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Abstract

Motivation: Promoters are short DNA consensus sequences that are localized proximal to the tran-

scription start sites of genes, allowing transcription initiation of particular genes. However, the pre-

cise prediction of promoters remains a challenging task because individual promoters often differ

from the consensus at one or more positions.

Results: In this study, we present a new multi-layer computational approach, called MULTiPly, for

recognizing promoters and their specific types. MULTiPly took into account the sequences them-

selves, including both local information such as k-tuple nucleotide composition, dinucleotide-

based auto covariance and global information of the entire samples based on bi-profile Bayes and

k-nearest neighbour feature encodings. Specifically, the F-score feature selection method was

applied to identify the best unique type of feature prediction results, in combination with other

types of features that were subsequently added to further improve the prediction performance of

MULTiPly. Benchmarking experiments on the benchmark dataset and comparisons with five state-

of-the-art tools show that MULTiPly can achieve a better prediction performance on 5-fold cross-

validation and jackknife tests. Moreover, the superiority of MULTiPly was also validated on a newly

constructed independent test dataset. MULTiPly is expected to be used as a useful tool that will fa-

cilitate the discovery of both general and specific types of promoters in the post-genomic era.

Availability and implementation: The MULTiPly webserver and curated datasets are freely avail-

able at http://flagshipnt.erc.monash.edu/MULTiPly/.
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1 Introduction

The first and most critical step of gene expression is the initiation of

transcription, requiring a dynamic cooperation between the RNA

polymerase (RNAP) and the promoter (Ramprakash and Schwarz,

2008). Promoters are chromosome regions that facilitate the tran-

scription of particular genes, and they are located proximal to the

transcription start sites of genes, towards the 50 region of the sense

strand. In bacteria, the promoter is recognized by the RNA polymer-

ase and correlated function-specific sigma factors that are labelled

on the basis of their molecular weights (r24,r28,r32,r38,r54 and r70),

which in turn are often brought to the promoter by regulatory pro-

teins that bind to specific sites nearby (Barrios et al., 1999; Helmann

and Chamberlin, 1988; Towsey et al., 2008). The types of pro-

moters are defined according to how the r factors identify the

promoter.

The precise recognition of promoters is crucial to regulation of

the expression of each gene and each transcription unit in the gen-

ome. However, the precise prediction of promoters remains a chal-

lenging task, because individual promoters usually differ from the

consensus at one or even more positions (Mrozek et al., 2014,

2016).

In recent years, a number of computational methods have been

developed to rapidly differentiate DNA sequences as promoters or

non-promoters, aimed at complementing with experimental efforts

and overcoming certain experimental bottlenecks. For instance, pos-

ition weight matrices (PWMs) were used to predict r70 promoters in

Escherichia coli, based on the conservation of the -10 and -35 hex-

amers (with the consensus sequences ‘TATAAT’ and ‘TTGACA’, re-

spectively) and the distribution of promoters from the start of the

gene (Hertz and Stormo, 1996; Huerta and Collado-Vides, 2003);

however, the latter approach achieved a relatively lower accuracy.

In 2009, Kemal, a new method that integrated feature selection and

a fuzzy-AIRS classifier system to predict E.coli promoter gene

sequences was proposed (Polat and Güneş, 2009). More recently,

with machine learning techniques booming, many promoter predic-

tion tools have been developed and made available, including

70ProPred, iPro54-PseKNC, iPromoter-2L and bTSSfinder (He

et al., 2018; Liang et al., 2017; Lin et al., 2014, 2017; Liu et al.,

2018; Shahmuradov et al., 2017). We note that, amongst previously

developed tools, only iPromoter-2L is able to predict whether a

query sequence sample is a promoter or not (Task 1), and identify

which specific promoter type it would belong to if it is identified as

a promoter (Task 2). iPromoter-2L reached an overall accuracy of

81.68% for identifying promoters and non-promoters on the 5-fold

cross-validation test. However, with respect to the prediction of spe-

cific promoter types, except for the identification of the r24 pro-

moter, the performance results on other types of promoters were not

entirely satisfactory. For r28; r32; r38 and r54 promoters,

iPromoter-2L achieved a specificity (Sp) of higher than 99%, but

achieved a much worse sensitivity (Sn) of lower than 54%. In add-

ition, for r70 promoter prediction, the Sn was 95.34%, while the Sp

was only 59.35%. A major reason for the observed large discrep-

ancy might be attributed to the different numbers of the six distinct

types of promoters.

To address this complexity and improve the effectiveness of pro-

moter prediction, in this work, we developed MULTiPly, a multi-

layer two-task predictor designed to both recognize the promoters

and identify their specific types in E.coli. Firstly, both the sequences

themselves and the information measures including k-tuple nucleo-

tide composition (KNC), dinucleotide-based auto covariance (DAC)

and the global information of the whole samples including bi-profile

Bayes (BPB) and k-nearest neighbour feature (KNN), were taken

into consideration; subsequently, the F-score feature selection

method was applied to identify the optimal feature combination. To

overcome the complexity associated with the analysis of varying

numbers of samples for six types of known promoters, the method

learns to differentiate between one (positive) promoter subset and

the joint set of all other promoter subsets with less samples than the

positive dataset (negative). We established a total of five binary sub-

classifiers in the second task according to the dataset size. In the first

sub-classifier, the largest subset Sþðr70Þ was regarded as the positive

class, while the union of the other five types of promoter samples

were considered as negative samples to train the classifier for identi-

fying the r70 promoters. Then, we successively deemed Sþðr24Þ,
Sþðr32Þ, Sþðr38Þ and Sþðr28Þ as the positive class, and the rest pro-

moters that were not classified jointly as the negative class.

Comprehensive benchmarking experiments using 5-fold cross-

validation, jackknife test and independent test based on our newly

constructed independent test dataset consistently showed the effect-

iveness of the proposed MULTiPly approach, especially for distin-

guishing specific types of promoters.

2 Materials and methods

As suggested in a series of recent publications (Chen et al.,

2018a,b,c; Cheng et al., 2018a,b; Li et al., 2018a,b; Song et al.,

2018a,b,c), we followed the guidelines of Chou’s 5-step rule (Chou,

2011), in an effort to make the presentation of this paper more clear

and transparent, enable others to repeat analysis steps, and ensure

that the proposed predictor can be easily and widely used by the ma-

jority of experimental scientists. The five detailed steps include:

(i) construct a valid benchmark dataset and an independent test

dataset; (ii) extract the features that can truly reflect their intrinsic

correlations with the target to be predicted; (iii) introduce a power-

ful algorithm (or prediction engine) to operate the prediction; (iv)

properly perform cross-validation tests to objectively evaluate the

predictor’s accuracy; (v) establish a user-friendly web-server as an

implementation of the predictor that is freely accessible to the wider

research community. A graphical illustration of the five steps

involved in the development of MULTiPly is shown in Figure 1.

Fig. 1. The overall framework of MULTiPly. The five steps are formulated and

illustrated according to Chou’s 5-step rule (Chou, 2011)

2958 M.Zhang et al.

Deleted Text: '
Deleted Text: ; Mrozek, et<?A3B2 show $146#?>al., 2014
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D;, 
Deleted Text:  
Deleted Text: ; Lin, et<?A3B2 show $146#?>al.
Deleted Text:  
Deleted Text: ,
Deleted Text: Refer to 
Deleted Text: ; Song, et<?A3B2 show $146#?>al., 2018


2.1 Datasets
The models of MULTiPly were trained using a most-recent dataset,

constructed in (Liu et al., 2018a,b). All collected promoter samples

were experimentally verified (each with 81 bp) and retreived from

the RegulonDB database (Version 9.3). RegulonDB (available at

http://regulondb.ccg.unam.mx/) is one of the most useful public

resources on bacterial gene regulation in the model organism E.coli

K-12. If a reported promoter belonged to two sigma types, we ac-

cordingly assigned it to the type that had a larger number of experi-

mentally verified sequences. After the raw data processing, the final

benchmark dataset S was defined as follows:

S ¼ Sþ [ S�

Sþ ¼ Sþ r24ð Þ [ Sþ r28ð Þ [ Sþ r32ð Þ [ Sþ r38ð Þ [ Sþ r54ð Þ [ Sþ r70ð Þ

�
(1)

where Sþ denotes the positive dataset containing 2860 promoter

sequences, S� denotes the negative dataset containing 2860 non-

promoter sequences, while the symbol [ denotes the ‘union’ in the

Set Theory. Sþ contains all six types of promoter sequences; specific-

ally, there existed 484 promoter sequences of r24, 134 of r28, 291

of r32, 163 of r38, 94 of r54 and 1694 of r70, respectively. The

length of each sequence in our used datasets is 81. As RegulonDB

was updated in 18/06/2018, we collected the recently experimentally

verified promoter samples from the current version of RegulonDB

(Version 10.0) as the independent test dataset, which was denoted

as Stest, to test the performance of MULTiPly. Lastly, a total of 54

promoter sequences were collected in Stest, including 46 sequences of

r70, 1 of r24, 2 of r32, 4 of r38 and 1 of r28.

2.2 Feature extraction strategy
In general, feature extraction refers to the formulation of an effect-

ive mathematical expression representing a nucleotide sequence. In

this study, features were extracted incorporating both global fea-

tures (i.e. BPB and KNN features) and local (i.e. KNC and DAC fea-

tures) features, in order to derive more representative and useful

information from promoter and non-promoter samples. BPB fea-

tures reflect the nucleotide distribution within the whole samples,

while KNN features describe whether each sample sequence is more

similar to the positive or negative samples. KNC was used to encode

the compositions of nucleotides and di-nucleotides in a single DNA

sample. DAC measures the correlation between two di-nucleotides

which have the similar physicochemical index. The feature extrac-

tion procedures are described in the following sections.

2.2.1 Bi-profile bayes (BPB)

BPB has proven useful for improving the prediction performance of

machine learning-based models in a number of different bioinfor-

matics studies, such as predicting protein methylation sites (Shao

et al., 2009), caspase cleavage sites (Song et al., 2010, 2012a,b;

Wang et al., 2014) and strong and weak enhancer (Jia and He,

2016). BPB considers the position-specific information from both

positive and negative training samples simultaneously. The latter is

the main reason why BPB outperforms other feature encoding

schemes in many cases.

Each of the DNA samples S can be expressed as:

S ¼ R1R2R3 . . . Ri . . . RL ði ¼ 1; 2; 3; . . . ;LÞ (2)

where Ri is one of the nucleotides A, G, C and T; i represents a nu-

cleotide position, and L denotes the length of the nucleotide se-

quence. In this study, L¼81, which is the same as that used in

previous works (Liu et al., 2018a,b). The sequence S is encoded as a

feature vector VBPB ¼ p1;p2; . . . ;pL; pLþ1; . . . p2Lð Þ; where piði ¼
1; 2; . . . ; LÞ represents the posterior probability of each nucleo-

tide at the ith position in all positive samples, and piði ¼
Lþ 1; Lþ 2; . . . ; 2LÞ denotes the posterior probability of each nu-

cleotide at the ith position in all negative samples. When the num-

bers of positive and negative samples were equal and sufficiently

large, the frequency of each nucleotide at each position would be a

close approximation to the true probability of the occurrence.

Accordingly, the posterior probabilities of the positive and negative

samples were calculated as the occurrence frequencies for each nu-

cleotide to appear at each position in the positive and negative train-

ing datasets, respectively. The dimension of the BPB feature vector

was 162, the 1st–81th features were derived from the overall prob-

ability distribution of the positive samples, while the 82th–162th

features were derived from the overall probability distribution of the

negative samples.

2.2.2 KNN features

In the fields of bioinformatics and computational biology, the KNN

features have been successfully applied to the analysis and prediction

of protein, DNA and RNA sequences (Chen et al., 2013; Jia et al.,

2016, 2018; Li et al., 2018a,b; Wang et al., 2017). By extracting

relevant features from similar sequences in both the positive and

negative datasets using the KNN algorithm, the KNN scores could

capture the local sequence similarity in the promoter and non-

promoter samples (Gao et al., 2010).

For two local sequences P1 and P2, the distance Dist P1;P2ð Þ can

be defined as follows:

Dist P1;P2ð Þ ¼
XL

i¼1

SimðP1 ið Þ;P2ðiÞÞ (3)

where L represents the number of nucleotides in a DNA sequence

(L¼81 in this study), while P1 ið Þ and P2ðiÞ denote the nucleotides

at the ith position of sequences P1 and P2, respectively. For two

nucleotides a and b, their similarity score is defined as (Jia et al.,

2018)

Sim a; bð Þ ¼ þ2; if a ¼ b;
�1; otherwise:

�
(4)

For a query DNA sequence (potential promoter or non-promoter

sequence), the local sequence similarity would be first considered.

Then, the KNN scores were calculated based on the proportion of

the positive and negative samples in the set of k neighbours, respect-

ively. The detailed procedures for calculating the KNN scores are

described as follows: (i) form a comparison set that contains all the

positive and negative samples; (ii) calculate the distances between a

query sequence and the other samples in the comparison set;

(iii) sort the distances in the ascending order and generate the top k

nearest neighbours; (iv) calculate the KNN scores, which is the per-

centage of the positive neighbours in its k nearest neighbours. To ob-

tain the best features, different values of k (k¼10, 20, 30. . . 200)

were assessed in this study. More specifically, if the dimension of

KNN features was d (1�d�20), the numbers of 10, 20, . . ., 10d

neighbours would be successively selected.

2.2.3 k-tuple nucleotide composition (KNC)

The type and position of nucleotides within a DNA sequence con-

tained crucial information. Accordingly, strategies for extracting

such information in an effective manner have been extensively

researched in a number of previous studies. The KNC can
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characterize the occurrence frequency and the permutation order of

nucleotides in each sequence, and this measure has been widely used

in many previous studies (Chen et al., 2015; Ioshikhes et al., 1996;

Jia et al., 2013; Kabir and Hayat, 2016; Li et al., 2015a,b). After

various trials, the 1-tuple (mononucleotide) and 2-tuple (dinucleo-

tide) compositions (referred to as MNC and DNC, respectively)

were determined to construct the feature vector. The MNC feature

vector can be formulated as follows:

D ¼ f Að Þ; f Cð Þ; f Gð Þ; f Tð Þ
� �0

(5)

where f ið Þ represents the frequency of occurrence of each nucleotide.

The DNC feature vector can be defined as follows:

D ¼ f AAð Þ; f ACð Þ; f AGð Þ; f ATð Þ; . . . ; f TTð Þ
� �0

(6)

where f ið Þ represents the frequency of occurrence of each dinucleo-

tide i.

2.2.4 Dinucleotide-based auto-covariance (DAC)

DAC measures the correlation between two di-nucleotides separated

by a distance (kÞ along the sequence with the same physicochemical

index (Dong et al., 2009; Guo et al., 2008; Liu et al., 2015,

2017a,b). It can be calculated as:

DAC u; kð Þ ¼
XL�k�1

i¼1
ðPu RiRiþ1ð Þ � �PuÞðPu RiþkRiþkþ1ð Þ � �PuÞ=

ðL� k� 1Þ
(7)

where u is a physicochemical index, L is the length of the promoter

sequence S, Pu RiRiþ1ð Þ denotes the numerical value of the physico-

chemical index u for the dinucleotide RiRiþ1 at the position i, and
�Pu is the average value for the physicochemical index u along the

whole sequence, which is defined as:

�Pu ¼
XL�1

j¼1

Pu RjRjþ1

� �
=ðL� 1Þ (8)

In such a way, the length of the DAC feature vector can be

defined as N�K, where N is the number of physicochemical indices

while K is the maximum of k (k¼1, 2. . .K). In this study, we

selected six physicochemical indices, including Base stacking,

Dinucleotide GC content, A-philicity, Rise, Roll and Stability and

set the parameter K as 2. The feature vector can then be generated

using the very powerful, publicly available Pse-in-One web server,

documented in the literature (Friedel et al., 2009; Liu et al.,

2017a,b).

2.3 Feature optimization
When multiple features are incorporated to train a model, the di-

mension of the resulting hybrid feature vectors becomes very large.

As the initial features might contain redundant and noisy informa-

tion, we presumed that this could exert a negative effect on model

training. Therefore, to filter out the noisy and irrelevant features

and select a subset of optimal features, the most important features

were identified by a feature selection method known as F-score (Bui,

2016; Lin and Ding, 2011; Zuo and Jia, 2017). The F-score of the

jth feature is defined as:

F� score jð Þ

¼
ðx� þð Þj � x

�
jÞ2 þ ðx�

�ð Þ
j � x

�
jÞ2

1
mþ�1

Pmþ
k¼1

ðx� þð Þk;j � x
� þð Þ

j Þ
2 þ 1

m��1

Pm�
k¼1

ðx� �ð Þk;j � x
� �ð Þ

j Þ
2

(9)

where x
�

j; x
� þð Þ

j and x
� �ð Þ

j denote the average values of the jth feature

in the combined (i.e. positive and negative), the positive and the

negative datasets, respectively. mþ denotes the number of positive

samples, m� denotes the number of negative samples, x
� þð Þ

k;j denotes

the jth feature of the kth positive instance, and x
� �ð Þ

k;j denotes the jth

feature of the kth negative instance. A feature with a larger F-score

value indicates that such feature can distinguish well between the

positive and negative samples, and thus is regarded as being more

useful for classification.

2.4 Model training
Support vector machine (SVM) is a powerful and popular supervised

machine-learning method, and can be used to solve both linear and

nonlinear data classification, regression and prediction tasks (Jia

and Yun, 2017; Jia et al., 2013; Wee and Low, 2012; Ying and

Keong, 2004; Zhang et al., 2007; Zou et al., 2016). In this study,

SVM was trained with the LIBSVM package (Chang and Lin, 2011)

to build the model to differentiate both promoter and non-promoter

samples. We adopted the radial basis function (RBF) K xi; xjð Þ ¼
expð�c xi � xjj j2Þ as the kernel function. Based on 5-fold cross-

validation test, the penalty parameter C and kernel parameter c
were optimized for different types of input features using the SVMcg

function of the LIBSVM package. This procedure was conducted for

each task separately. In the first task, different types of feature sets

(i.e. BPB, MNC, DNC, KNN and DAC) as well as their combined

feature sets were evaluated by means of jackknife and cross-

validation. Finally, the optimal parameters C ¼ 32 and c ¼ 0:01056

were identified, and assigned for the prediction of promoters and

non-promoters. In the second task, there were five binary sub-

classifiers all of which had distinct parameters from each other.

Among those five sub-classifiers, C ¼ 1:4142 and c ¼ 0:01121 were

the final parameters used for the first sub-classifier, C ¼ 2:8284 and

c ¼ 2 for the second sub-classifier, C ¼ 5:6569 and c ¼ 1 for the

third sub-classifier, C ¼ 32 and c ¼ 0:25 for the fourth sub-classifier

and C ¼ 1:4142 and c ¼ 2 for the fifth sub-classifier.

2.5 Performance assessment
To examine the combination of the optimal features and evaluate

the prediction performance of the trained models, 5-fold cross-

validation, jackknife and independent dataset tests were performed

in the present study, as suggested in a number of previous studies

(Chen et al., 2017, 2018a,b,c; Chou and Zhang, 1995; Jia et al.,

2015; Li et al., 2015a,b, 2016, 2018a,b; Song et al., 2018a,b,c). In

addition, we also calculated four commonly used performance

measurements, i.e. Sensitivity (Sn), Specificity (Sp), Accuracy (Acc)

and the Matthew’s Correlation Coefficient (MCC), which are re-

spectively defined as:
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Sn ¼ 1�Nþ�
Nþ

0 � Sn � 1

Sp ¼ 1�
N�þ
N�

0 � Sp � 1

Acc ¼ K ¼ 1�
Nþ� þN�þ
Nþ þN�

0 � Acc � 1

MCC ¼
1� Nþ�

Nþ
þ

N�þ
N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
N�þ �Nþ�

Nþ

� �
1þ

Nþ� �N�þ
N�

� �s �1 � MCC � 1

10ð Þ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

where Nþ represents the total number of positive samples, Nþ� rep-

resents the total number of false negatives, N� represents the total

number of negative samples, while N�þ represents the total number

of false positives, respectively.

2.6 Multiple classification process
MULTiPly is a two-task seamless predictor. The role of the first task

is to distinguish a query DNA sequence as a promoter or non-

promoter, which is a classic binary classification problem. The se-

cond task is to further predict which of the six types of promoters

the identified promoter in the first task belongs to. Therefore, this

second task is a multi-classification problem. As revealed in the pro-

cess of constructing the benchmark dataset, the numbers of exam-

ples included in the six promoter subsets were quite unbalanced. For

example, the largest promoter subset Sþðr70Þ contained 1694 sam-

ples while the smallest promoter subset Sþðr54Þ contained only 94

samples. To overcome the data imbalance problem, we developed

five binary sub-classifiers. In the first sub-classifier, the subset

Sþðr70Þ was regarded as the positive dataset, while the subset

Sþ r24ð Þ [ Sþ r28ð Þ [ Sþ r32ð Þ [ Sþ r38ð Þ [ Sþ r54ð Þ was regarded as

the negative dataset. In this way, a query DNA sequence sample can

be classified as belonging to the r70 promoter class or to the non-r70

promoter class. If the query sequence was classified as the non-r70

promoter class, the next sub-classifier was started. To train the se-

cond sub-classifier, the subset Sþðr24Þ was considered as positive

samples and the subset Sþ r28ð Þ [ Sþ r32ð Þ [ Sþ r38ð Þ [ Sþ r54ð Þ was

considered as negative samples. Similar to our description above,

the second sub-classifier can predict the query DNA sequence as

belonging to the r24 promoter or non-r24 promoter class. This pro-

cess was proceeded until the fifth sub-classifier, the subset Sþ r28ð Þ
was regarded as the positive dataset and Sþ r54ð Þ regarded as the

negative dataset, respectively. Through the subsequent evaluation,

standard performance measures indicate the above approach based

on the five binary sub-classifiers could not only address the data im-

balance problem but, as a by-product, could also accurately predict

which of the six types the identified promoter belonged to. The

flowchart of this multi-layer classifier is shown in Figure 2.

3 Results and discussion

3.1 Selection of the basic features
The combination of different heterogeneous features often leads to

different prediction results; accordingly, how to effectively select the

basic and essential features to incorporate into the model is a crucial

but hard problem to solve. In this study, features that achieved the

best prediction performance were chosen as the basic features. Since

the dimension of BPB was large, we sorted the 162 components of

the characteristic vector using the F-Score, and then chose a step size

of 10 entries in the vector to increase the number of components.

The other features types were selected using a step size of 2 accord-

ing to the F-Score. Selection of the optimal feature combination was

based on the jackknife test that had the only output result making it

easy to compare to (Chou, 2011).

The detailed performance results for the selection of single fea-

ture types are given in the Supplementary Tables S1 and S2. For the

sake of convenience and intuitive understanding, Tables 1 and 2

show the best performance results for all single types of features,

and the corresponding feature dimension at which the best

performance was achieved. For the first task, the KNN features

with 15 dimensions [KNN (15) for short] were regarded as the basic

features, and were then incorporated into the BPB with a step

size of 10 entries to further improve the prediction performance.

Supplementary Table S3 showed that for KNN(15) combined

with BPB of 130 dimension [BPB(130)], the MCC value

improved to some extent (for brevity, the encoding scheme was

represented by KNN(15)þBPB(130), so on and so forth). Next,

KNN(15)þBPB(130) were further incorporated with the component

of DNC one by one, and as a result KNN(15)þBPB(130)þDNC(9)

reached the best performance with an Acc of 86.80% and an MCC

of 0.7360. This process was terminated at the feature combination

KNN(15) þ BPB(130) þ DNC(9) þ MNC(1) þ DAC(10), which

reached a Sn of 87.27%, a Sp of 86.57%, an Acc of 86.92% and an

MCC of 0.7385.

The purpose of the second task is to predict the specific subtype

that a predicted promoter belonged to. To select an optimal combin-

ation of features for each of the sub-classifiers, we employed the

same strategy and method as described for the first task. The

detailed results on the jackknife test are shown in Supplementary

Table S4.

For the first sub-classifier, to identify r70 promoters, the

feature combination of KNN(15) þ BPB(130) þ DAC(6) yielded

an Acc of 85.24% and an MCC of 0.6923, respectively. For the

second sub-classifier, to identify r24 promoters, BPB(130)

þKNN(17)þDAC(1)þ DNC(12) achieved an Acc of 91.68%

and an MCC of 0.8286, respectively. The prediction performance

for the third sub-classifier, to identify r32 promoters, reached an

Acc of 87.98% and an MCC of 0.7534, respectively, based on the

feature combination of BPB(80)þ KNN(15)þDNC(2). The fourth

sub-classifier, to identify r38 promoters, achieved an Acc of 86.96%

and an MCC of 0.7331, respectively, based on only two types

of features, KNN(5)þBPB(80). For the last sub-classifier, to

distinguish r28 and r54 promoters, it used the feature combination

Fig. 2. The flowchart of the proposed multi-layer classifier
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of BPB(140)þKNN(3)þDNC(1)þDAC (3) and yielded an Acc of

95.18% and an MCC of 0.9003, respectively.

For dimensionality reduction, we followed two rules: (i) if two

kinds of feature combinations achieved the same Acc value, we

selected the dimensional features that achieved the larger Sn; and

(ii) if all performance indices were identical, we selected the features

with the fewest dimensions. Supplementary Tables S5 and S6 pro-

vide the best performance results for each combination, for the pur-

pose of easing the interpretation of performance trends.

3.2 Comparison with existing methods on the same

training dataset
In general, if one uses different training datasets and validation

methods to compare the performance of different prediction tools,

the results will vary greatly among them (Li and Lin, 2006; Lin

et al., 2014; Liu et al., 2018; Silva et al., 2014; Song, 2012a,b).

Therefore, to avoid bias, we applied the same training dataset used

in (Liu et al., 2018). The results are shown in Figure 3, which indi-

cate that MULTiPly uniformly achieved a superior performance

compared with all other methods. Specifically, the Sn was 7.79%

higher than the second-best predictor, iPromoter-2L. Note that only

two methods iPromoter-2L and MULTiPly were able to recognize

the specific types of promoters. As such, we were more interested in

comparing the performance of the two methods for the second task.

As shown in Figure 4 and Supplementary Table S7, MULTiPly

achieved better MCCs for all six types of promoters, implying that

Sn and Sp values were not extremely different, as a higher Sn (or Sp)

and a lower Sp (or Sn) at the same time would lead to a lower MCC

value. However, the only exception for MULTiPly was in the case of

differentiating r70 promoters, for which the value of Sn was

90.43%, which was 13.5% higher than the value of Sp. In contrast,

iPromoter-2L had a larger divergence between the Sn and Sp values:

when either its Sn (or Sp) was over 95%, the other measurement

was lower than 60% at the same time.

To further illustrate the effectiveness of the developed

MULTiPly method, we assessed and compared its performance with

a direct multi-class SVM classifier (Supplementary Table S8). It can

be seen that for r32; r38 and r28 types of promoters, none of the

promoters were predicted correctly by the multi-class SVM classi-

fier. The worse performance of the multi-class SVM classifier might

be explained by the fact that it did not consider the effects brought

upon by different numbers of different types of known promoters.

3.3 Performance comparison on the independent test

dataset
We compared the proposed MULTiPly method with other existing

methods (Li and Lin, 2006; Lin et al., 2014; Liu et al., 2018; Silva

et al., 2014; Song, 2012a,b) on an independent test dataset contain-

ing 54 newly found promoters. Because no web servers were avail-

able for PSCF, vwZ-curve and Stability, we only compared the

prediction performance of iPro54, iPromoter-2L and MULTiPly.

Performance comparison results between the three methods are pro-

vided in Table 3. For the first task, iPro54 only correctly predicted

22 promoter sequences, while iPromoter-2L and MULTiPly

achieved the best performance, with all promoter sequences being

correctly predicted. Next, we further compared the performance of

MULTiPly and iPromoter-2L for the second task of identifying the

specific type of promoters. In this regard, iPromoter-2L and

MULTiPly achieved a similar performance across all types of pro-

moters (Table 3).

3.4 Performance comparison with other machine

learning classifiers
Based on the feature combination determined by SVM, we com-

pared the prediction performance between six commonly used ma-

chine learning algorithms, including random forest (RF) (Breiman,

Table 2. The best performance achieved by single types of features

for the second task

Sub-classifier Features Dimension Sn (%) Sp (%) Acc(%) MCC

1st KNN 15 90.26 75.64 84.30 0.6723

BPB 162 88.55 76.76 83.74 0.6609

DNC 4 89.08 29.67 64.86 0.237

MNC 3 88.84 27.10 63.67 0.2055

DAC 12 90.2 24.01 63.22 0.1925

2nd KNN 3 86.36 91.06 89.11 0.7754

BPB 130 89.05 92.67 91.17 0.8179

DNC 8 21.9 90.32 61.92 0.1698

MNC 3 2.89 98.24 58.66 0.0378

DAC 12 33.06 84.31 63.04 0.2037

3rd KNN 11 80.07 86.7 83.87 0.6696

BPB 80 83.51 87.47 85.78 0.7094

DNC 10 26.80 85.93 60.7 0.159

MNC 2 1.72 99.49 57.77 0.0592

DAC 6 13.75 92.58 58.94 0.1038

4th KNN 5 82.82 89.04 86.45 0.7206

BPB 70 82.21 86.40 84.65 0.6850

DNC 14 42.33 78.51 63.43 0.2238

MNC 3 26.99 87.28 62.15 0.1806

DAC 12 49.08 75.00 64.19 0.2488

5th KNN 1 96.27 82.98 90.79 0.8107

BPB 140 94.78 91.49 93.42 0.8641

DNC 10 79.10 60.64 71.49 0.4046

MNC 3 91.04 7.45 56.58 �0.0269

DAC 10 76.12 58.51 68.86 0.3509

Fig. 3. Performance comparison results between MULTiPly, PCSF, vwZ-curve,

Stability, iPro54 and iPromoter-2L for identifying promoters for the first task

on 5-fold cross-validation test

Table 1. The best performance achieved by single type of features

for the first task

Features Dimension Sn(%) Sp(%) Acc(%) MCC

KNN 15 85.56 86.68 86.12 0.7224

BPB 120 82.03 81.40 81.71 0.6343

DNC 12 74.86 80.84 77.85 0.558

MNC 4 73.25 80.59 76.92 0.5399

DAC 12 74.48 76.15 75.31 0.5064
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2001; Wei et al., 2018a,b,c), naive Bayes (NB) (Rish, 2001),

Ensemble for Boosting (Maclin and Opitz, 1999), discriminant ana-

lysis (Cao and Sanders, 1996), gradient boosting decision tree

(GBDT) (Friedman, 2001) and SVM (Feng et al., 2018; Wei et al.,

2018a,b,c). We performed jackknife tests to examine if there was

still room for performance improvement. By and large, the quantity

of trees has a bearing on the performance of the RF algorithm. As a

consequence, we set out to search for the optimal RF parameters in

the two-task predictor. The results are shown in Supplementary

Table S9. For GBDT, the learning rate for every tree was set to 0.1,

the boosting number was set to 1000 and the depth for every tree

was set to 3, respectively. Through a comprehensive performance

comparison of these algorithms, we verified the correctness and ef-

fectiveness of the SVM classification model, reflected by its higher

MCC values. The results are shown in Supplementary Table S10.

However, it is worth noting that for the identification of promoters

and non-promoters, as well as r70-promoters and r32-promoters,

the other classifiers instead of the SVM also achieved similar predic-

tion results. Overall, while the results are very promising, it seems

that there could be further room for the performance improvement

through continued tests and research.

3.5 Web server implementation
As pointed out in Chou and Shen (2009) and suggested in a number

of recent publications (see, e.g. Chen et al., 2018a,b,c; Cheng et al.,

2018a,b; Feng et al., 2017; Liu et al., 2017a,b; Qiu et al., 2018; Su

et al., 2018; Wei et al., 2018a,b,c; Xiao et al., 2017; Xu et al.,

2017), user-friendly and publicly accessible web servers represent

the future direction for the development of practically useful predic-

tion methods and bioinformatics tools. As a matter of fact, a great

variety of practically useful web servers have significantly increased

the impact of bioinformatics on medical science (Chou, 2015), driv-

ing medicinal chemistry into an unprecedented revolution (Chou,

2017). In view of this, we have implemented and made available the

MULTiPly (http://flagshipnt.erc.monash.edu/MULTiPly/) web ser-

ver via which users can readily obtain their desired prediction results

of potential promoters.

The MULTiPly web server was implemented using MATLAB

and Java Server Pages, managed by Tomcat 8 and configured on a

64-bit windows server equipped with an 8-core CPU, 1TB hard disk

and 32 GB memory. The web server requires DNA sequences in the

FASTA format as the input. Supplementary Figure S1 shows an

example of the prediction webpages of the web server with the

detailed prediction outputs.

4 Conclusion

In this study, we present MULTiPly, a novel bioinformatics tool for

identifying bacterial promoters and the specific promoter types they

belong to. MULTiPly is capable of recognizing the specific type of

promoters in a layer-by-layer manner, which overcomes the com-

plexity brought upon by different numbers of available types of

promoters in the datasets. Extensive benchmarking experiments on

5-fold cross-validation and jackknife tests demonstrate the strategy

used by MULTiPly is effective and can deal with the data imbalance

problems. We expect that MULTiPly will be used as a useful tool for

expediting the discovery of both general and specific types of pro-

moters in the future.
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