
Systems biology

Characterizing and ranking computed metabolic

engineering strategies

Philipp Schneider and Steffen Klamt *

Max Planck Institute for Dynamics of Complex Technical Systems, Analysis and Redesign of Biological Networks,

Magdeburg 39106, Germany

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on August 31, 2018; revised on November 28, 2018; editorial decision on December 21, 2018; accepted on January 7, 2019

Abstract

Motivation: The computer-aided design of metabolic intervention strategies has become a key

component of an integrated metabolic engineering approach and a broad range of methods and

algorithms has been developed for this task. Many of these algorithms enforce coupling of growth

with product synthesis and may return thousands of possible intervention strategies from which

the most suitable strategy must then be selected

Results: This work focuses on how to evaluate and rank, in a meaningful way, a given pool of com-

puted metabolic engineering strategies for growth-coupled product synthesis. Apart from straight-

forward criteria, such as a preferably small number of necessary interventions, a reasonable

growth rate and a high product yield, we present several new criteria useful to pick the most suit-

able intervention strategy. Among others, we investigate the robustness of the intervention strat-

egies by searching for metabolites that may disrupt growth coupling when accumulated or

secreted and by checking whether the interventions interrupt pathways at their origin (preferable)

or at downstream steps. We also assess thermodynamic properties of the pathway(s) favored by

the intervention strategy. Furthermore, strategies that have a significant overlap with alternative

solutions are ranked higher because they provide flexibility in implementation. We also introduce

the notion of equivalence classes for grouping intervention strategies with identical solution

spaces. Our ranking procedure involves in total ten criteria and we demonstrate its applicability by

assessing knockout-based intervention strategies computed in a genome-scale model of E.coli for

the growth-coupled synthesis of L-methionine and of the heterologous product 1,4-butanediol.

Availability and implementation: The MATLAB scripts that were used to characterize and rank the

example intervention strategies are available at http://www2.mpi-magdeburg.mpg.de/projects/cna/

etcdownloads.html.

Contact: klamt@mpi-magdeburg.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Bio-based production processes with renewable feedstocks hold a

great potential for the sustainable provision of chemicals. Metabolic

engineering aims for establishing and improving bioprocesses by rede-

signing and optimizing the metabolism of microorganisms through

genetic and regulatory interventions (Keasling, 2010). There are many

examples of successful implementations of metabolic engineering

strategies for the bio-based synthesis of a large variety of compounds

including platform chemicals, biofuels, amino acids and precursors

for bioplastics (Becker and Wittmann, 2015; Choi et al., 2015;

Keasling, 2010; Lee and Kim, 2015; Tsuge et al., 2016). Many experi-

mental, but also mathematical tools have been developed to design

new cell factories. In particular, genome-scale metabolic models are
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now available for numerous production hosts (King et al., 2016) and

allow the in-depth analysis of metabolic networks and their capabil-

ities by means of constraint-based modeling (Bordbar et al., 2014;

Feist et al., 2009; Klamt et al., 2014; Lewis et al., 2012).

Apart from their descriptive role, genome-scale models also sup-

port the identification of metabolic intervention strategies. In gen-

eral, these strategies consist of gene or reaction deletions, insertions

or up- and downregulations and, in case of high-volume chemicals,

often aim for establishing a stoichiometric coupling of cell growth

with the formation of the target product (Long et al., 2015;

Machado et al., 2016; Maia et al., 2016; Maranas and Zomorrodi,

2016; von Kamp and Klamt, 2017). With growth-coupled strain

designs, the cell must either form the product when it approaches its

maximum growth rate (weak coupling) or synthesis of the product

is mandatory at any growth rate (strong coupling) (Klamt and

Mahadevan, 2015). Several algorithms have been developed to com-

pute intervention strategies that enforce growth coupling. including

the OptKnock (Burgard et al., 2003) algorithm and its numerous

variations which rely on bi-level optimization (Long et al., 2015;

Machado et al., 2016; Maia et al., 2016; Maranas and Zomorrodi,

2016; Tepper and Shlomi, 2010). Another approach is the frame-

work of minimal cut sets (MCSs), which, among other applications,

can also be used to enumerate intervention strategies for weak or

strong coupling (Hädicke and Klamt, 2011; Klamt, 2006;

Mahadevan et al., 2015; von Kamp and Klamt, 2014). Many of the

above mentioned methods may generate a large pool of alternative

intervention strategies to meet the predefined goals (Kim and Reed,

2010; Maranas and Zomorrodi, 2016; Patil et al., 2005; von Kamp

and Klamt, 2014). A necessary step between model-driven design

and experimental implementation is therefore an extensive screening

and assessment of the proposed strategies to identify the best candi-

date which has preferably low experimental effort and leads with

high probability to a mutant strain with strong performance.

While several approaches have been developed for selecting en-

dogenous and heterologous product synthesis pathways for metabol-

ic engineering (for a review see Wang et al., 2017), we found only a

single study (Hartmann et al., 2017) that addressed the problem of a

systematic characterization and ranking of intervention strategies

(ISs). In this work, we present a catalogue of ten criteria to charac-

terize growth-coupled ISs. Several of these criteria are new and go

beyond standard metrics. The presented criteria can be used, in a

first step, to preselect certain strategies if some properties are essen-

tial or imply exclusion. We then propose a scoring scheme to rank

all remaining strategies facilitating a final selection for experimental

implementation (Fig. 1) We illustrate our criteria and the ranking

scheme by two different case studies where we computed ISs in a

genome-scale model of E.coli for the growth-coupled production of

the amino acid L-methionine and of the heterologous product 1,4-

butanediol. In these case studies, the respective pools of ISs were

computed as minimal cut sets but the presented criteria and ranking

scheme could as well be applied to outputs of other algorithms.

2 Materials and methods

We assume that a set of intervention strategies (ISs) has been com-

puted by an appropriate strain design algorithm based on a

constraint-based stoichiometric model of the metabolism of the re-

spective wild-type production organism. In constraint-based meta-

bolic models it is assumed that the intracellular metabolites are in

steady state leading to the metabolite balancing equation:

Nr ¼ 0

where N is the stoichiometric matrix and r the vector of net reaction

rates. In addition, flux capacity constraints for the reaction rates can

be considered:

lbi � ri � ubi

In particular, ri�0 must be fulfilled for irreversible reactions.

Further linear (in)equalities can be added for including other known

(e.g. proteome allocation) constraints. The resulting solution space of

steady-state flux distributions can be analyzed with a variety of meth-

ods (Lewis et al., 2012). The characterization of many properties of

ISs is based on analyzing the solution space of the mutant model

Fig. 1. Overview of the proposed characterization criteria and ranking procedure for metabolic intervention strategies
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which is obtained from the wild-type model after implementing the re-

spective interventions (e.g. by setting lbi and ubi. to 0 if reaction i is

knocked-out). Dependent on the chosen method, ISs often contain re-

action or gene knockouts, which narrow down the solution space, but

they may also comprise flux up- and downregulations or the insertion

of heterologous metabolic reactions and pathways. The properties

listed below evaluate a given IS with respect to its required experimen-

tal effort, performance and robustness.

Property 1: Number of required interventions (#int)

The number of required interventions is an obvious measure for the fu-

ture experimental effort and should be preferably small. Nevertheless,

the importance of this measure compared to the other criteria may vary

and depends on the time and means available for implementation.

Property 2: Maximum growth rate (lmax)

The maximum growth rate is a measure of a mutant’s viability. In most

strain design methods the lower limit for the maximum growth rate (or

biomass yield) is defined as a constraint for computing the ISs to guaran-

tee acceptable growth rates. The importance of the maximum growth

rate depends on the chosen process type and process parameters. Higher

growth rates of the mutant can be a driver for good volumetric product-

ivity, especially in one-step batch fermentation with growth-coupled

product synthesis. Combined with the minimum product yield, the max-

imum growth rate can be used to make statements about the productiv-

ity, either through a process simulation (Klamt et al., 2018a; Zhuang

et al., 2013) or the determination of related productivity benchmarks,

such as the substrate-specific-productivity (SSP) (Feist et al., 2010).

Property 3: Minimum product yield at maximum growth rate

(Ymin
P=S@lmax)

For strain design algorithms focusing on weak coupling (such as

OptKnock or RobustKnock), the product synthesis rate or product yield

at maximum growth rate is of major importance since this is considered

as the operating point of the mutant after adaptive evolution (Conrad

et al., 2011). In the following, we focus on the product yield at max-

imum growth rate as a performance measure although the product syn-

thesis rate could be used as well. The product yield at the maximum

growth rate can be a unique value or lie in a certain range where we then

consider the minimum guaranteed product yield as relevant measure.

This value can be obtained through two subsequent simple optimiza-

tions, namely a maximization of the growth rate followed by a mini-

mization of the product yield under fixed maximum growth rate. In

practice, the minimum product yield can be obtained through a tech-

nique similar to flux balance analysis (FBA), however, the objective

function contains a ratio of the product synthesis and substrate uptake

rate and is thus not linear as in FBA. The resulting linear-fractional pro-

gram (LFP) can be transformed to a linear program and solved to obtain

the minimum yield ratio between two fluxes (Klamt et al., 2018b).

Property 4: Minimum product yield (Ymin
P=S )

Sometimes mutant strains may not attain the flux distribution with max-

imum growth rate in experiments, e.g. due to possible regulatory or

pathway capacity constraints. We therefore consider the minimum prod-

uct yield enforced by an intervention strategy as another criterion. In

fact, some strain design algorithms even enforce a minimum product

yield for all feasible flux vectors in the mutant, even at non-optimal

growth (strong coupling). This criterion thus quantifies the strength of

the coupling. Again the minimum product yield can be computed by

linear-fractional programming as explained above.

Property 5: Requirement of anaerobic conditions (O2)

Another criterion for evaluating an IS and the resulting process concerns

the necessity of oxygen supply for the mutant strain. Anaerobic growth

regimes are often easier to implement in large-scale and then preferred.

In fact, some ISs even demand anaerobiosis while others require oxygen.

Furthermore, the preference for an aerobic or anaerobic process may

also depend on pathway capacities and regulation (van Heerden and

Nicol, 2013), product inhibition, process stability and other factors.

Property 6: Number of alternative products that could disrupt coupling

if secreted (#alterProd)

Growth-coupled ISs are sometimes not successful in practice because of

unexpected by-product secretion abrogating the stoichiometric coupling of

growth and product synthesis. To quantify the robustness of a growth-

coupled design, we determine the number of metabolites (alternative prod-

ucts) that would lead to a disruption of the coupled growth and product

synthesis if the cell was able to secrete or, at least temporarily, to accumu-

late them. The importance of this approach arises from the fact that there

is a large number of promiscuous transporters with varying specificity.

The citrate transporter CitT is such an example (Pos et al., 1998). It mainly

functions as citrate/succinate-antiporter but also shows an affinity towards

other C4-dicarboxylates, such as fumarate or aspartate. However, estab-

lished metabolic models often neglect secondary functionalities of trans-

porters. For the wild type scenario and under most fermentation condi-

tions, this assumption is realistic. Yet, in scenarios where other C4-

dicarboxylates are accumulated, its export is possible (Engel et al., 1992)

and there have been metabolic engineering approaches for fumarate pro-

duction, that rely completely on the native E.coli C4-dicarboxylate trans-

port systems (Song et al., 2013), showing that the secretion is possible.

In order to decrease the number of necessary interventions and because

usually only few metabolites are excreted under a given condition, the set

of potential product sinks can initially be reduced to the main fermentation

products (von Kamp and Klamt, 2017). Searching for alternative products

may then help to identify potential leaks that could abrogate coupling.

To test whether the excretion of a given metabolite could potentially

disrupt growth coupling, the model is temporarily extended by an export

reaction for this metabolite and with FBA it is verified whether the

desired growth coupling is then still existent with desired specifications,

e.g. with minimum product yield or production rate. This is done, one

by one, for all metabolites that do not yet have an exchange reaction.

The total number of metabolites that remove the growth coupling

with the actual target product gives a measure for the robustness of the

IS. An example is illustrated in Figure 2. Using the procedure described

above reveals that the secretion of metabolites E or G (orange) would

disrupt strong coupling while F is not a possible alternative product be-

cause the co-factor N could then not be balanced by the cell.

Mutants that hold less alternative products tend to have a growth

coupling that is more robust, for example, because the coupling

Fig. 2. Example for disruption of growth coupling and for accessible metabo-

lites. In the lower branch there are three different cuts (green, blue, blue) that

establish coupling of biomass and product synthesis. All of them cut the

same pathway and lead to the same solution space but they imply a different

number of accessible metabolites. The green cut at the beginning of the path-

way is preferred and has the lowest number of accessible metabolites.

Choosing the green cut (or, less favored, one of the two red cuts), coupling is

ensured and the product is synthesized if the cell grows, however, excretion

of the metabolites E and G (but not F) would disrupt growth coupling (Color

version of this figure is available at Bioinformatics online.)
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mechanisms, such as cofactor regeneration, occur at the end of the prod-

uct synthesis pathway. Our approach also allows one to exclude ISs with

by-products that are likely to occur or have already been observed in pre-

vious experiments. Sometimes only the combined secretion of multiple

alternative products leads to a disruption of growth coupling, however,

we do not consider those combinations herein because they are less likely

and their detection requires higher computational effort. Furthermore, if

the likelihood of secretion can somehow be quantified, the approach

could also be extended by associating individual penalty scores for each

metabolite. For example, metabolites that are phosphorylated or bound

to Coenzyme A are less likely to be secreted.

A useful extension for the described approach is the identification of

the nature of the respective coupling strategy. For this purpose, artificial

reactions that recover co-factors such as ATP/ADP, NADH/NAD or

NADPH/NADP ‘for free’ from the respective unphosphorylated (ADP)/

phosphorylated (ADP) or oxidized (NAD(P))/reduced (NAD(P)H) form.

If growth coupling is, for example, disrupted by the integration of an

NADH oxidizing reaction, this would indicate that the underlying cou-

pling mechanism relies on the balance of reduction equivalents.

Equivalence classes of intervention strategies

In practice, different ISs can lead to identical solution spaces. The reason

is the nature of the steady-state assumption. For example, a linear path-

way can be interrupted through a cut of any of the sequential reactions.

An example is given in Figure 2 where the pathway from A to D can be

interrupted by three different cuts. All three cuts (green and two blue

cuts) interrupt this pathway and yet lead to the same solution space.

Using this criterion, a pool of ISs can always be partitioned into (equiva-

lence) classes where all ISs of one class have identical solution spaces.

To identify equivalence classes, a flux variability analysis is performed

for each IS. All ISs with identical flux ranges belong to the same class. It

is reasonable to consider only one representative strategy for each class

to avoid ranking of redundant solutions, however, it remains to be speci-

fied what the best strategy of each class is. This is related to Property 7.

Property 7: Number of accessible metabolites (#accessMet)

Regarding linear pathways, an interruption at an intermediate step or at

an endpoint of the pathway (blue cuts in Fig. 2) can lead to an undesired

accumulation of intermediate metabolites. Therefore, it is advantageous

to interrupt pathways at their branching point (green cut in Fig. 2) and

thus to minimize the total number of metabolites that can be produced.

We therefore propose the number of accessible metabolites as a criterion

to assess the risk of accumulation (and possible secretion) of metabolites

in a given strain design. We suggest to identify the (best) representative

for each IS class as the IS with lowest number of accessible metabolites.

Accessible metabolites are all those metabolites that can, in principle, be

synthesized by the reactions of a metabolic network. Note that this also

includes metabolites for which, e.g. due to certain proposed interven-

tions, no further metabolization pathways or sinks (excretion reaction)

exist in a redesigned network. In Figure 2, the three different knockouts

lead to the same solution space, yet, the number of accessible metabolites

differs for each of them and the strategy with the smallest number (the

green cut) holds the lowest risk for the accumulation of an intermediate

product because the undesired pathway is interrupted at its root. We

hence would take the green cut as the representative strategy for this

class. In the rare case that multiple strategies of a equivalence class have

the same minimal number of accessible metabolites, one may consider

only one representative selected by additional criteria (see case study

below) or all of them for further evaluation.

To test whether an intracellular metabolite is accessible in a mutant,

the model is extended by a sink reaction for this metabolite. The steady-

state constraint Nr ¼ 0 is then replaced with the weaker constraint

Nr � 0, hence, all metabolites are allowed to accumulate. This ensures

that metabolites are classified as accessible also if their synthesis requires

simultaneous accumulation or excretion of other metabolites. An opti-

mization maximizing the flux through the new sink reaction is then per-

formed to see whether this flux can become non-zero, indicating that the

metabolite is accessible. This check is done successively for all metabo-

lites delivering the total number of metabolites that are accessible.

As suggested by Trinh et al., 2015, the undesired interruption of reac-

tions at downstream positions of linear pathways could already be avoided

during IS computation. This would not only reduce the number of relevant

strategies but also speed up the computation. However, sometimes it is not

ad hoc possible to define beginning and end of the respective product syn-

thesis pathway(s), as this may depend on the chosen intervention strategies.

Property 8: Thermodynamics: Optimal max-min driving force (OptMDF)

Thermodynamic pathway analysis has been used before in other studies

as a feasibility constraint for pathway prediction (Campodonico et al.,

2014) and as a criterion for pathway ranking (Carbonell et al., 2014;

Kuwahara et al., 2016). The metric of Max-min driving force (MDF)

introduced by Noor et al. (2014) is an optimization-based technique for

determining the maximum thermodynamic driving force and the thermo-

dynamic feasibility of a given metabolic pathway under best-case condi-

tions. The concept of MDF was already successfully applied to genome-

scale networks to rank and discriminate biosynthetic pathway candi-

dates for expanding metabolic networks (Asplund-Samuelsson et al.,

2018). However, MDF in its original form can only be used to test

thermodynamic feasibility of one given pathway. We therefore use the

OptMDFpathway method, recently introduced in Hädicke et al. (2018),

to find the flux vector with growth-coupled product synthesis that yields

the maximum MDF (OptMDF) in the entire solution space of the mu-

tant. This quantity will be used as a ranking criterion for the respective

intervention strategy. In addition, if the computed OptMDF is smaller

than zero, then the corresponding strategy leads to a mutant without any

thermodynamically feasible flux distribution and can thus be removed

from the pool.

Property 9: Overlap with other intervention strategies (overlap)

Regarding experimental implementation it is advantageous to lower the

initial risk of failure by choosing one with many fallback options. To have

a related measure that correlates with the number of fallback options we

quantify the overlap of an IS with others. We first count the number of

occurrences of a certain intervention in the entire pool of ISs. The overlap

measure for each strategy is then calculated as the sum of the occurrences

of all its interventions divided by the number of interventions. A high

overlap measure indicates more potential fallback options, which is espe-

cially useful when an iterative step-by-step approach is followed in the ex-

perimental implementation of the strain design (Harder et al., 2016).

When an IS is picked, the first interventions to be implemented would be

those with the highest scores (many overlaps), moving successively to-

wards the lower scores (few overlaps), so that an alternative strategy could

be used if a strategy change is be required (e.g. due to failure of growth).

Property 10: Feasibility in reduced models (core-model)

The underlying mechanisms of different growth-coupled ISs can some-

times be hard to identify. Some recurring patterns are cofactor regener-

ation, proton balancing, carbon branching and interruption alternative

pathways (Alter et al., 2018). Nevertheless, the metabolic routes that are

finally used for the synthesis of the product of interest are diverse and, in

a genome-scale model, may not be limited to the central carbon metabol-

ism and also comprise pathways with presumably smaller capacities. In

principle, constraint-based models could be adjusted to consider known

maximum pathway capacities to avoid solutions that rely on high meta-

bolic fluxes through secondary pathways. However, bounds of internal

fluxes are usually not known. Furthermore, one may still be interested in

solutions with low capacities when there is the prospect of increasing the

pathway capacity, e.g. by amplifying the corresponding genes.

We therefore suggest to evaluate the reliance of an IS on pathways

with small capacities. For this purpose, we test the computed ISs in a

reduced core network that only comprises the major catabolic and ana-

bolic pathways. Alternatively, when a core model is not available, one

may choose other criteria, e.g. relying on GO (gene ontology) terms, to
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mark certain reactions to have only limited capacity. These reactions

should then not be essential in a designed strain.

In our examples we used EColiCore2, a model of E.coli’s central me-

tabolism derived from the genome-scale model iJO1366 (Hädicke and

Klamt, 2017). It comprises only 20% of the reactions of the full model

but reproduces major phenotypes. As the EColiCore2 is a sub-network of

iJO1366, we can easily test whether a knockout-based IS, computed in

the full model, is also applicable in the smaller model: All interventions

that target elements contained in the core model are implemented in the

latter and FBA is then used to check whether the desired constraints of the

mutant (e.g. minimum product yield when growing) are still fulfilled. If

this is not the case, the IS is classified as reliant on secondary pathways

and will thus receive a lower score in the ranking procedure.

Scoring and ranking

The ten criteria described above characterize the different ISs and can

be used to compare them with each other; first on the basis of each

single criterion. To obtain a comprehensive quantitative measure Si

for each intervention strategy i, we suggest the calculation of an over-

all score from the individual scores Si;j for each of the ten criteria

j ¼ 1 . . . 10. Each criterion score Si;j can take normalized values be-

tween 0 and 1. The intervention strategy i that takes on the most un-

favorable value on the criterion j attains the score Si;j ¼ 0 and the

strategy k with the most favorable value is scored with Sk;j ¼ 1.

Concretely, if a high value Ui;j of a specified criterion j is desirable

[e.g. minimum product yield or maximum thermodynamic driving

force (OptMDF)], the score for the strategy i is determined by:

Si;j ¼
Ui;j �Uj;min

Uj;max �Uj;min
:

In the case of a preferably low value Ui;j, the term is:

Si;j ¼
Uj;max �Ui;j

Uj;max �Uj;min
:

Criteria with a preferably low value are the number of necessary

interventions, the number of metabolites that disrupt the growth-

product coupling and the number of accessible metabolites. The

score for the aeration requirement SO2
takes the value 1 for the an-

aerobic and 0 for the aerobic case. The score for the feasibility in

reduced networks takes the value 1 if the strategy is feasible and 0 if

it is infeasible in a reduced network. In the case that an OptMDF

value is negative, indicating thermodynamic infeasibility of the IS

with given constraints, the individual score as well as the lower ref-

erence value (Uj;min) for the normalization are then set to zero.

The total score Si for an intervention strategy i is then a weighted

sum of its scores for the ten criteria:

Si ¼
X

j

cjSi;j:

The weights cj can be adapted to reflect (i) the particular rele-

vance of each criterion in a given application and (ii) the spread of the

values. A smaller weight should be used for a criterion if its values are

distributed over a very narrow range only, indicating low variability.

In the simplest and uniform approach one may set all weights to 1.

The computed overall scores Si can finally be used to rank the ISs.

3 Results

3.1 Case study: model and computation of minimal cut

sets
To illustrate our approach, we computed growth-coupled strain

designs for two different products: L-methionine and 1,4-butanediol

produced via a homologous and a heterologous pathway respective-

ly. We used the E.coli genome-scale model iJO1366 (Orth et al.,

2011) with minor modifications (see supplements) and minimal

media with glucose as the sole substrate. The ISs in these examples

are knockout-based and computed as minimal cut sets (MCSs) by a

variant of the algorithm used by von Kamp and Klamt (2017).

Undesired phenotypes that should be eliminated through the MCSs

(so-called target flux vectors) were defined as flux vectors with a

product yield lower than 30% of the theoretical maximum yield of

the respective product. For the protected (desired) phenotypes we

assumed a minimum product yield above this 30% threshold and a

lower limit of the maximum growth rate of 0.05 h�1. To speed up

MCS computation, the genome-scale model was first compressed by

merging sets of fully coupled reactions and by removing conserva-

tion relations (von Kamp and Klamt, 2017). For the MCS search we

set an upper limit of 13 reaction knockouts per strategy and the cal-

culation was aborted if (i) the solver finished the search, (ii) a time

limit of 24 h was exceeded) or (iii) when 200 MCSs were found in

the compressed model. For all computations we used API functions

of CellNetAnalyzer 2018.1 (Klamt et al., 2007; von Kamp et al.,

2017) in MATLAB 2016a with IBM CPLEX 12.6.3 as MILP solver.

The MCS computation algorithm was run on an HPC cluster, using

12 CPU slots per computation (2x Intel Xeon X5650–6 cores each)

with 28 GB of memory. Standard Gibbs energies DrG
00 for comput-

ing the maximum MDF in the mutants (OptMDF; property 8) were

available for 744 reactions and taken from Hädicke et al. (2018).

For assessing property 10, the feasibility in reduced models, we used

the EColiCore2 model (Hädicke and Klamt, 2017). The full set of

computed MCSs and their properties and ranking can be found in

the Supplements.

3.2 Preselection and ranking
The ranking of the computed ISs involved two steps. First, to avoid

occurrence of many equivalent strategies in the final ranking tab-

leau, a preselection was performed based on equivalence classes of

MCSs (see property 7 in Section 2). All MCSs of one equivalence

class lead to an identical solution space of steady-state flux vectors

when applying the interventions in the model. To identify equiva-

lence classes, we performed for each IS a flux variability analysis

and grouped all MCSs with identical flux ranges in one class. We

then selected one (the best) representative of each class which has

the minimum number of accessible metabolites. If there are, within

one class, several MCSs with a minimum number of accessible spe-

cies, then, from these MCSs, the one with the highestoverall score is

selected as the representative.

After preselection, the MCS class representatives underwent the

scoring and ranking procedure as described in Section 2. We used

the weighting coefficients cint ¼ 1:5, clmax
¼ 1, cYmin

P=S
@lmax

¼ 1,

cYmin
P=S
¼ 1, cO2

¼ 0:5, calterProducts ¼ 0:5, caccessMet ¼ 0, coptMDF ¼ 0:5,

coverlap ¼ 0:5, ccore�model ¼ 0:25. We thus chose slightly larger

weights for the first four criteria to emphasize the number of inter-

ventions, the maximal growth rate and the minimum product yield

during ranking. Note that the number of accessible metabolites is

only used (and only reasonable) as criterion for the preselection of

ISs in the equivalence classes (see Section 2) and the weight of this

score is therefore set to zero in the ranking of the representatives.

3.3 Example 1: L-Methionine
Regarding the global market size of the different amino acids, me-

thionine holds the third place after glutamate and lysine. Main

applications of methionine lie in livestock (feed additive, especially

Characterizing and ranking computed metabolic engineering strategies 3067

Deleted Text:  
Deleted Text: ,
Deleted Text: <bold>R</bold>
Deleted Text: (
Deleted Text: ,
Deleted Text: )), 
Deleted Text: L-
Deleted Text:  
Deleted Text:  
Deleted Text: ,
Deleted Text: R
Deleted Text: Methods
Deleted Text: Methods section
Deleted Text: ,
Deleted Text: Methods
Deleted Text: L-


poultry farming), pharmaceutics and nutrition (Huang et al., 2017;

Willke, 2014). Despite many attempts, there are only few successful

examples of metabolic engineering approaches that lead to an estab-

lished industrial bioprocess. In terms of strain design, one of the

main hurdles lies in the complex regulation of the L-Methionine

biosynthesis in bacterial hosts (Figge, 2006). A pathway for

L-methionine biosynthesis was already successfully deregulated in

E.coli (Huang et al., 2017). In contrast to the studies that treat the

regulatory restrictions, our example focuses on potential knockout

strategies that reroute the metabolic flux and couple growth to a ne-

cessary overproduction of L-methionine.

We extended the iJO1366 model with the L-methionine proton

antiporter YjeH (Liu et al., 2015). In total we found 258 interven-

tion strategies (MCSs) with a minimum of 9 and a maximum of 13

cuts. The MCSs can be grouped in 37 equivalence classes. From

each class we picked the best representative as described above.

Scoring and ranking was done as described in Section 2 using the

weighting coefficients given in Section 3.2. The highest ranked can-

didate, MCS 41, consists of the 10 reaction deletions TPI, ENO,

CYSDS, GPDDA2, GPDDA2pp, HCYSMT, LSERDHr, MTHFC,

SERD_L and TRPAS2 which can be established through the knock-

out of the genes tpiA, eno, mmuM, folD, ydfG, sdaA, glpQ, sdaB,

metC, ugpQ, tnaA and tdcG.

Figure 3 shows the performance of five exemplary MCSs for the

different criteria. As shown in Figure 3B, different MCSs can lead to

growth-rate-product-yield (GRPY) spaces with similar shapes. Yet,

the further assessment of the candidates reveals that a characteriza-

tion solely on the basis of these trade-off plots is limited. MCSs with

similar GRPY spaces can still perform very differently on other crite-

ria, such as the thermodynamic driving force, the number of possible

by-products or the number of necessary knockouts (Fig. 3A). For ex-

ample, the highest ranked MCS (MCS 41 - blue) is more robust and

needs less knockouts than MCS 28 (purple), even though their

GRPY spaces are almost identical. In fact, it should be noted that

there is only a small variance in the minimum product yields (at

maximum growth rate) of all MCSs nevertheless leading to different

scores for this criterion. As mentioned earlier, in those cases with

low variability one could leave out the respective criterion/score by

setting its weight to zero. While MCS 237 (green) is outperformed

by MCS 144 (yellow) in the overlap score and the number of inter-

ventions, it is thermodynamically more favorable and offers a higher

maximum growth rate. Figure 3B also shows that none of the five

selected MCSs could be used in the E.coli core model EcoliCore2

indicating that the computed ISs rely on pathways outside of the

central metabolism with possibly lower capacities. A closer analysis

revealed that the crucial pathway in this case starts with the glycine

C-acetyltransferase reaction GLYAT that finally reintroduces gly-

cine into the pyruvate metabolism. This pathway is not contained in

the EColiCore2 model.

We further analyzed the computed MCSs to understand the cou-

pling mechanisms. In all MCSs the coupling was established through

a combined deletion of the triose-phosphate isomerase reaction and

one of the two final glycolysis steps catalyzed by phosphoglycerate

mutase or enolase. As a result, sugar degradation has to take place

along the Entner–Doudoroff pathway (ED) which forces the carbon

flux to split into pyruvate and glyceraldehyde-3-phosphate (G3P)

from where the metabolic pathway to PEP and pyruvate is blocked.

The flux through pyruvate can join the TCA cycle to generate reduc-

tion equivalents mainly used for ATP synthesis via respiration. G3P

cannot enter the TCA cycle directly and can only be drained via the

pathways to serine and aspartate which are then further metabolized

to methionine, consuming NADPH produced in the ED pathway

(Fig. 4). In addition to tpi and eno/pgm, essential knockouts that occur

in all MCSs are the reactions of the cysteine desulfhydrase (CYSDS),

L-serine deaminase (SERD_L) and tryptophanase (TRPAS2) by which

amino acid degradation pathways are blocked. While all MCSs con-

tain the essential knockouts described above, specific interventions in

the MCS now enforce different routes through the amino acid path-

ways with certain flux ratios. For the flux rerouting, different combi-

nations of reaction knockouts are possible bearing different

advantages and disadvantages. MCS 28 and 74 are less robust, as

there are many more intermediates (e.g. up to 218 for MCS 28)

which, if secreted, can abrogate growth coupling.

As described in Section 2 section (property 6), it was also tested,

whether coupling is still existent when ATP is available at no cost,

or electron sources or sinks are added that reduce or oxidize

NAD(P)/H. We found that an artificial supply with ATP leads to the

disruption of the growth coupling, suggesting that ATP synthesis

(and therefore growth) is coupled to methionine synthesis. An exter-

nal supply with electrons would also abolish coupling because the

electron surplus can be used to increase ATP synthesis via respir-

ation. Contrary, giving the mutants the option to drain electrons

does not affect the coupling.

FBA and the thermodynamic OptMDF analysis predict the in-

feasibility of 134 out of 258 computed knockout strategies (19 out

of 37 equivalence classes). These strategies rely on the reversed mal-

ate oxidase reaction (MOX), which is thermodynamically infeasible

under the considered physiological conditions. Furthermore, in all

strategies, the essential knockouts of the genes tpiA and eno or pgm

represent serious interventions in the core metabolism of the cell.

A B

Fig. 3. Comparison of five selected intervention strategies for the growth-coupled overproduction of L-methionine in E.coli. A: Scores of the MCSs for the ten

evaluation criteria. B: Growth-rate versus product-yield plot of the selected MCSs
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While the knockout of tpi has been proven to be feasible in E.coli

(Facchetti, 2016), the additional knockouts of the enolase or phos-

phoglycerate mutase genes may be difficult targets. It was reported

that the deletion of pgm leads to a mutant that could not grow on

minimal medium (Foster et al., 2010). A reason may be the limited

flux capacity of the ED pathway in E.coli which could be overcome

by additionally deregulating the ED pathway or by overexpressing

its enzymes. Another potential drawback of the found intervention

strategies is that the glucose uptake and activation relies on the pro-

ton symport (galP) and the glucokinase (glk) reaction because there

would be not enough PEP available to use the PTS system

(Hernández-Montalvo et al., 2003). Hence, a key requirement for

implementing the found strain design strategies is to enhance the

capacity of the ED pathway in E.coli.

3.4 Example 2: 1,4-Butanediol as heterologous product
The metabolic engineering approach for the production of the non-

natural bulk chemical 1,4-butanediol (BDO) by E.coli (Yim et al.,

2011) and its later commercialization has been an unprecedented suc-

cess story for targeted metabolic engineering. In order to make this

chemical producible by E.coli, Yim et al. designed a novel artificial

pathway that branches from the tricarboxylic acid (TCA) cycle

involving five heterologous enzymes. The strain design was supported

by the computation of knockout strategies based on the OptKnock al-

gorithm which suggested the repression of the main fermentation

pathways and of the oxidative operation of the TCA cycle to couple

growth with product synthesis through the intracellular redox bal-

ance. Later studies sought to further enhance the production perform-

ance of these strain designs through enzyme engineering (Hwang

et al., 2014) or extended kinetic modeling (Andreozzi et al., 2016).

We integrated the pathway from 2-oxoglutarate to BDO, presented

by Yim et al., 2011, into the iJO1366 model (as well as in the

EColiCore2 model) and computed the minimal cut sets that establish

strong growth coupling for BDO production with this pathway. We

identified 274 MCS strategies with 6 to 12 reaction knockouts each,

that could be grouped in 107 equivalence classes. We picked one repre-

sentative per MCS class and ranked them as described before.

In Figure 5, four MCSs are compared including the MCS with the

highest and the lowest score. Figure 5A shows the single scores of the

candidates among the different criteria, while Figure 5B shows their

GRPY spaces. The best MCS (blue) does not have the highest min-

imum product yield, however, it allows anaerobic conditions and has

a good balance between a high growth rate, a small number of neces-

sary cuts (6), and an overlap with many other MCSs which would en-

able switching to another IS if necessary. Nevertheless, depending on

the application, MCS 6 (yellow) might also be a relevant candidate.

Even though it requires 12 cuts, it has a very good product yield and

is more robust than the other MCSs. Sometimes, coupling can already

be established with fewer interventions than the full set of a computed

intervention strategy (see e.g. Harder et al., 2016). Generally, the de-

termination of the best candidate may have different outcomes.

However, the ranking often shows intervention strategies that can be

excluded a priori. For example, the worst strategies that (MCS 146,

red) is outperformed by the best one (blue) in all criteria.

FBA and the thermodynamic OptMDF analysis predict the

thermodynamic feasibility of all computed knockout strategies. In

total, 104 out of 107 equivalence classes relied on anaerobic condi-

tions all of which suggested the disruption of the tricarboxylic acid

cycle (most frequently at malate dehydrogenase), the ethanol and

lactate pathways, the knockout of the NAD(P) transhydrogenase

(THD2pp) and then other (for each MCS specific) knockouts to es-

tablish full coupling. In all these strains, ATP synthesis is possible

through glycolysis with the essential fermentation products formate,

BDO and acetate. While acetate is a by-product of the BDO path-

way, the ratio of formate and BDO is predetermined by the redox-

state. Depending on the respective MCS, succinate and ethanol may

occur as side products, ethanol as a product from a cycle in the gly-

cine metabolism. The MCSs from the three remaining equivalence

classes work under aerobic conditions and rely on the interruption

of the TCA cycle through which BDO becomes an essential by-

product of respiration. The intervention strategy pursued by Yim

et al. (2011) relies on knockouts of the alcohol dehydrogenase

(adhE), pyruvate formate lyase (pfl), lactate dehydrogenase (ldh)

and the malate dehydrogenase (mdh) and has thus a large overlap

with the computed MCSs. In addition, the aerobic respiration con-

trol protein (arcA) was knocked-out by Yim et al. but not considered

herein as it is a regulator protein and no metabolic enzyme. As pre-

dicted, acetate excretion was observed for these strains. Differences

between the strategy of Yim et al. and the computed MCSs probably

arise because (i) Yim et al. used a microaerobic process by which a

knockout of the pyruvate formate lyase is allowed (this mutant can-

not grow under strict anaerobic conditions) such that CO2 and acet-

ate are the only essential by-products, and because (ii) the chosen

knockouts of Yim et al. do actually not yet guarantee a BDO pro-

duction in the iJO1366 model, even with simulated microaerobic

conditions with an upper limit for oxygen uptake of 2 mmol/gDW/h.

The identified best MCS candidate (blue) consists of the reaction

knockouts of the acetaldehyde dehydrogenase (ACALD), glucose 6-

phosphate dehydrogenase (G6PDH2r), D-lactate dehydrogenase

(LDH_D), malate dehydrogenase (MDH), phosphopentomutase 2

(PPM2) and the NAD(P) transhydrogenase (THD2pp). On the gene

level this MCS can be established through the knockout of mhpF,

ldhA, pntB, zwf, mdh, adhE and deoB. The list of all computed

MCSs is provided in the Supplementary Material.

4 Discussion

Many constraint-based strain optimization methods can generate a

pool of intervention strategies from which one candidate has to be

selected for strain development. In this work we introduced methods

Fig. 4. Strategies to couple growth with methionine synthesis in E.coli as

revealed by the computed MCSs
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for the characterization and ranking of such a pool of IS candidates

with a focus on growth-coupled strain designs. We presented a cata-

logue of ten partially new criteria for assessing and ranking individ-

ual IS candidates, broadly extending earlier approaches such as

OptPipe (Hartmann et al., 2017) which assessed only four criteria

(growth/production performance and an adaptability measure). Our

ten criteria comprise (i) the number of interventions, (ii) the max-

imum growth rate, (iii) the minimum product yield at maximum

growth rate, (iv) the overall minimum product yield, (v) the required

aeration strategy, (vi) the number of alternative products that could

disrupt growth coupling, (vii) the number of accessible (producible)

metabolites, (viii) the maximal thermodynamic driving force, (ix) a

score for the similarity to (overlap with) other ISs and (x) the feasi-

bility of the IS in a reduced or further constrained model. Each cri-

terion gives rise to a score which can be combined to an overall

score useful to rank the IS pool. Even though the integration of all

ranking criteria into the initial IS computation would be partially

possible, in most cases it would be computationally too expensive

rendering a posteriori ranking indispensable. Using real-world

examples of strain design, we demonstrated the applicability and

benefit of the developed characterization and ranking procedure. In

our first example we computed and ranked sets of ISs for the strong

coupling of growth with production of L-methionine in E.coli, while

the second example focused on the production of 1,4-butanediol via

a heterologous pathway. The case studies showed that, apart from

the actual ranking, the analysis of an exhaustive set of ISs based on

our ten criteria enables a thorough characterization of ISs, also sup-

porting the elucidation of the underlying coupling mechanism. The

comparison of ISs via the different criteria shows that the selection

of the best candidate is often not trivial and involves trade-offs.

Even though the highest ranked candidate usually performs well in

multiple criteria (e.g. in the expected production performance) it

may be outperformed in a subset of other criteria (e.g. in the robust-

ness of the strain designs).

Depending on the specific needs, our ranking procedure could be

easily adapted (e.g. by replacing our weighted score approach with

the rank product method used by Hartmann et al., 2017) or by ana-

lyzing additional properties. One example could be the number of

undesired byproducts sometimes arising for certain ISs (e.g. acetate

in the BDO case discussed above). Furthermore, a measure for the

adaptability of the resulting mutant strains could be taken into ac-

count. For example, Hartmann et al., 2017 used the MOMA

method (Segrè et al., 2002) to estimate the distance between the

wild-type and the mutant flux distribution which can then be used

as a criterion to rank ISs according to the required metabolic adjust-

ments. However, we believe that this measure is not suited for a

generic comparison of ISs for growth-coupled product synthesis, be-

cause it is the assumption of many strain design methods that the

mutant strains evolve [via adaptive laboratory evolution (Conrad

et al., 2011)] towards growth-optimal phenotypes. Hence, pheno-

types with minimal metabolic adjustment as predicted by MOMA

will then not be relevant. Furthermore, MOMA and related

methods require as input valid wild-type reference flux distributions

which are often not known. This becomes even more critical if a ser-

ies of intermediate strains needs to be constructed for which refer-

ence flux distributions are not available at the time of ranking the

computed ISs.

As an important tool for characterizing and ranking strain

designs, we also introduced the notion of equivalence classes of ISs

by which ISs with identical solution spaces can be grouped. This

simplifies the analysis as well as the ranking of the strategies since

then only one representative for each class needs to be taken into ac-

count. Once the optimal strategy has been identified, possible alter-

native solutions in its equivalence class can be investigated.

The strength of our approach lies in its straightforward and gen-

eric applicability as it is independent from product, substrate, host

organism and the computational method used to generate the IS can-

didates. The investigation of most criteria requires only an LP solver

and the stoichiometric models of the wild type and the mutant. For

the thermodynamic analysis, a relatively simple mixed-integer linear

optimization problem must be solved (Hädicke et al., 2018).

We thus consider the proposed methodology a profound basis for

the characterization and ranking of computed ISs with respect to

their performance, robustness and implementation efforts which

should help to speed-up the development of efficient strains for bio-

based production processes.
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