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ABSTRACT
Background: Genes in metabolic and nutrient signaling pathways
play important roles in lifespan in model organisms and human
longevity.
Objective: The aim of this study was to examine the relation
of a quantitative measure of healthy diet to gene expression in a
community-based cohort.
Methods: We used the 2015 Dietary Guidelines for Americans
Adherence Index (DGAI) score to quantify key dietary recommen-
dations of an overall healthy diet. Our current analyses included
2220 Offspring participants (mean age 66 ± 9 y, 55.4% women)
and 2941 Third-Generation participants (mean age 46 ± 9 y, 54.5%
women) from the Framingham Heart Study. Gene expression was
profiled in blood through the use of the Affymetrix Human Exon
1.0 ST Array. We conducted a transcriptome-wide association study
of DGAI adjusting for age, sex, smoking, cell counts, and technical
covariates. We also constructed a combined gene score from genes
significantly associated with DGAI.
Results: The DGAI was significantly associated with the expression
of 19 genes (false discovery rate <0.05). The most significant gene,
ARRDC3, is a member of the arrestin family of proteins, and evidence
in animal models and human data suggests that this gene is a regulator
of obesity and energy expenditure. The DGAI gene score was
associated with body mass index (P = 1.4 × 10−50), fasting glucose
concentration (P = 2.5 × 10−11), type 2 diabetes (P = 1.1 × 10−5),
and metabolic syndrome (P = 1.8 × 10−32).
Conclusions: Healthier diet was associated with genes involved
in metabolic function. Further work is needed to replicate our
findings and investigate the relation of a healthy diet to altered gene
regulation. Am J Clin Nutr 2019;110:742–749.

Introduction
Genes in metabolic and nutrient signaling pathways play

important roles in lifespan in model organisms and human
exceptional longevity (1–3). The 9 hallmarks of aging biology
are linked to adverse metabolic changes (4). Dietary manipu-
lation has been considered as an important regulator to delay
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age-associated molecular changes (5). Preliminary data suggest
that a calorie-restricted diet can play such a role in humans, and
the benefits on aging-related outcomes have been demonstrated
in short-term trials (6). Together these data suggest that dietary
manipulation is useful to promote metabolic fitness and extend
human health and longevity.

The National Cancer Institute initiated the Dietary Patterns
Methods Project to examine the relation of dietary patterns to
mortality in several large and diverse US cohorts. Healthy diet is
associated with significant reductions in cardiovascular disease,
cancer, and type 2 diabetes (7). The Dietary Guidelines for
Americans (DGA) (8) were developed to help Americans make
healthy food and beverage choices, with the ultimate goal of
promoting health and preventing disease. We used the 2015
Dietary Guidelines for Americans Adherence Index (DGAI) (9)
score as a quantified measure of key DGA recommendations to
obtain an objective measure of healthy diet. The DGAI includes
1) 14 energy-specific components, with a higher score reflecting
greater intake and variety of vegetables, fruit, and protein sources;
appropriate intake of grains and dairy foods; and a lower intake
of “empty calories”; and 2) 10 healthy-choice components with
higher scores reflecting higher intakes of dietary fiber; a higher
proportion of grains, fruits, dairy, and meats as whole grains,
whole fruits, low-fat dairy, and lean meat, respectively; and
lower intake of saturated fats and sodium. Given that gene
expression is affected by both genetic and environmental factors,
we hypothesize that diet could affect gene expression. The
objective of our study was to examine the relation of healthy
diet with gene expression in a community-based cohort. We
also created a diet gene expression score to understand potential
molecular mechanisms linking diet with health.

Methods

Study participants

Participants were from the Framingham Heart Study (FHS)
Offspring and Third-Generation cohorts (10, 11). Offspring
cohort participants who attended the eighth examination (2005–
2008, n = 3021) and Third Generation cohort participants who
attended the second examination (2008–2011, n = 3411) and
completed a food-frequency questionnaire (FFQ) were eligible
for this study. The FFQ includes 126 food items. Participants
were requested to report their typical consumption of each of
these food items during the past year. Participants were excluded
if FFQ or other covariate data were missing, incomplete, or
invalid (n = 379 for Offspring cohort; n = 259 for Third-
Generation cohort), or missing gene expression data (n = 422
for Offspring cohort; n = 211 for Third-Generation cohort).
The flowchart of participants is shown in Supplemental Figure
1. Participants provided written informed consent, and the
study was approved by the Boston University Medical Center
Institutional Review Board.

DGAI

Participants completed the Harvard semiquantitative FFQ as
part of the routine examination. This FFQ has been validated
against diet records in other cohorts (12, 13). Data from the

FFQ were used to compute the 2015 DGAI. FFQs with ≥13
missing food items or with estimated daily energy intake <600
kcal/d, or >4000 kcal/d for women or, >4200 kcal/d for men
were deemed incomplete or invalid, respectively, and were
excluded. The DGAI assesses adherence to the key dietary
recommendations in the 2015 DGA (14), with higher scores
representing better adherence to the guidelines. Each component
is assessed on a continuous scale with a value ranging from 0 for
complete nonadherence to 1 for perfect adherence to the DGA
recommendations. For ease of use and interpretability, the final
DGAI has been standardized to a range of 0–100 points.

Fourteen energy-specific components are used to assess adher-
ence to food intake, variety, and empty calorie recommendations
based on estimated energy requirements. Participants were first
assigned to a specific energy level based on their individual
estimated energy requirement according to the equation in the
Dietary Reference Intakes for energy (15). Intakes for fruit,
dark green vegetables, red and orange vegetables, legumes,
starchy vegetables, other vegetables, meat/poultry/eggs, seafood,
nuts/seeds/soy, grains, dairy, a variety of fruits and vegetables,
a variety of protein sources, and empty calories are assessed on
a continuous scale (each component score range 0–1). The 10
healthy choices assess adherence to nutrient and food quality
recommendations that are independent of energy requirements.
The 10 items include recommendations for sodium, total fat,
saturated fat, trans fat, dietary fiber, whole grains, whole fruit,
fat-free/low-fat dairy, lean meat, and alcohol, and are scored as
above on a continuous 0–1 scale. A penalty is assigned in the
scoring for overconsumption of 5 energy-specific food groups
considered to be energy-dense (starchy vegetables, grains, dairy,
meat/poultry/eggs, and nuts/seeds/soy) if consumption is greater
than the recommended intake as listed in https://health.gov/d
ietaryguidelines/2015/guidelines/appendix-3/. More specifically,
consumption of energy-dense foods greater than recommended
intakes results in a diminished score from the maximum value
of 1 to a score of 0 when consumption reaches ≥2 times the
recommended intake.

Gene expression profiling: Offspring and Third-Generation

The details of gene expression profiling were described
previously (16). In brief, fasting whole-blood samples were
collected in PAXgene blood tubes (PreAnalytiX) during Off-
spring exam 8 and Third-Generation exam 2. The Affymetrix
Human Exon 1.0 ST Array (Affymetrix, Inc.) was used for
expression profiling. The signal intensities were summarized by
robust multiarray average method (17) and the expression level
was log2-transformed. The gene annotations were obtained from
Affymetrix NetAffx Analysis Center (version 31). A total of
17,873 unique transcripts were used for downstream analysis.

Covariates

At each FHS examination, height and weight were obtained
by technicians according to standardized protocols, and BMI
was calculated as weight in kilograms divided by height in
meters squared (kg/m2). Two measurements of resting blood
pressure were obtained by the physician, and hypertension was
considered present if the average blood pressure measurement

https://health.gov/dietaryguidelines/2015/guidelines/appendix-3/
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was ≥140/90 mmHg or the participant reported taking antihy-
pertensive medications. Fasting laboratory measurements include
glucose, total cholesterol, LDL cholesterol, HDL cholesterol, and
triglycerides. Type 2 diabetes was defined as a fasting plasma
glucose ≥126 mg/dL from a single measurement or treatment
with medications. Current smokers were defined as smoking
≥1 cigarettes/d during the year prior to the examination. Pack-
years was defined as the number of packs of cigarettes smoked
per day times the number of years the person has smoked.
Participants reported the number of hours per day spent in sleep,
sedentary, slight, moderate, and heavy activities to calculate the
physical activity index (18). Prevalent cardiovascular disease
was defined as coronary heart disease, stroke, or intermittent
claudication according to previously established criteria (19).
The majority of cancer self-reports were verified with pathology
reports.

Statistical analysis

The primary outcome is the expression of 17,873 genes. Linear
mixed-effects models were used to test associations between
DGAI and gene expression, with DGAI the exposure variable and
gene expression the dependent measure. Family relatedness was
treated as a random variance–covariance factor in the models.
Models were adjusted for age, sex, smoking (measured by
pack-years), imputed cell counts, and technical covariates. We
used pack-year for the smoking covariate because the effects
of smoking on gene expression persist after smoking cessation
(20–22). Smoking was included as a covariate because smoking
has been associated with lower diet scores (23, 24). Given
that the gene expression was measured from whole blood, we
adjusted the proportions of each cell type, which were imputed
from the measured cell counts based on the gene expression
data as described previously (16). In our secondary analysis,
we additionally adjusted for other potential confounders, in-
cluding BMI, current smoking, hypertension, type 2 diabetes,
total cholesterol, HDL cholesterol, lipid treatment, physical
activity index, prevalent cardiovascular disease, and energy
intake.

All the analyses were performed with the R software package
(https://www.r-project.org/). The association of gene expression
and DGAI was tested by the “lmekin” function within the
“kinship2” package. To account for multiple testing we calculated
the false discovery rate (FDR) by the Benjamini–Hochberg
procedure (25) as implemented in the R function “p.adjust”.
Significant transcripts were defined as FDR <0.05.

DGAI gene score

We developed a combined gene score from genes significantly
associated with DGAI. The score for sample i is defined as
Si = ∑n

j=1 β j ∗ Gi j , where n is the number of genes significantly
associated with DGAI, β j is the estimate of effect size for gene
j, and Gi j is the expression level of gene j for sample i. The
DGAI gene score was scaled with mean 0 and SD 1. We then
investigated the cross-sectional association of DGAI gene score
with BMI and fasting glucose concentration through the use of
linear mixed-effects models. Participants with type 2 diabetes
were excluded from the analysis of fasting glucose concentration.

We also tested the association of DGAI gene score with type 2
diabetes and metabolic syndrome through the use of generalized
estimating equations. Metabolic syndrome was defined as the
presence of ≥3 of the following criteria: 1) triglyceride ≥150
mg/dL; 2) blood pressure ≥130/85 mmHg or the use of blood
pressure medications; 3) HDL ≤40 mg/dL in men or ≤50 mg/dL
in women; 4) blood glucose ≥100 mg/dL or the use of diabetes
medications; 5) waist girth ≥35 inches in women, ≥40 inches
in men. All these assessments were performed at the same time
when blood samples for gene expression profiling were collected
(Offspring cohort exam 8 and Third-Generation cohort exam 2).

We next examined the association between DGAI gene score
with metabolic traits in later life. The analysis was restricted
to Offspring participants who had completed an additional
examination (exam 9) after gene expression profiling (exam 8).
Similar to the cross-sectional association study, the prospective
study was also adjusted for age and sex.

Network analysis

A dense module-searching strategy (26) was used to build gene
interaction networks related to DGAI scores. Experimentally
validated gene interactions were downloaded from the PINA
database (27). Each gene was assigned a z score gi= |z(P value)|,
in which the P value represents the association between the
gene expression and the DGAI. Each module starts with one
of the genes significantly associated with DGAI (defined as the
seed genes). Neighboring genes were then added to the module
sequentially if they satisfied 2 criteria: 1) the neighboring gene
interacted directly with ≥1 gene in the current module; 2) the
addition of the neighboring gene to the module would increase
the overall module score (28), which is defined as Zm =

∑
gi√
k

,
where k is the number of genes in the module, and gi is the score
of gene i. The addition of neighboring genes could increase both
the numerator (

∑
gi) and denominator (

√
k) of the module score,

so only those neighboring genes with large z scores (meaning
strong association with the DGAI) could increase the module
score and thus be added to the module. All the neighboring
genes of the current module would be iteratively added until no
more neighboring genes could be added to the current module.
Each seed gene would create a module that contains multiple
genes. These modules were highly overlapping, so they were
merged together to build an interaction subnetwork to represent
the overall association of the DGAI (26). The enrichment of these
genes in biological pathways was then assessed with WebGestalt
(29), a web-based pathway analysis tool. Significant pathways
were defined as those with FDR <0.05.

Results
The baseline characteristics of the 2220 Offspring participants

(mean age 66 ± 9 y, 55.4% women) and 2941 Third-Generation
participants (mean age 46 ± 9 y, 54.5% women) in the study
sample are shown in Table 1, and the baseline characteristics by
cohort and sex are shown in Supplemental Table 1. The mean
DGAI was very similar between Offspring and Third-Generation
participants (60.5 and 60.9, respectively). As expected, women
generally had a higher DGAI than men in both generations.

https://www.r-project.org/
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TABLE 1 Clinical characteristics of Framingham Offspring participants at exam 8 and Third-Generation
participants at exam 21

Characteristics
Offspring participants

(n = 2220)
Third-Generation participants

(n = 2941)

Age, y 66 ± 9 46 ± 9
Women, % 1230 (55.4) 1603 (54.5)
DGAI 60.5 ± 11.6 60.9 ± 11.2
BMI, kg/m2 28 ± 5 28 ± 6
Current smoking, % 171 (7.7) 103 (3.5)
Hypertension, % 1405 (63.3) 653 (22.2)
Type 2 diabetes, % 362 (16.3) 139 (4.7)
Total cholesterol, mg/dL 186 ± 37 187 ± 36
HDL cholesterol, mg/dL 58 ± 18 60 ± 18
Lipid treatment, % 975 (43.9) 476 (16.2)
Physical activity index 35.3 ± 5.3 36.4 ± 6.6
Pack-years 15.0 ± 21.1 9.5 ± 17.3
Cardiovascular disease, % 356 (16.0) 73 (2.5)
Energy intake, kcal/day 1870 ± 640 1990 ± 634

1Data are represented as means ± SDs for continuous values, or n (%) for categoric values. DGAI, Dietary
Guidelines for Americans Adherence Index.

We examined the association of DGAI with transcriptome-
wide gene expression in combination of Offspring and Third
Generation participants (n = 5161). As shown in Table 2 and
Figure 1, the DGAI was significantly associated with the
expression of 19 genes after correction for multiple testing
(FDR <0.05). Among these genes, 16 were positively associated
with DGAI, whereas the remaining 3 genes were negatively
associated with DGAI. The most significant gene was ARRDC3
(P = 1.6 × 10−6), a gene that encodes a member of the arrestin
family of proteins involved in regulation of G protein–mediated

signaling. The association was largely similar after excluding
ever-smokers (Supplemental Table 2). We also performed
secondary analysis by adjusting for additional potential con-
founders (see Methods). All 19 top genes remained nominally
significant, although the associations were attenuated, suggesting
that confounders have marginal effects on the gene association.

We then created a DGAI gene score by weighting the
association of each gene with DGAI and tested its association
with multiple traits. As shown in Table 3, the DGAI gene
score was significantly associated with BMI (P = 1.4 × 10−50),

TABLE 2 Top genes associated with DGAI in combined sample of Framingham Heart Study Offspring and Third-Generation participants (n = 5161)1

Primary model Secondary model2

Gene β SE P value FDR β SE P value

ARRDC3 0.0016 0.0003 1.8 × 10−6 0.020 0.0011 0.0003 7.9 × 10−4

SIX4 0.0012 0.0003 3.1 × 10−6 0.020 0.0010 0.0003 1.3 × 10−4

PKN2 0.0011 0.0002 4.1 × 10−6 0.020 0.0008 0.0002 4.1 × 10−4

RNF141 0.0016 0.0003 4.5 × 10−6 0.020 0.0011 0.0003 1.7 × 10−3

NOLC1 − 0.0013 0.0003 1.1 × 10−5 0.034 − 0.0012 0.0003 1.1 × 10−4

STAG1 0.0008 0.0002 1.3 × 10−5 0.034 0.0006 0.0002 4.4 × 10−4

DNAJA1 − 0.0012 0.0003 1.5 × 10−5 0.034 − 0.0011 0.0003 1.8 × 10−4

MIER1 0.0010 0.0002 1.5 × 10−5 0.034 0.0009 0.0002 1.6 × 10−4

G0S2 0.0027 0.0006 1.7 × 10−5 0.034 0.0024 0.0006 2.1 × 10−4

PTP4A1 0.0012 0.0003 2.5 × 10−5 0.037 0.0009 0.0003 1.8 × 10−3

EXOC8 0.0010 0.0002 2.5 × 10−5 0.037 0.0008 0.0002 9.5 × 10−4

FAM116A 0.0010 0.0002 2.7 × 10−5 0.037 0.0009 0.0002 4.6 × 10−4

HIST1H2AE 0.0027 0.0007 2.7 × 10−5 0.037 0.0022 0.0007 1.0 × 10−3

IER3 0.0012 0.0003 3.1 × 10−5 0.039 0.0010 0.0003 7.5 × 10−4

SNX13 0.0010 0.0002 3.5 × 10−5 0.042 0.0008 0.0002 1.4 × 10−3

CYB5R4 0.0011 0.0003 4.8 × 10−5 0.050 0.0007 0.0003 4.5 × 10−3

RFWD2 0.0010 0.0003 5.0 × 10−5 0.050 0.0009 0.0003 2.3 × 10−4

CCDC126 0.0016 0.0004 5.3 × 10−5 0.050 0.0012 0.0004 4.0 × 10−3

HSPH1 − 0.0013 0.0003 5.3 × 10−5 0.050 − 0.0012 0.0003 2.1 × 10−4

1Genes with FDR <0.05 are listed. The primary model was adjusted for age, sex, pack-years, imputed cell counts, and technical covariates. In
comparison with the primary model, the secondary model was additionally adjusted for BMI, current smoking, hypertension, type 2 diabetes, total
cholesterol, HDL cholesterol, lipid treatment, physical activity index, prevalent cardiovascular disease, and energy intake. DGAI, Dietary Guidelines for
Americans Adherence Index; FDR, false discovery rate.
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FIGURE 1 Volcano plot of association with DGAI. Each dot represents
1 gene. The x-axis represents the β estimate of each gene, whereas the y-axis
represents the log10 P. Positive effects indicate that the genes were positively
associated with DGAI, whereas negative effects indicate that the genes were
negatively associated with DGAI. The dashed line indicates false discovery
rate <0.05, which is equivalent to P < 5.5 × 10−5. DGAI, Dietary Guidelines
for Americans Adherence Index.

fasting glucose concentration (P = 2.5 × 10−11), type 2 diabetes
(P = 1.1 × 10−5), and metabolic syndrome (P = 1.8 × 10−32).

We also performed a prospective study to examine if DGAI
gene score was associated with future metabolic traits. The
analysis was restricted to Offspring participants who attended
examination (exam 9) on average 6 y after gene expression
profiling (exam 8). Individuals with prevalent type 2 diabetes
(n = 207) and prevalent metabolic syndrome (n = 837) at exam
8 were excluded from prospective analysis for type 2 diabetes
and metabolic syndrome, respectively. At exam 9, there were
70 individuals who met the criteria for type 2 diabetes (1497
without type 2 diabetes) and 123 for metabolic syndrome (815
without metabolic syndrome). Interestingly, the DGAI gene score
was still associated with type 2 diabetes (β −0.38, SE 0.13,
P = 3.6 × 10−3) but not metabolic syndrome (β−0.02, SE 0.11,
P = 0.88).

We then built a gene-interaction subnetwork to examine
the interaction between the diet-related genes. As shown in
Figure 2, the subnetwork is comprised of 61 nodes and 121

TABLE 3 Association of DGAI gene score with different metabolic traits
at the time when gene expression was profiled for Offspring and
Third-Generation participants (n = 5161)

Metabolic traits β SE P value

BMI −1.10 0.07 1.4 × 10−50

Fasting glucose concentration −0.83 0.12 2.5 × 10−11

Type 2 diabetes (n = 441) −0.25 0.06 1.1 × 10−5

Metabolic syndrome (n = 1820) −0.43 0.04 1.8 × 10−32

1The analyses were adjusted for age and sex. DGAI, Dietary
Guidelines for Americans Adherence Index.

edges, whereas each node represents 1 gene, and each edge
represents the interaction between 2 genes. One pivotal gene is
YWHAZ. The gene was not associated with the DGAI (P = 0.42),
but it was connected to 13 neighboring genes, including 12
genes that were nominally associated with DGAI. Supplemental
Tables 3 and 4 show the top enriched biological processes.
Many genes were involved in cell cycle (P = 5.6 × 10−5) and
endocytosis pathway (P = 7.5 × 10−5).

Discussion
In our community-based study, we conducted a transcriptome-

wide association study of dietary quality phenotype and found
the DGAI was associated with the expression of 19 genes. The
DGAI gene score was cross-sectionally associated with several
metabolic parameters in our sample, including BMI, fasting
glucose, type 2 diabetes, and metabolic syndrome. The DGAI
gene score was also associated with incident type 2 diabetes
in the older participants. Our findings provide a connection
between diet quality, gene expression, and metabolism, and
require replication in independent samples. Given the importance
of metabolism to aging biology (4), the genes may provide
insights into the link between healthy diet and aging or age-
related disease.

The most significant gene, ARRDC3, is a member of the
arrestin family of proteins and is expressed in >20 human
tissues, including the brain, heart, lung, skeletal muscle, pancreas,
and liver. The encoded protein plays a role in regulation of
breast cancer growth and progression (30) and is a tumor
suppressor. A genome-wide linkage scan for human obesity
identified an association in males but not females for BMI in a
locus containing a single gene, ARRDC3 (31). In mouse models,
decreased ARRDC3 levels were associated with increased energy
expenditure and increased thermogenesis of adipose tissue with
resultant protection from obesity (31). One potential mechanism
is an increase in B-adrenergic signaling in adipose tissue with
decreased ARRDC3 because ARRDC3 directly interacts with
the B-adrenergic receptors. Adipocyte-specific Arrdc3-null mice
were observed to have improved glucose tolerance (32). Taken
together, these emerging data suggest a role for this gene in
metabolism; however, further work is needed to fully characterize
the role of ARRDC3 in metabolic regulation and metabolic
disease (33).

Additional genes among the 19 genes significantly associated
with DGAI include those that regulate metabolic processes.
G0S2 (G0/G1 switch 2) inhibits adipose triglyceride lipase to
regulate lipolysis and fatty acid availability in adipocytes (34).
This gene also plays a role in regulating triglyceride metabolism
in the liver (35). G0S2 may be a useful therapeutic target for
treatment of obesity-related metabolic disorders (35). A second
gene, PKN2 (protein kinase N2), altered glucose and lipid
metabolism via primary human skeletal muscle cells (36). In
searching the genome-wide association study catalog, genetic
variants in several genes linked to healthy diet were reported
to have associations with metabolic traits. Genetic variants
within the PKN2 region were associated with human height
(37, 38), pulse pressure (39), and liver enzyme concentrations
(40). Genetic variants within STAG1 were associated with human
height (38), BMI (41), C-reactive protein and HDL (42), and
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FIGURE 2 Diet-related subnetwork derived from protein–protein interaction. Each node represents 1 gene, whereas each edge represents the interaction
between 2 genes. The nodes are colored to represent their association with dietary score: red represents a strong positive association, and green represents
a strong negative association. The node size is proportional to the number of edges that the node connects to. Gene labels in blue represent those that were
significantly associated with DGAI (false discovery rate <0.05).

coronary artery disease (43). Genetic variants within IER3 were
associated with type 1 diabetes (44). Taken together, several of the
genes associated with the DGAI score appear to have associations
with metabolic health.

Our network and pathway analysis link the DGAI score genes
to biological pathways with diverse cellular functions. In the
diet-related gene subnetwork analysis, YWHAZ was found to
connect to multiple genes in the network, including 3 of the 19
significant DGAI genes, NOLC1, RFWD2 and HSPH1, although
was not itself associated with DGAI score (P = 0.42). YWHAZ
encodes a highly conserved protein tyrosine 3-mono-oxygenase
that is involved in the regulation of insulin sensitivity and glucose
tolerance (45). The expression of YWHAZ remains stable in
nonalcoholic fatty liver disease (46). It also plays an important
role in the development of gastric cancer (47) and ovarian cancer
(48, 49). The transforming growth factor β signaling pathway
was among the top pathways identified and is known to regulate a
range of cellular functions. This pathway included both SMAD2
(P = 0.05) and E2F4 (P = 0.01) nominally associated with
DGAI score and involved in energy consumption and metabolism
(50–53).

The FFQ allows an efficient and cost-effective assessment
of usual, long-term dietary intake in large population studies.
However, this method is based on self-reported recall of diet, a
major limitation as FFQs are prone to error. Such error would
generally be nondifferential in nature and result in weakening of
observed associations. However, there is a considerable literature
on the validity of the Harvard FFQ, which we used in this study,
for assessing food intakes, comparing food intake assessed via
FFQ and food intake based on multiple-day diet records. Salvini

et al. (54) compared food intake from four 7-d diet records
completed over the course of 1 y and an FFQ completed at the end
of the year in women. The median correlations for the 2 methods
were 0.63 for consumption of all fruits and vegetables; 0.58 for
meats, fish, and eggs; 0.78 for dairy products; 0.79 for ready-to-
eat cereals; 0.71 and 0.77 for white and dark breads, respectively;
and 0.94 for beer, 0.90 for wine, and 0.84 for liquor consumption.
A second study in men (13) compared food intakes from two
7-d diet records completed ∼6 mo apart and an FFQ completed
∼3 mo after the second diet record. Median correlations between
methods were 0.77 for total fruits; 0.46 for total vegetables; 0.70
for meats, fish, and eggs; 0.71 for dairy; 0.86 for ready-to-eat
cereals; 0.45 and 0.37 for white and dark breads, respectively;
and 0.88 for beer, 0.81 for wine, and 0.78 for liquor consumption.
These validation studies suggest that, for the most foods, the
FFQ provides a valid assessment of usual intake. Moreover, to
improve the validity of the dietary data, we excluded participants
whose dietary data were considered to be unreliable based on
extreme reported energy intakes (<600 kcal/d, or >4000 kcal/d
for women or >4200 kcal/d for men) or large numbers of food
items left blank (>12 food items).

The strengths of our study are that it involved a well-
phenotyped community-based cohort to construct the healthy
diet score, and the covariates were comprehensively assessed,
permitting adjustment for known confounders in our models. We
acknowledge several limitations of our study. Our study samples
comprised predominantly individuals of European ancestry. It is
thus unclear if similar associations are apparent in individuals
of other racial/ethnic backgrounds. The current transcriptomic
study is an association study, and we cannot infer causality. Our
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findings need to be replicated in an independent sample. Our
measurements of diet and gene expression were taken at a single
point over the adult life course. We did not examine other dietary
recommendations known to be associated with reduced rates of
mortality and chronic disease (55), nor did we study specific
macronutrients (carbohydrate, fats, proteins) shown to be related
to mortality in the Prospective Urban Rural Epidemiology Study
(56) as well as in other large studies.

In conclusion, our study found that healthier diet was
significantly associated with the expression of 19 genes. The
expression profile of these genes was also associated with
metabolism, suggesting potential molecular mechanisms for
future investigation that may link healthy diet with outcomes in
older adults.
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