deaminase, with the N-terminal half being evolutionarily simi-
lar to hA3C, hA3F and other ‘Z2’ domains with the C-terminal
half bearing more similarity to hA3H (Refsland and Harris 2013).
Studies in FV infection revealed that mA3 KO mice had ∼10-
fold higher levels of infectious virus compared to B6 WT mice
at 7 dpi (Santiago et al. 2008; Takeda et al. 2008). The potent
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in vivo inhibitory activity of mA3 was consistent across multi-
ple murine retroviruses tested (Okeoma et al. 2007; Low et al.
2009; Jones, Mehta and Okeoma 2012). Importantly, mA3 is the
molecular counterpart of a classical resistance gene, Recovery
from Friend virus gene 3 or Rfv3 (Santiago et al. 2008; Takeda et al.
2008; Santiago et al. 2011).

Mouse A3 produced by an infected cell gets incorporated
into F-MuLV particles and inhibits replication in the next tar-
get cell (Browne and Littman 2008). The anti-viral mechanism
of A3 is deaminase-independent, as hypermutated reverse tran-
scripts are rarely detected (Browne and Littman 2008; Smith et al.
2011; Barrett et al. 2014; Boi et al. 2018) and deaminase-dead mA3
retains the ability to restrict MLV in vivo (Stavrou et al. 2018b). The
mechanism involves the steric inhibition of reverse transcrip-
tion by decreasing the activity and fidelity of the reverse tran-
scriptase itself (Boi et al. 2014). Interestingly, in vivo, mA3 does
not decrease the total number of FV particles released at 7 dpi
despite the reduction in infectious viremia (Smith et al. 2011).
This substantial release of noninfectious particles acts as anti-
gen to help prime the B cell response (see chapter 5.4).

Whereas HIV-1 encodes the Vif protein to counteract the
antiviral effects of APOBEC3G (Sheehy et al. 2002), FV encodes the
glyco-Gag protein (Evans, Dresler and Kabat 1977), which func-
tions as an antagonist of mA3 (Kolokithas et al. 2010). Glyco-Gag
is a glycosylated form of Gag that originates in an upstream CUG
initiation codon and is essential for MLV replication in vivo (Chun
and Fan 1994; Corbin et al. 1994; Stavrou et al. 2013). Glyco-gag-
deficient CasFr and Moloney MLV are severely impaired for repli-
cation in WT mice but replicate to similar levels as WT virus in
mA3 KO mice (Kolokithas et al. 2010; Stavrou et al. 2013). Like
HIV-1 Vif, glyco-Gag directly binds to mA3 in vitro but unlike
Vif, glyco-Gag does not appear to promote mA3 degradation
(Kolokithas et al. 2010). In contrast, glyco-Gag-deficient MLV had
more unstable capsids and stimulated IFNβ responses more
strongly than WT virus, suggesting that glyco-Gag may shield
MLV DNA from being sensed in the cytoplasm during capsid
uncoating (Stavrou et al. 2013).

IFNα administration into FV/LDV-infected mice resulted
in the upregulation of many known restriction factors and
decreased FV replication, but genetic inactivation of only mA3
almost completely abrogated this therapeutic effect (Halemano
et al. 2013a). Thus, mA3 acted as the major effector molecule
of exogenously-administered IFNα therapy. Interestingly, in
an IFNAR KO background, mA3 still reduced early infectious
viremia, though not via antibody-mediated mechanisms (Bar-
rett et al. 2017). Furthermore, this reduction of infectious viremia
occurred in the presence or absence of LDV. Thus, in resistant B6
mice, mA3 restriction of acute FV infection did not require type
I IFN signaling. This is not surprising, since murine retroviruses
seem to suppress endogenous IFN I production, minimizing IFN
signaling during acute infection (Lin et al. 2014). However, in an
mA3 deficient background, the loss of IFNAR increased acute FV
viremia (Barrett et al. 2017). These findings suggest that the low
amount of virus-induced type I IFN triggered antiviral effectors
other than mA3 that contributed to inhibiting acute FV replica-
tion in vivo. One important type I IFN-regulated factor is Teth-
erin/BST2.

Tetherin

Tetherin/BST2 is a 28-to-36 kD protein that restricts virion
release. Tetherin is counteracted by the HIV-1 Vpu protein,
which enhances virion release (Neil, Zang and Bieniasz 2008;

Van Damme et al. 2008). The relevance of Tetherin in retrovi-
ral infections in vivo was initially confirmed in a study compar-
ing Moloney MLV (in the context of IFNα treatment) and LP-BM5
(murine AIDS) infection levels in B6 WT versus Tetherin KO mice
(Liberatore and Bieniasz 2011). In the FV infection model, genetic
ablation of Tetherin in B6 mice had no effect on viremia until
14 dpi, a timeframe when adaptive immune responses have
already come into play (Li et al. (2014). Interestingly, at 14 dpi,
Tetherin KO mice exhibited weaker NK cell, CD4+ T cell and
CD8+ T cell responses, which inversely correlated with FV infec-
tion levels (Li et al. 2014). Since Tetherin had no effect on viremia
at early time points (3–7 dpi) in contrast to mA3 (Li et al. 2016), it
was proposed that Tetherin may be acting as an immunomodu-
lator of cell-mediated immunity.

Tetherin inhibits virion release by ‘tethering’ virion and
cellular membranes through its two ends: an N-terminal
transmembrane domain and a C-terminal GPI-anchor (Perez-
Caballero et al. 2009). The aggregation of virions on the cell sur-
face is quite striking (Neil, Zang and Bieniasz 2008), and in vitro,
Tetherin+ cells infected with Vpu-deficient HIV-1 were more
susceptible to NK cell-mediated antibody-dependent cellular
cytotoxicity (Arias et al. 2014). Notably, this ‘stapling’ of virion
particles subsequently leads to the reuptake of virions for sub-
sequent degradation through the endolysosomal pathway (Neil
et al. 2006), a critical step for MHC II presentation in myeloid DCs,
a known target for FV infection (Balkow et al. 2007). As early as
3 dpi, Tetherin KO myeloid DCs exhibited lower activation levels
than WT DCs (Li et al. 2016), suggesting that the mechanism by
which Tetherin influences T cell immunity may be linked to anti-
gen presentation. In addition, internalization of tethered virions
probably leads to an improved viral sensing by endosomal sen-
sors in myeloid cells, resulting in an upregulation of cytokines,
such as IL-15, that are required to facilitate NK cell activation
and functionality (see chapter 4.2).

Interestingly, a special mouse strain, the NZW/LacJ, harbors
a single nucleotide polymorphism in the Tetherin start site that
results in a truncated protein lacking the N-terminal endocy-
tosis motif (Barrett et al. 2012). The NZW Tetherin variant is
expressed at higher levels on the cell surface due to a defect
in endocytosis. In a backcross study, mice that were homozy-
gous for the NZW Tetherin variant exhibited higher viremia
and weaker NK cell responses at 7 dp FV infection compared
to mice expressing B6 Tetherin (Barrett et al. 2012). Altogether,
these results suggested that endocytosis-competent Tetherin
promoted antigen presentation by inducing the reuptake of viri-
ons into DCs. Such reuptake of virions may be necessary for effi-
cient MHC presentation, as unlike free proteins, virion capsid
proteins in lattice-like structures may be more resistant to pro-
tease degradation. Many details for how endocytosis-competent
Tetherin promotes antigen presentation remain unclear. Of
note, humans also express an endocytosis-defective NZW-like
protein due to translation from downstream start sites (Cocka
and Bates 2012). Details on how this Tetherin variant may affect
cell-mediated immune responses against HIV-1 remain incom-
plete.

Other retroviral restriction factors

Some restriction factors other than APOBEC3 and Tetherin with
potent activity against MLV were identified in vitro. Interestingly,
potent inhibition of FV in vitro by these factors did not neces-
sarily translate to inhibition in vivo. Ribonuclease L, APOBEC1
and SAMHD1 KO mice exhibited similar FV viremia levels as WT
mice (Behrendt et al. 2013; Li et al. 2013; Barrett et al. 2014). The
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reasons for the differential activities of antiretroviral proteins in
vitro versus in vivo remain unclear. One possibility is that these
factors may have evolved to more potently counteract other
virus families (e.g. Ribonuclease L KO mice are more susceptible
to West Nile virus (Samuel et al. 2006)), and the residual activ-
ity against retroviruses are just in vitro overexpression artefacts.
Alternatively, genetic and environmental modifiers may explain
why multiple restriction factors with antiretroviral activity were
retained throughout mammalian evolution.

INNATE IMMUNE RESPONSES

The complement system

The complement system is comprised of more than 40 proteins
and plays an important role in innate immunity. Upon activation
of the classical, lectin or the alternative pathway, a proteolytic
cascade is initiated that induces lysis of invading pathogens
or infected cells (Holers 2014). Alternatively, deposition of com-
plement fragments on the pathogen’s surface enhances clear-
ance by phagocytosis (Carroll and Isenman 2012). Besides its
role in innate immunity, the complement system bridges the
innate and adaptive immune response and is involved in anti-
body maturation, memory B-cell formation and modulation of
T cell responses (Carroll and Isenman 2012; West, Kolev and
Kemper 2018). Retroviruses can activate the complement sys-
tem by either direct or Ab-independent interaction with C1q,
the first component of the classical pathway (Ebenbichler et al.
1991; Stoiber et al. 1994). In addition, interactions of retro-
viruses with the mannose-binding lectin, the initial trigger of
the lectin pathway, were described (Thielens, Tacnet-Delorme
and Arlaud 2002; Ji, Gewurz and Spear 2005). After seroconver-
sion, pathogen-specific antibodies further trigger complement
activation by initiating the classical complement pathway. As
complement proteins are expressed in nearly all compartments
of the host, invading pathogens are confronted with this first
line of immune defense from the very beginning of an infec-
tion. To avoid complement-mediated virolysis retroviruses have
adapted two main strategies. Similar to the host cell, viruses
bind fluid-phase regulators of complement activation (RCAs),
such as factor H (fH), on their surface to avoid destruction by
activated complement. This defense strategy was shown for
human- and simian-derived retroviruses (Freissmuth, Dierich
and Stoiber 2003; Miller-Novak et al. 2018), but also for F-MuLV
(Housiaux, Hill and Petersen 1988). In addition, incorporation of
membrane-anchored RCAs such as CD55 or CD59 into the viral
membrane during the budding process shields against com-
plement attacks. Several retroviruses found in primates take
advantage of this defense mechanism (Montefiori et al. 1994;
Saifuddin et al. 1995; Spear et al. 1995; Stoiber et al. 1996). As
shown for Mouse Mammary Tumor viruses (MMTV) and F-MuLV,
murine retroviruses adapt CD55 and CR1-related gene/protein/Y
(Crry), an RCA specific for rodents (H.S. unpublished obser-
vation). As fH and Crry regulate the complement system by
distinct mechanisms, retroviral virolysis is avoided at differ-
ent activation levels of the complement cascade (Laskowski
et al. 2016).

Although interfering at several steps of the cascade, retro-
viruses cannot avoid complement activation, which results in
deposition and accumulation of complement fragments on the
viral surface, a process referred to as opsonization (Holers
2014). Similar to other retroviruses, FV turns complement-
opsonization to its advantage. C3-fragments deposited on the

viral surface allow interactions with complement-receptor (CR)
expressing cells, such as CR1-positive erythrocytes, CR3 and CR4
on macrophages, monocytes and DCs or CR2-positive B cells
(Groenewegen, Voogd and Freedman 1979; Isitor and Adogwa
1992; Banki et al. 2006; Banki et al. 2010; Bila et al. 2011). Binding
of FV to CRs may help the virus to disseminate in the host and
results in complement-mediated enhancement of infection. On
the other hand, follicular DC (FDC) trap opsonized retroviruses
in the germinal center by binding with CR2. Binding of native
antigens to the FDC network is crucial for the development of
B cell responses during the germinal center reaction (El Shikh
and Pitzalis 2012), but retroviruses bound to FDCs also repre-
sent an important viral reservoir (Banki et al. 2005; Heesters et al.
2015). In HIV infection uptake of complement-opsonized viri-
ons by DCs expressing CR3 or CR4 efficiently bypasses SAMHD1
restriction (Posch et al. 2015). As murine SAMHD1 is known as
intrinsic inhibitor of FV in vitro (Behrendt et al. 2013), it is possi-
ble that complement may be involved in an analogous manner
to HIV.

Complement-mediated enhancement of infection may
not always be advantageous for the virus. Complement-
opsonization of HIV has been shown to promote MHC I
presentation by DCs suggesting that complement directs
retroviruses towards MHC I recognition (Tjomsland et al. 2013).
Indeed, depending on opsonization either with complement
protein or IgG, HIV associates with different MHC compart-
ments in infected DCs (Wilflingseder et al. 2007; Posch et al.
2012). Thus, an accumulation of virus in DCs increases their
capacity to present antigen to virus-specific CD8+ T cells (Banki
et al. 2010). Studies using the FV mouse model indicated that
the enhancing role of complement on DC-mediated CD8+ T cell
induction also occurred in vivo and identified complement as
natural adjuvant for a DC-induced expansion and differentia-
tion of specific cytotoxic T cells against FV (Banki et al. 2010).
In addition, targeting of CR on DCs with CD11c-specific single-
chain antibody fragments (scFv) fused to immunodominant
viral antigens can be used to induce FV-specific T cell responses
in vivo (Ejaz et al. 2012). Similar to DCs, polyclonal activation
of B cells promotes their infection with opsonized FV both in
vitro and in vivo. This enhanced infection correlated with an
increased potency of B cells to activate FV-specific CD8+ T cells
(Bila et al. 2011). In contrast to complement, IgG-opsonization
of retroviruses—through the binding to Fcγ -receptors—reduces
the capacity of DCs to activate virus-specific CD8+ T cells (Posch
et al. 2012; Banki et al. 2019).

Thus, complement has two sides of a coin in FV infection. On
one side, FV takes advantage of opsonization with complement
proteins, which enhances virus distribution and increases infec-
tion levels (Fig. 1). On the other side, complement is a natural
adjuvant for the induction of FV-specific CD8+ T cell responses,
which is crucial to control acute FV infection (Dittmer, Race and
Hasenkrug 1999; Dittmer et al. 2004; chapter 5.3).

NK and NKT cell responses

Natural killer (NK) cells are innate immune cells that protect
against tumors and many virus infections. NK cells express acti-
vating and inhibitory receptors that facilitate the killing of trans-
formed or virus-infected cells. Several antiviral effector func-
tions of NK cells, such as the release of cytotoxic granules,
cytokine production and antibody dependent cellular cytotox-
icity, have been described. Many studies suggested that NK cells
play critical roles in retroviral immunity, as retroviruses evolved
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strategies to escape NK cell recognition (Jost and Altfeld 2013).
Notably, selective depletion of NK cells during the initial phase
(3 dpi) of FV infection led to increased viral loads, highlighting a
critical role for NK cells in early retrovirus control in vivo (Littwitz
et al. 2013).

NK cell responses during FV infection were heavily influ-
enced by the dose of the virus inoculum. At low or medium
doses of FV (up to 20 000 SFFU), NK cells were only partially
activated and had limited antiviral functions. By contrast, high-
dose FV infection (at least 40 000 SFFU) of B6 mice resulted in
a higher production of the NK cell stimulating cytokines IL-15
and IL-18 by macrophages and DCs (Littwitz-Salomon, Schim-
mer and Dittmer 2017a). NK cells activated by high-dose infec-
tion produced IFNγ as early as 3 dpi and killed FV-transformed
tumor cells in vitro and in vivo. These antiretroviral and antitu-
mor activities were reported to be linked to the NK cell activat-
ing receptor NKG2D (Ogawa et al. 2011). In addition to the virus
inoculum dose, type I IFNs and viral co-infections may also drive
NK cell activation. Murine retroviruses actively suppress type I
IFN expression (Lin et al. 2014), but therapeutic administration of
IFNα improved NK cell function and virus control in FV-infected
mice (Gerlach et al. 2009; Gibbert et al. 2012). If NK cells were pre-
activated by another virus infection (e.g. MCMV), superinfection
with FV was also more efficiently controlled (Francois et al. 2013).

The antiviral impact of NK cells appears to be limited to very
early FV infection. Selective depletion of NK cells from 7 to 15
dpi did not affect viral loads (Littwitz et al. 2013). One possi-
ble explanation is that FV is efficiently controlled by cytotoxic
CD8+ T cells at this time point (Joedicke et al. 2014b). Interest-
ingly, depletion of NK cells at 20 to 30 dpi resulted in reduced
viral loads and significantly improved FV-specific CD8+ T cell
responses (Littwitz et al. 2013). These data suggested that NK
cells have an inhibitory role in the transition phase between
acute and chronic FV infection. Such regulatory effects of NK
cells on CD8+ T cell responses have also been described in
LCMV-infected mice (Waggoner et al. 2011; Lang et al. 2012). The
underlying mechanism(s) appeared to involve the upregulation
of inhibitory ligands as well as the downregulation of activat-
ing ligands on T cells by type I IFNs (Crouse et al. 2014; Xu et al.
2014). The molecular mechanism of CD8+ T cell suppression by
NK cells during FV infection remains to be determined.

During the initial phase of FV infection (3 dpi), a subpop-
ulation of IL-10-producing CD4+ regulatory T cells (Tregs) lim-
ited the activation and antiviral functions of NK cells (Littwitz-
Salomon et al. 2018a). At later time points after virus inocula-
tion (∼12dpi), Tregs responded to FV infection with activation
and expansion (Hasenkrug, Chougnet and Dittmer 2018). These
virus-induced Tregs suppress NK cells even more efficiently than
the IL-10-producing Tregs. The mechanism of action involved
the consumption of available IL-2 that resulted in decreased NK
cell activation (Littwitz-Salomon et al. 2015). This Treg suppres-
sion could be overcome in FV-infected mice through the thera-
peutic administration of IL-2 that was specifically directed to NK
cells by monoclonal antibodies.

The role of certain NK cell/NK cell-like subsets in FV infec-
tion remains under active investigation. Persistent FV infec-
tion in B6 mice could induce memory-like NK cells (Littwitz-
Salomon et al. 2018b), consistent with other infection models.
Memory-like NK cells show improved antiviral activity upon
a secondary encounter with FV antigen and thus have fea-
tures of memory T cells. CD1d-restricted NKT cells are also
activated during FV infection (Littwitz-Salomon, Schimmer and
Dittmer 2017b). Infection increased the NKT cell cytotoxic poten-
tial against FV transformed tumor cells, and treatment with the

exogenous activator αGalCer led to increased NKT cell num-
bers and improved FV control. Further studies should shed
more insight on how memory-like NK cells and NKT cells par-
ticipate in retroviral control and pathogenesis. To conclude,
NK cells serve as important players in FV immunity (Fig. 1),
exemplifying the tight interplay between the innate and the
adaptive arms of the immune system in regulating retroviral
infection.

ADAPTIVE IMMUNE RESPONSES

Dendritic cells

DC are an important link between the innate and adaptive
immune system. They take up antigens or become infected
by viruses, which matures them and enables them to effi-
ciently present antigen to T cells. FV can productively infect
CD11c+ DCs in vitro and in vivo (Balkow et al. 2007) (Fig. 2). Infec-
tion levels are increased by complement opsonization of the
virus (Banki et al. 2010). TLR3 sensing of FV infection efficiently
activates DCs to express co-stimulatory molecules for T cell
interaction, a mechanism that required IFN I production (Gibbert
et al. 2014). Infected DC present antigen to FV-specific CD8+ T
cells and prime T cell responses in vitro and in vivo including their
functional maturation into cytotoxic T cells (Banki et al. 2010, Li
et al. 2016) (Fig. 2). In addition, DCs can also prime FV-specific
helper CD4+ T cells (Li et al. 2016). However, for CD4+ T cells it
has been shown that FV-infected bone marrow-derived DCs can
acquire a tolerogenic phenotype (Balkow et al. 2007; Shen et al.
2018) in vitro that favors the induction of regulatory T cells rather
than effector CD4+ T cells (Balkow et al. 2007).

Taken together, FV-infected DCs play an important role in FV
immunity and link the innate response to specific T cell activa-
tion.

CD4+ T cell responses

CD4+ T cells are a heterogenous population of T cells that
orchestrate the immune system with their helper and regulatory
properties. Moreover, they can also mediate direct anti-FV func-
tions (Hasenkrug, Brooks and Dittmer 1998; Iwashiro et al. 2001b;
Nair et al. 2010). Although less studied than their CD8+ coun-
terparts, several CD4+ T cell subsets are induced in response
to FV infection (Iwashiro et al. 1993; Antunes et al. 2008; Pike
et al. 2009; Nair et al. 2010; Danelli, Donnarumma and Kassiotis
2018). Mouse CD4+ T cells of the H2-Ab haplotype target numer-
ous epitopes encoded by F-MLV gag, pol and env (Messer, Laven-
der and Hasenkrug 2014). However, most studies of CD4+ T cell
responses to FV have focused on a dominant epitope from the
F-MuLV envelope glycoprotein (env124–138) (Iwashiro et al. 1993).
CD4+ T cells reactive to the F-MuLV env124–138 epitope, presented
by H2-Ab, have been detected using a variety of techniques
with different sensitivities, including peptide-specific cytokine
release assays and peptide-MHC II tetramer binding. However,
even improved tetramer reagents capture only a fraction of the
F-MuLV-reactive CD4+ T cell pool (Thorborn et al. 2014a). The use
of TCR-transgenic CD4+ T cells bearing Ab/env124–138-reactive
receptors permitted accurate monitoring of the kinetics of their
response to FV infection, independently of their ability to secrete
cytokines or bind peptide-MHC tetramers, which may be com-
promised by Tregs or intrinsic TCR downregulation, respectively
(Nair et al. 2010; Ploquin, Eksmond and Kassiotis 2011). Priming
of TCR transgenic F-MuLV-reactive CD4+ T cells can be detected
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Figure 1. Sensing of FV and induction of intrinsic and innate immunity. After virus entry, a number of different viral nucleic acid products can be sensed and IFN I
responses are initiated. Although the IFN I response is limited by FV due to an unknown viral mechanisms, it induces the expression and activity of the restriction

factors APOBEC3 and Tetherin as well as anti-viral NK cell responses. Complement binding can directly lead to virus lysis or increase virus uptake leading to cellular
degradation and improved antigen presentation.

3–4 days after FV infection, peaking on day 7 and declining there-
after (Thorborn et al. 2014a; Merkenschlager et al. 2016). CD4+ T
cell kinetics can be delayed in mice with increased susceptibil-
ity to FV infection (Nair et al. 2010), but the peak of the CD4+ T
cell response to FV infection appears to precede the peak of the
CD8+ T cell response.

F-MuLV-specific CD4+ T cells are critical to the control of FV
infections (Marques et al. 2008; Pike et al. 2009). Early studies
highlighted an important role for CD4+ T cells in providing help
for the antibody response (Super et al. 1998; Hasenkrug 1999).
Indeed, F-MuLV-reactive CD4+ T cells demonstrate robust fol-
licular helper (Tfh) differentiation, which can be much stronger
than that of CD4+ T cells responding to other viral infections
(Ploquin, Eksmond and Kassiotis 2011; Danelli, Donnarumma
and Kassiotis 2018). F-MuLV-reactive CD4+ T cells also pro-
mote cellular immunity. Although dispensable for priming of
F-MuLV-reactive cytotoxic CD8+ T cells, CD4+ T cell help pro-
motes survival of cytotoxic effector CD8+ T cells (Nair et al.
2010). Moreover, F-MuLV-reactive CD4+ T cells exhibit direct
antiviral activity, independently of other arms of adaptive
immunity (Hasenkrug, Brooks and Dittmer 1998; Iwashiro et al.
2001b). CD4+ T cells have long been shown to mediate rejec-
tion of FV-induced transplantable tumors, including those lack-
ing MHC II expression (Greenberg, Cheever and Fefer 1981;
Greenberg, Kern and Cheever 1985). This anti-tumoral effect is
largely attributable to IFN-γ production by Th1-differentiated
cells, although studies with FV infection highlighted a protec-
tive effect of virus-specific CD4+ T cells independent of IFN-
γ R-signaling in the host (Pike et al. 2009). FV-specific CD4+
T cells have also been shown to acquire cytotoxic activity
against MHC II-expressing targets during chronic FV infection

(Malyshkina et al. 2017). This cytotoxic activity is FasL-
dependent, whereas granzyme-dependent cytotoxicity, which
can develop in response to F-MuLV env124–138 immunization
delivered by heterologous viral vectors (Donnarumma et al.
2016), appears suppressed by CD4+ Tregs in the natural FV infec-
tion (Manzke et al. 2013; Malyshkina et al. 2017). Indeed, Tregs
have been shown to be strongly activated and proliferative dur-
ing FV infection, and suppress all functional subsets of FV-
specific effector CD4+ and CD8+ T cells in both the acute and
chronic phases of infection (Nair et al. 2010; Manzke et al. 2013;
Moore et al. 2019).

Recent studies defined TCR avidity as a major determi-
nant of the CD4+ T cell response to and protection against
FV infection, and explored its role in selection, expansion
and maintenance of distinct CD4+ T cell clonotypes (Thor-
born, Young and Kassiotis 2014b; Merkenschlager and Kassiotis
2015). These studies utilized FV-specific, TCRβ chain-transgenic
mice. Such mice have a semi-polyclonal TCR repertoire with an
increased frequency of Ab/env124–138-reactive CD4+ T cell clono-
types (Antunes et al. 2008; Ploquin, Eksmond and Kassiotis 2011).
Importantly, the functional avidity of each TCR in this system is
determined by the particular TCRα chain used, with TCR Vα2
family chains (encoded by Trav14 gene segments) and Vα3 fam-
ily chains (encoded by Trav9 gene segments) creating clonotypes
with higher and lower functional avidity, respectively (Antunes
et al. 2008; Ploquin, Eksmond and Kassiotis 2011). Surprisingly,
despite the enormous potential of recombinatorial somatic TCR
repertoire formation, the ability of Trav14 gene segments to gen-
erate high-avidity Ab/env124–138-reactive TCRs is, at least in part,
germline encoded (Young et al. 2012). This finding underscores
the importance of polymorphic germline TCR gene segment
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Figure 2. Kinetics of adaptive immune responses during FV infection. Virus-infected DCs and B cells prime CD4+ and CD8+ effector T cells, but infected DCs can
also initiate Treg responses. Membrane-bound TNFα-positive CD8+ T cells and GITR expressing B cells expand Tregs. Effector T cells as well as antibody-producing B

cells control acute virus replication in a complex immune response. Cytotoxic CD8+ T cells are especially effective in restricting virus spread, but become exhausted
via Tregs and inhibitory receptors during the transition phase between acute and chronic infection. Infected B cells upregulate ligands for inhibitory receptors and
subsequently escape from CTL killing, suppress CD8+ T cell functions and form a persisting viral reservoir. During chronic infection most CD8+ T cells, except a few

SIRPα-positive ones, are dysfunctional and virus replication is kept in check by cytotoxic CD4+ T cells and most likely neutralizing antibodies.

attributes that cannot be recreated by random somatic recom-
bination and selection.

Formation of high-avidity Ab/env124–138-reactive TCRs
requires the presence of appropriate Trav14 alleles in the
germline (Young et al. 2012). However, germline Trav14 alleles
alone are not sufficient to enrich the repertoire in high-avidity
TCRs. All TCRs have to succeed through thymic selection, where
excessive self-reactivity is a disadvantage. This is particularly
problematic for TCRs reactive with retroviral antigens, given
that mammalian genomes comprise numerous endogenous
retroviruses, potentially expressing self-peptides of retroviral
origin and mediating both positive and negative thymic selec-
tion. Indeed, thymic selection of Ab/env124–138-reactive CD4+
T cells is heavily shaped by Emv2, a single-copy endogenous
ecotropic MLV in the genome of B6 mice, bearing high similarity
with F-MuLV (Young et al. 2012). However, TCR cross-reactivity
between the env124–138 epitope variants encoded by F-MuLV
or Emv2 is inversely proportional to avidity for either variant,
with TCRs with the highest avidity for F-MuLV env being the
least cross-reactive with Emv2 env (Young et al. 2012). These
studies provided proof of principle that negative selection by
Emv2-encoded self-peptides can in fact enhance, instead of
diminishing, representation of clonotypes with high avidity for
Ab/env124–138, by removing competing clonotypes, albeit at the
expense of cross-reactivity.

A long-term increase in the frequency of antigen-reactive
lymphocytes through clonal expansion and selection is a
hallmark of immunological memory and the aim of vacci-
nation. Although there is general consensus that CD4+ T
cells are clonally selected during the immune response on
the basis of TCR signal strength in response to antigen, the
underlying factors responsible for differences in TCR sen-
sitivity to antigen stimulation are still a matter of debate
(Merkenschlager and Kassiotis 2015). TCR binding kinetics
to antigenic peptide-MHC (pMHC) complexes have tradi-
tionally been considered the dominant factor, determining
the strength of T cell activation. However, studies in the FV
model (Merkenschlager et al. 2016), as well as independently
in other models (Persaud et al. 2014), have emphasized the
importance of TCR self-reactivity in setting TCR responsive-
ness to antigens. Experiments with Ab/env124–138-reactive
TCR-transgenic mice correlated differences in functional
avidity and biological response with self-reactivity rather than
affinity to antigen (Merkenschlager et al. 2016). More surpris-
ingly, they further uncovered B cell presentation of antigen as a
powerful T cell-extrinsic factor that can reverse TCR sensitivity-
based hierarchies during antigen-mediated clonal selection,
thereby preserving diversity of the antigen-selected TCR reper-
toire (Merkenschlager et al. 2016). In contrast, Tregs represent
another T cell-extrinsic factor that was shown to restrict the
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Figure 3. The complex interplay of innate and adaptive immunity in FV infection. Virus sensing initiates IFN I responses, which stimulate and activate NK cells, CD8+ T
cells and DCs. CD4+ and CD8+ T cell priming by FV-infected DCs is more efficient when complement-opsonized virus was taken up by the DCs, but IgG-opsonized
virus inhibits T cell induction. Infected B cells can also initiate CD8+ T cell responses, which is also more efficient after infection with complement opsonized virus.

The expression of APOBEC3 after virus sensing augments B cell/antibody responses, whereas the expression of Tetherin facilitates CD4+ and CD8+ T cell responses
by enhancing antigen presentation. Effector CD8+ T cell responses can be suppressed by virus-activated NK cells, Tregs as well as gMDSCs.

TCR repertoire of Ab/env124–138-reactive CD4+ T cells (Fontaine
et al. 2018). Therefore, the clonotypic evolution of the response
to FV is shaped by the relative balance and kinetics of B cell and
Treg activity. TCR interactions with distinct antigen-presenting
cell (APC) subsets, as well as regulation by Tregs, determines not
only the clonotypic composition of Ab/env124–138-reactive CD4+
T cells, but also their functional differentiation. In addition to
the powerful effect of T cell-extrinsic factors, such as cytokines,
effector CD4+ T cell differentiation is also influenced by TCR
avidity in a T cell-intrinsic manner (Linterman and Vinuesa
2010; Lo and Allen 2013; Thorborn, Young and Kassiotis 2014b).
The integration of multiple T cell-extrinsic and T cell-intrinsic
variables affecting CD4+ T cell differentiation creates the
necessary diversity of functional T cell responses, tailored to
the nature of the antigen.

In contrast to the typically balanced Th1-Tfh response in
other viral infections, the CD4+ T cell response to FV infection
was recently shown to be heavily skewed towards Tfh differen-
tiation (Danelli, Donnarumma and Kassiotis 2018). Biased Tfh
differentiation in response to FV infection was clearly promoted
by TCR signal strength, as measured by a reporter for TCR sig-
naling and experimentally manipulated with altered epitopes,
but was not affected by TCR clonotypic avidity (Danelli, Don-
narumma and Kassiotis 2018). Notably, the difference in TCR sig-
nal strength experienced by Th1 and Tfh Ab/env124–138-reactive
CD4+ T cells, was not due to differences in the avidities of
their respective TCR repertoires, but rather a consequence of
their differentiation and interaction with distinct subsets of APC
(Danelli, Donnarumma and Kassiotis 2018). This central role for
APCs also underlies the induction of distinct ratios of Th1, Tfh or

cytotoxic CD4+ T cells by different vaccine vectors or immuniza-
tion regimens in the FV model (Donnarumma et al. 2016; Shen
et al. 2018).

Although naı̈ve Ab/env124–138-reactive CD4+ T cells have not
been observed to differentiate into Tregs in the natural course of
FV infection (Antunes et al. 2008; Myers et al. 2013), thymically-
derived Tregs of highly polyclonal TCR specificities are strongly
activated and expanded by FV infection (Hasenkrug, Chougnet
and Dittmer 2018). Indeed, it were studies in this model that
first implicated Tregs in the regulation of the adaptive immunity
to an infection (Iwashiro et al. 2001a). This expansion involves
Tregs that do not react with FV antigens but rather self-antigens
and is fueled by at least two separate mechanisms. First, nat-
ural thymus-derived Tregs, which constitutively express the
high affinity IL-2 receptor, are polyclonally activated by IL-2
secreted by F-MuLV-reactive CD4+ T cells and by GITR ligand
expressed on activated B cells (Myers et al. 2013; Moore et al.
2017). Second, thymus-derived Tregs bearing Vβ5 family TCRβ

chains specifically react with a retroviral superantigen encoded
by endogenous mouse mammary tumor virus 9 (MMTV9) (Myers
et al. 2013; Joedicke et al. 2014a). This mode of Treg expan-
sion accounts for about one in every 10 Tregs and is modu-
lated by membrane-bound TNF-α signals delivered by F-MuLV-
reactive CD8+ T cells (Myers et al. 2013; Joedicke et al. 2014a). Fur-
ther details on the Treg response in FV infection were recently
reviewed (Hasenkrug, Chougnet and Dittmer 2018). Together,
these studies highlight the complex cellular interactions that
are responsible for shaping common, as well as unique
attributes of the FV-specific effector CD4+ T cell response
(Fig. 2).



Dittmer et al. 445

CD8+ T cell responses

CD8+ T cells play a central role in protection against acute infec-
tions with most, if not all viruses. CD8+ T cell responses have
been extensively studied in mice infected with FV as a model
to help us understand the functions of these cells, the kinet-
ics of the responses and the mechanisms by which the immune
system controls those responses. Early mapping of FV resis-
tance genes showed that the MHC I gene, H-2Db, was essential
for a high recovery phenotype on mice, suggesting that class I-
restricted CD8+ T cell responses were important for recovery
(Chesebro, Miyazawa and Britt 1990). Further experiments using
CD8+ T cell depletions confirmed that these cells were indeed
critical for recovery, even in highly resistant B6 mice (Robertson
et al. 1992; Hasenkrug 1999; Robertson et al. 2008a). The most
predominant expansion of CD8+ T cells after FV infection is
found in the organs with the highest viral replication, the spleen
and bone marrow (Zelinskyy et al. 2009a). A large proportion
of the FV-activated CD8+ T cells recognize the H-2Db-restricted
immunodominant FV GagL epitope (DbGagL) (Chen et al. 1996)
and the study of this immunodominant response has been facil-
itated by the development of tetramers that stain the DbGagL-
specific CD8+ T cells (Schepers et al. 2002) and transgenic T cells
bearing a TCR specific for the DbGagL epitope (Ohlen et al. 2001).
Staining of the TCR and activation markers on CD8+ T cells
during FV infection indicates that there are also CD8+ T cells
responding to other epitopes that the DbGagL.

In FV-infected H-2b resistant mice, activated virus-specific
CD8+ T cells can be detected as early as 7 days post infection
(Robertson et al. 1992; Zelinskyy et al. 2006). The peak expansion
of FV-specific CD8+ T cells occurs within the next few days to a
week, depending on the mouse strain and whether there is any
co-infection with other viruses (Robertson et al. 2008a). There is
clear evidence that activation of the FV-specific CD8+ T cells is
driven by DC (Banki et al. 2010), but virus-infected B cells have
also been shown to be important antigen-presenting cells for the
CD8+ T cell response (Bila et al. 2011; Moore et al. 2019), partic-
ularly when the virus is opsonized with complement (Bila et al.
2011). As in many viral infections the priming of the CD8+ T cell
response seems to be CD4+ T cell independent during acute FV
infection (Nair et al. 2010).

Mice depleted of CD8+ T cells during acute infection are
unable to efficiently control virus replication and develop
severe splenomegaly or even leukemia (Robertson et al. 1992;
Hasenkrug 1999; Robertson et al. 2008a; Joedicke et al. 2014b).
The anti-viral activity of the CD8+ T cells is clearly associated
with their ability to produce cytotoxic molecules. Activated FV-
specific CD8+ T cells produce the granzymes A and B as well
as perforin (Zelinskyy et al. 2005), and execute efficient killing
of GagL-presenting target cells in vivo (Zelinskyy et al. 2009a).
Interestingly, the expression of any one of the three mentioned
cytotoxic molecules seems to be sufficient to mediate anti-FV
cytotoxicity, but mice lacking all three molecules rapidly suc-
cumb to infection (Zelinskyy et al. 2004). Thus, the exocytosis
pathway is the central mechanism of the antiviral activity of
CD8+ T cells. However, in mice infected with very low doses of
FV or the weakly replicating F-MuLV helper virus, CD8+ T cells
do not switch on the exocytosis pathway, but rather control the
low level infection using the Fas ligand-Fas pathway of target
cell killing (Zelinskyy et al. 2007; Zelinskyy, Werner and Dittmer
2013). In addition to direct killing, FV-activated CD8+ T cells also
produce pro-inflammatory cytokines, especially IFNγ , TNFα and
IL-2 (Zelinskyy et al. 2009b). There is also experimental evidence
that production of IFNγ as well as TNFα directly contribute to FV

control (Iwashiro et al. 2001b; Stromnes et al. 2002; Myers et al.
2013).

During the late phase of acute FV infection (between 2 to 3
weeks pi) the functional activity of CD8+ T cells dramatically
changes. The cells are not only reduced in numbers (contraction
phase), but start to develop a severe dysfunction. They gradu-
ally lose their ability to produce granzymes and perforin and
subsequently the expression of IFNγ , TNFα and IL-2 (Zelinskyy
et al. 2005; Zelinskyy et al. 2009b). As a consequence most FV-
specific CD8+ T cells appear functionally exhausted and are very
inefficient in killing peptide-labeled targets in vivo (Zelinskyy
et al. 2009a). However, a small subset of functional CD8+ T cells
are preserved even in chronic infection and uniquely express
the cell surface protein SIRPα (Myers et al. 2019). CD8+ T cell
exhaustion contributes to the subsequent development of FV
chronicity (Dietze et al. 2011), similar to what has been described
for chronic LCMV infection (Barber et al. 2006). Not surprisingly
then, experimental depletion of exhausted CD8+ T cells during
chronic infection has no observable effect on chronic FV loads
(Hasenkrug, Brooks and Dittmer 1998).

Studies using the FV model have defined several cell pop-
ulations and molecules that contribute to the development of
CD8+ T cell dysfunction and subsequent viral chronicity. Sim-
ilar to what has been discovered in the LCMV model (Barber
et al. 2006), inhibitory receptors expressed on effector CD8+ T
cells play an important role in functional exhaustion. Several
inhibitory receptors are upregulated on CD8+ T cells during
chronic FV infection (Zelinskyy et al. 2011; Dietze et al. 2013), but
the most dominant suppressive activity seems to be mediated
by the programmed cell death protein 1 (PD-1), which is termed
an inhibitory receptor. During chronic infection PD-1 expres-
sion can be used as a surrogate marker for exhausted CD8+ T
cells and blocking the signaling of this receptor with antibod-
ies can reactivate exhausted T cells (Barber et al. 2006; Dietze
et al. 2013). Blocking the PD-1/PDL-1 axis results in the expan-
sion of functional CD8+ T cells that express SIRPα (Myers et al.
2019). Increased expression of co-inhibitory molecules such as
PD-1 is likely to prevent immunopathogenic effects from over-
stimulated CD8+ T cells responses. The upregulation of PD-1 is
initiated during acute FV infection (Zelinskyy et al. 2011). Results
indicate that it is not the simple expression of co-inhibitory
or co-stimulatory molecules that dictate the function of the
effector cell, but whether the balance of the signals from these
molecules is more inhibitory or stimulatory. In the inflamma-
tory milieu present during acute infections, the balance tilts
toward high function, but as the infection clears and inflamma-
tion declines, the balance tilts toward inhibition and protection
from immunopathology.

As FV infection develops, subpopulations of virus-infected
cells such as B cells and granulocytic cells start to express high
levels of the PD-1 ligand (PD-L1) (Akhmetzyanova et al. 2015).
This enhanced expression of PD-L1 protects these cells from
cytolytic T cell killing and they seed a reservoir of chronically
infected cells. At the same time, frequent contacts of virus-
specific CD8+ T cells with these protected targets result in a
functional impairment of the effector CD8+ T cells due to PD-
L1-PD-1 interaction (Akhmetzyanova et al. 2015). It has recently
been shown that the PD-1/PD-L1 pathway is not only involved
in T cell exhaustion, but also influences the proliferation and
apoptosis of CD8+ T cells during acute FV infection (David et al.
2019).

In addition to these mechanisms of inhibition, there are also
specific cell types that contribute to CD8+ T cell dysfunction in
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chronic FV infection. The important role of Tregs in viral chronic-
ity was first described in the FV model (Iwashiro et al. 2001a;
Dittmer et al. 2004). Tregs become activated and expand during
the late phase of acute FV infection (Zelinskyy et al. 2006) and
subsequently suppress the proliferation and function, including
cytotoxicity and cytokine production, of effector CD8+ T cells
(Zelinskyy et al. 2009b; Zelinskyy et al. 2009a). Not surprisingly,
experimental depletion of Tregs during the acute FV infection
augments the cytotoxic CD8+ T cell response and improves virus
control (Zelinskyy et al. 2009a; Moore et al. 2019). Treg ablation
during chronic infection reactivates exhausted CD8+ T cells,
including both induction of cytotoxicity and cytokine produc-
tion, and also results in reduced viral loads (Dietze et al. 2011).
Interestingly, the activation and expansion of Tregs is partly
driven by activated effector CD8+ T cells themselves via their
expression of membrane-bound TNFα that binds to the TNF
receptor 2 on thymus-derived Tregs (Myers et al. 2013; Joedicke
et al. 2014a). So far the exact molecular mechanism by which
Tregs exert their immunosuppressive influence on CD8+ T cells
remains unknown (Hasenkrug, Chougnet and Dittmer 2018).
Both of the mechanisms of T cell exhaustion that we describe
here, PD-1/PD-L1 expression and Treg expansion, are indepen-
dent events and blocking both pathways simultaneously has a
synergistic effect on CD8+ T cell mediated virus control (Dietze
et al. 2013).

Recently, we discovered a third mechanism of T cell suppres-
sion in the FV model which is mediated by myeloid derived sup-
pressor cells (MDSC) (Drabczyk-Pluta et al. 2017). Suppression of
T and B cell responses by MDSCs had been described before in
another mouse retrovirus model (reviewed in O´Connor, Rastad
and Green 2017 ). We found that granulocytic MDSC restrict the
functional activity of FV-specific CD8+ T cells and that this sup-
pression involved arginase 1, PD-L1, and the ATP dephosphory-
lating enzyme CD39. In addition, NK cells were also able to sup-
press CD8+ T cell responses during the later phase of FV infec-
tion, but the molecular mechanisms remains to be determined
(Littwitz et al. 2013). Thus, CD8+ T cell responses are strongly
modulated/restricted during FV infection (Fig. 2). Such tight con-
trol is necessary as overactive CD8+ T cells can be more dan-
gerous for the host than the virus infection itself. The other
edge of the sword though, is that suppression of the CD8+ T
cell response can allow chronic infection to develop. From an
evolutionary point of view, chronic infections often produce less
severe selective pressures than immunopathology. In the case
of FV, chronically infected mice have a normal reproduction
rate and only very few animals develop leukemia late in life
(Hasenkrug, Brooks and Dittmer 1998).

B cell responses and antibodies

In 1963, it was shown that FV-infected mice mounted anti-
body responses against FV virions and FV leukemia cells (Old,
Boyse and Lilly 1963). The importance of these antibodies was
demonstrated in studies showing that passive antibody trans-
fers of FV-specific antibodies could be protective against FV-
induced leukemia (Wheelock et al. 1972). However, passive anti-
body transfers only protected mouse strains that were also
able to mount essential cell-mediated immune responses. Thus,
depletion of either CD4+ or CD8+ T cells ablated antibody-
mediated protection (Hasenkrug, Brooks and Chesebro 1995a).
In 1979, it was found that the ability of different mouse strains to
mount virus-neutralizing antibody responses was controlled by
a single autosomal, non-MHC gene. The gene was termed Rfv-3

(Recovery from Friend virus gene 3) and was shown to be essen-
tial for control of viremia and prevention of leukemia (Chesebro
and Wehrly 1979; Chesebro et al. 1979; Britt and Chesebro 1983).
Further studies revealed that mice depleted of CD4+ T-cells in
vivo showed undetectable FV-neutralizing antibody responses,
high viremia and reduced survival times. Thus, CD4+ T-helper
cells were required for the Rfv-3-controlled FV-neutralizing anti-
body responses, including IgM responses (Super et al. 1998).
These T helper cells are now known to be Follicular T helper or
Tfh cells (Kassiotis and O’Garra 2009), and FV infections induce
a strongly biased differentiation of CD4+ T cells into Tfh cells
(Danelli, Donnarumma and Kassiotis 2018). Microsatellite map-
ping experiments undertaken in an effort to determine the iden-
tity of the Rfv-3 gene showed that it mapped to a 20 centimor-
gan region of chromosome 15 (Hasenkrug et al. 1995b), and fur-
ther studies narrowed the location to a 0.83 centimorgan region
(Super et al. 1999; Kanari et al. 2005). The identified region was
very gene rich though, containing at least 61 genes unlinked to
the MHC, the immunoglobulin loci or T cell receptor loci. One
gene of particular interest, Mouse APOBEC3 (see chapter 3.2),
exhibited striking functional polymorphisms that correlated
with the Rfv3 phenotype of inbred mouse strains. Rfv3 resistant
mice such as B6 express a truncated mA3 protein lacking exon 5
that is more resistant to retroviral protease (Abudu et al. 2006; Li
et al. 2012). Rfv3 susceptible mice such as BALB/c, A.BY, A/WySn
and 129P2 express a full-length mA3 at 10-fold lower mRNA
levels than in Rfv3 resistant mice (Takeda et al. 2008; Okeoma,
Petersen and Ross 2009; Sanville et al. 2010; Santiago et al. 2011;
Halemano et al. 2013a). Targeted genetic inactivation of mA3
combined with genetic backcross studies demonstrated that
mA3 indeed controlled neutralizing antibody responses to FV
infection and encoded the Rfv-3 phenotype (Santiago et al. 2008).

Mouse APOBEC3 promoted germinal center B cell develop-
ment during acute FV infection (Santiago et al. 2010). At this
stage of B cell development, a direct and an indirect model may
explain how mA3 influences Nab responses. The indirect effect
is linked to the unique mechanism by which mA3 to restricts
acute FV replication. It was shown that although mA3 decreased
titers of infectious virus during acute FV infection, plasma viral
RNA loads were maintained (Smith et al. 2011). These findings
indicated that mA3 restriction promoted neutralizing antibody
responses by maintaining high concentrations of virions with
native B cell epitopes, but in the context of low virion infectiv-
ity. The direct effect of mA3 on antibody responses is through
somatic hypermutation. Somatic hypermutation is an integral
process in the affinity maturation of antibodies important for
the development of the highly avid antibodies necessary for pro-
tection from viral infections. Somatic hypermutation occurs via
the enzymatic activity of activation-induced deaminase (AID),
and enzyme evolutionarily related to mA3. However, in con-
trast to AID, which prefers to mutate deoxycytidines preceded
by a purine, all APOBEC3 members, including mA3, preferen-
tially mutate deoxycytidines preceded by a pyrimidine (Chelico,
Pham and Goodman 2009). Studies showed that mA3 comple-
mented AID in driving immunoglobulin gene somatic hypermu-
tation during retrovirus infection. This revealed a novel mech-
anism through which mA3 promoted the neutralizing antibody
responses essential for recovery from retroviral infection (Hale-
mano et al. 2014). Apobec-mediated somatic hypermutation may
also be relevant in HIV-1 vaccine development, as most broadly-
neutralizing antibodies that achieve cross-clade HIV-1 neutral-
ization are heavily mutated. Highly mutated immunoglobulin
genes are more likely to have improbable protein structures that
promote neutralization breadth (Wiehe et al. 2018).
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The main target of FV-specific neutralizing antibodies is the
F-MuLV Env protein. Isolation of FV-specific neutralizing mon-
oclonal antibodies suggested multiple mechanisms of inhibi-
tion, such as inhibiting the expansion of virus-producing cells,
promoting NK cell-mediated ADCC and complement-dependent
neutralization in vitro (reviewed in Halemano et al. (2013b)).
Sequence comparisons of monoclonal antibodies from Rfv3-
resistant versus Rfv3-susceptible mice suggested that protective
neutralizing antibodies are associated with the IgG2c subclass,
specific VH gene families, increased binding affinity to virions
and higher somatic mutations (Halemano et al. 2014). In passive
transfer studies, the neutralizing activity of the antibodies was
shown to be dependent on activating Fcγ receptors, but not on
complement (Halemano et al. 2015).

The ability of B cells to become activated and respond to
infection is strongly modulated by Tregs, which provide a level
of homeostatic suppression of B cells. Such B cell modulation
reduces the potential to generate autoimmune antibodies and
ensures that only specific responses associated with danger sig-
nals from pathogens elicit antibody production. In mice infected
with FV, which induces a robust expansion of Tregs, depletion of
Tregs led to elevated activation, proliferation and class switch-
ing of B cells (Moore, Messer and Hasenkrug 2018). In addi-
tion, Treg depletion enhanced the kinetics and production lev-
els of virus-specific and virus-neutralizing antibodies and also
reduced FV viremia. Thus, similar to T cell responses, specific
B cell responses to viral infections must overcome a threshold
level of Treg-mediated suppression before the antibody response
can be mounted (Moore, Messer and Hasenkrug 2018) (Fig. 2).

Antibody production during FV infection is obviously a very
important function of B cells, but studies also indicate that
antigen presentation by B cells is important for stimulating
CD8+ cytotoxic T lymphocyte responses. For example, comple-
ment opsonization of FV enhances the infection of B cells in
vitro and increases their ability to activate FV-specific CD8+ T
cells (Bila et al. 2011). Recent studies have shown that while FV
infection of DC can reduce their APC capacity (Balkow et al. 2007;
Shen et al. 2018), the infection of B cells produced a stimulatory
effect as evidenced by increased expression of costimulatory
molecules required for APC function. Furthermore, FV-infected
B cells had significantly better APC function than uninfected B
cells from the same mouse as measured by their capacity to
prime CD8+ T cell activation and proliferation in vitro (Moore
et al. 2019). As discussed in the chapter on CD4+ T cells, anti-
gen presentation by B cells is also important in the genera-
tion of high avidity, FV-specific CD4+ T cells (Ploquin, Eksmond
and Kassiotis 2011). The antigen presentation function of B cells
falls under Treg-mediated suppression in a similar manner as
described for antibody production by B cells. Thus, depletion of
Tregs, even in naı̈ve mice, strongly upregulates costimulatory
molecule expression on B cells and enhances their APC function
for CD8+ T cell priming (Moore et al. 2019).

As discussed earlier, FV infections induce the activation and
proliferation of Tregs with immunosuppressive activity for both
T cells and B cells. Unexpectedly, the FV-induced Treg response
is dependent on B cells, which provide essential signals for
Treg expansion during FV infection (Fig. 2). Treg responses are
greatly diminished in B cell-deficient mice but can be restored
by adoptive transfers of B cells at the time of infection. The fee-
ble Treg responses in B cell-deficient mice are associated with
enhanced virus-specific CD8+ T cell responses and accelerated
virus control during the first 2 weeks of infection. In vitro exper-
iments demonstrated that B cells promote Treg activation and

proliferation through a glucocorticoid-induced receptor super-
family member 18 (GITR) ligand-dependent mechanism. Thus,
B cells play paradoxically opposing roles during FV infection.
They provide proliferative signals to immunsuppressive Tregs,
which slows early virus control through suppression of T cell
and B cell responses, and they also produce virus-specific anti-
bodies, which are essential for long-term virus control (Moore
et al. 2017).

Another interesting interaction between lymphocyte subsets
responding to FV infections is that the expansion of Tfh cells,
which is necessary to promote B cell responses, is enhanced by
the presence of Tregs. Tregs have been shown to act as an IL-2
sink in FV infection (Littwitz-Salomon et al. 2015) and low IL-2
concentrations promote Tfh differentiation and germinal cen-
ter formation (Ballesteros-Tato et al. 2012; Danelli, Donnarumma
and Kassiotis 2018). Thus, on one hand, FV-induced expansion
of Tregs enhances Tfh differentiation thereby promoting anti-
body responses, but on the other hand, the B cell response is
suppressed by FV-induced Tregs as discussed above. The com-
plex dual nature of these intercellular interactions reveals a del-
icately balanced system evolved to react but not overreact to
pathogenic challenges.

IMMUNOTHERAPIES IN FV INFECTION

In the last decades the FV model has been extensively used to
design and test novel concepts of immunotherapy against infec-
tious diseases. The FV model provides the opportunity to not
only study immunotherapeutics that enhance viral immunity
during an acute infection, but also during an established chronic
viral infection (Table 2). These two phases of infection present
very distinct immunological environments with unique require-
ments for successful immunotherapy.

Elucidation of the various molecular and cellular effectors
elicited during each phase of FV infection has informed tar-
geted therapies to improve virus control through various modal-
ities. In the acute phase, one of the first anti-viral effectors
is type I IFNs, which are sometimes used to treat viral infec-
tions in the clinic. Since FV induces only a very weak endoge-
nous type I IFN response upon infection, exogenous IFNα was
thought to be an interesting approach of immunotherapy and
also an interesting model to test the hypothesis that differ-
ent IFNα subtypes would have varying efficacies in virus con-
trol. Indeed, certain IFNα subtypes were able to restrict acute
FV replication in vivo (Gerlach et al. 2009; Gibbert et al. 2012).
The mechanisms of action were most likely the direct induc-
tion of anti-viral restriction factors (see chapter 3.1), but also the
immunomodulatory properties of IFNα. Mouse IFNα4 was able
to augment early FV-specific CD8+ T cell responses, whereas
IFNα1 and α11 mainly activated NK cell responses (Gerlach et al.
2009; Gibbert et al. 2012). Similar findings were made when IFN
responses were induced by TLR ligands rather than IFNα injec-
tions. Here TLR-9 (Olbrich et al. 2002) and TLR-3 ligands (Gibbert
et al. 2010) mediated IFN-dependent direct anti-viral activity as
well as stimulatory effects on virus-specific T cells. Beside IFNα

subtypes, other cytokines that enhance NK cell responses were
shown to restrict initial FV replication, including IL-2 specifi-
cally targeted to NK cells (Littwitz-Salomon et al. 2015) and IL-
15/IL-18 (Littwitz-Salomon, Dittmer and Sutter 2016; Littwitz-
Salomon, Schimmer and Dittmer 2017a). In contrast to IFNα,
these effects exclusively relied on the activity of NK cells and
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Table 2. Approaches for immunotherapy during acute and chronic FV infection.

Therapeutic Improved immune response Reference

Treg depletion CD4+ T cells, CD8+ T cells, NK cells, B cells (Zelinskyy et al. 2009a)
(Dietze et al. 2011)
(Manzke et al. 2013)
(Littwitz-Salomon et al. 2015)
(Littwitz-Salomon et al. 2018a)
(Moore et al. 2018)

MDSC depletion CD8+ T cells (Drabczyk-Pluta et al. 2017)
PD-1/PDL-1 blockade CD8+ T cells (Dietze et al. 2013)

(Akhmetzyanova et al. 2015)
Tim-3 blockade CD8+ T cells (Dietze et al. 2013)
Interferon-alpha subtypes CD8+ T cells, NK cells (Gerlach et al. 2009)

(Gibbert et al. 2012)
TLR ligands CD8+ T cells, B cells (Olbrich et al. 2002)

(Gibbert et al. 2010)
(Kraft et al. 2005)

GITR agonist and blockade CD8+ T cells, Tregs (Dittmer et al. 2004)
(He et al. 2004)

CD137 agonist CD8+ T cells, CD4+ T cells (Robertson et al. 2008b)
(Malyshkina et al. 2017)
(Malyshkina et al. 2019)

IL-15/IL-18 cytokines NK cells (Littwitz-Salomon, Schimmer and Dittmer 2017a)
IL-10 blockade NK cells (Littwitz-Salomon et al. 2018a)
CD122-directed IL-2 NK cells (Littwitz-Salomon et al. 2015)
CD1d activator αGalCer NK T cells (Littwitz-Salomon, Schimmer and Dittmer 2017b)
IFNγ blockade Antibodies, CD8+ T cells (Stromnes et al. 2002)

(Duley et al. 2012)

no other immunological mechanisms were involved. Therapeu-
tic effects during early FV infection could also be achieved by
stimulating NKT cells with their exogenous activator αGalCer
(Littwitz-Salomon, Schimmer and Dittmer 2017b). Antibody-
mediated blockade of the glucocorticoid-induced tumor necro-
sis factor receptor on Tregs during acute FV infection produced
faster Th1 responses and reduced virus loads and pathology.
Interestingly, this immunotherapeutic also improved long-term
CD8+ T cell functionality (He et al. 2004).

Although IFNγ is generally considered a potent antiviral
cytokine, experiments in FV-infected mice co-infected with LDV
demonstrated that LDV-induced IFNγ was actually detrimen-
tal to control of acute FV. Delivery of IFNγ -blocking antibod-
ies during acute FV resulted in significantly reduced virus lev-
els and better CD8+ T cell responses in the absence of IFNγ

(Duley et al. 2012). This negative effect of IFNγ on CD8+ T cells
was indirect, not involving IFNγ receptors on the CD8+ T cells.
Another effect of the IFNγ was to promote FV infection of B
cells. Interestingly, the detrimental effects of IFNγ on early FV-
specific immune responses were replaced at about 2 weeks
post-infection by a requirement for IFNγ to maintain virus con-
trol, especially in terms of developing high titer, class-switched
antibody responses (Stromnes et al. 2002). These experiments
illustrate that the timing of immunomodulatory therapeutics
with respect to the disease course can be absolutely critical for
efficacy.

The virus-specific CD8+ T cell response is critical for early
FV control and first appears at around 1 week post FV infec-
tion. Since CD8+ T cells are under the control of suppressive
Tregs as well as MDSCs it is not surprising that depletion of
these suppressors enhanced CD8+ T cell responses and reduced
levels of acute FV infection (reviewed in (Hasenkrug, Chougnet

and Dittmer 2018)). These experiments showed that a number
of different target molecules or cell types of the immune system
can be manipulated by immunotherapy to influence the out-
come of an acute retroviral infection.

Although mice with resistant genetic backgrounds are able
to bring acute FV infections under control, a chronic, low-level
infection ensues. The combination of chronic antigen stim-
ulation and suppression by Tregs and MDSCs establishes an
immunosuppressive milieu that presents a complicated ther-
apeutic situation. During the chronic phase of infection, the
cytotoxic and cytokine-mediated antiviral activities of effector
CD8+ T cells are largely incapacitated (Zelinskyy et al. 2005;
Zelinskyy et al. 2009a), although recent results indicate that a
small subset of CD8+ T cells expressing SIRPα remains func-
tional (Myers et al. 2019). Thus, immunotherapy in chronic viral
infection mainly aims to restore the functionality of virus-
specific T cells or expand the functional subsets. This concept
is also very relevant for chronic human infections with viruses
like HIV or HBV and for the treatment of cancers. We have
shown that blocking inhibitory signals by Treg depletion (Dietze
et al. 2011), PD-1 antibody blockade (Dietze et al. 2013), or MDSC
depletion (Drabczyk-Pluta et al. 2017), results in reactivation of
CD8+ T cells and significant reduction in chronic FV set points.
Combination therapies targeting PD-1 and Tregs at the same
time further improved this checkpoint immunotherapy (Dietze
et al. 2013). In addition to enhancing control of chronic virus
by modulating suppression and co-inhibitory molecules, it was
also shown that immunostimulatory therapies could be use-
ful. Agonistic antibodies targeting the co-stimulatory molecule
CD137 reactivated FV-specific CD4+ and CD8+ effector T cells
(Malyshkina et al. 2017; Malyshkina et al. 2019) and made them
refractory to Treg suppression (Robertson et al. 2008b). They
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could even reprogram Tregs into effector T cells that kill FV-
transformed tumor cells (Akhmetzyanova et al. 2016). Nanopar-
ticle vaccines delivering FV antigen and molecules for TLR
stimulation were able to induce potent T cell responses that
restricted chronic FV infection (Knuschke et al. 2014). This suc-
cessful therapeutic vaccination was dependent on type I IFN
induction (Knuschke et al. 2018) and could be further improved
by Treg depletion (Knuschke et al. 2016).

Taken together, the results from several decades of research
on FV immunity have provided a detailed picture of the different
phases of retroviral immunity, from acute infection to chronic-
ity (Fig. 2). Unexpected interactions between the intrinsic, innate
and adaptive immunity have been revealed during acute infec-
tion (Fig. 3). For example, intrinsic restriction factors such as
Apobec and Tetherin were shown to influence NK cell, B cell
and T cell responses and complement opsonization of virus was
shown to strongly influence FV-specific T cell responses. Such
findings are important for the development of immunothera-
pies and vaccines. These areas of research were also informed
by novel discoveries of immune regulation during chronic FV
infection. Host responses to chronic infections involve a com-
plex state of both immune effector functions to control virus and
counter-regulatory mechanisms to avert immmunopathology.
Some of these mechanisms, such as Treg-mediated suppression,
were first described in the FV model. These discoveries have let
to therapeutic manipulations to tip the immunological balance
towards immune mechansims that significantly reduce chronic
infections. However, even in our most successful immunother-
apy experiments with chronically FV-infected mice, we were not
able to achieve viral clearence, a goal that is also still unmet in
HIV research. Thus, future studies will have to concentrate on
novel combination therapies that target different mechanisms
of viral persistence and immune evasion to provide a proof of
concept for retroviral cure or functional cure.

The complex virus-host interactions during acute FV infec-
tions and the transition to a chronic infection have proven to be
highly relevant to persistent infections in humans. The ability
to study and treat all phases of infection make the FV model an
attractive one for developing and testing therapeutics for their
effects on both the virus and the intricate interactions between
various components of the immune system.
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