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Abstract
Background. Predictive molecular biomarkers to select optimal treatment for patients with glioblastoma and other 
cancers are lacking. New strategies are needed when large randomized trials with correlative molecular data are 
not feasible.
Methods. Gene signatures (GS) were developed from 31 orthotopic glioblastoma patient-derived xenografts 
(PDXs), treated with standard therapies, to predict benefit from radiotherapy (RT-GS), temozolomide (Chemo-GS), 
or the combination (ChemoRT-GS). Independent validation was performed in a heterogeneously treated clinical co-
hort of 502 glioblastoma patients with overall survival as the primary endpoint. Multivariate Cox analysis was used 
to adjust for confounding variables and evaluate interactions between signatures and treatment.
Results. PDX models recapitulated the clinical heterogeneity of glioblastoma patients. RT-GS, Chemo-GS, and 
ChemoRT-GS were correlated with benefit from treatment in the PDX models. In independent clinical validation, 
higher RT-GS scores were associated with increased survival only in patients receiving RT (P = 0.0031, hazard 
ratio [HR] = 0.78 [0.66–0.92]), higher Chemo-GS scores were associated with increased survival only in patients 
receiving chemotherapy (P < 0.0001, HR = 0.66 [0.55–0.8]), and higher ChemoRT-GS scores were associated with 
increased survival only in patients receiving ChemoRT (P = 0.0001, HR = 0.54 [0.4–0.74]). RT-GS and ChemoRT-GS 
had significant interactions with treatment on multivariate analysis (P = 0.0009 and 0.02, respectively), indicating 
that they are bona fide predictive biomarkers.
Conclusions. Using a novel PDX-driven methodology, we developed and validated 3 platform-independent mo-
lecular signatures that predict benefit from standard of care therapies for glioblastoma. These signatures may be 
useful to personalize glioblastoma treatment in the clinic and this approach may be a generalizable method to 
identify predictive biomarkers without resource-intensive randomized trials.

Key Points

1. Predictive biomarkers for glioblastoma are lacking.

2. We developed a novel patient-derived xenograft approach.

3. We developed biomarkers for response to standard glioblastoma treatments.
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Following surgery, most patients with glioblastoma 
(GBM) are treated with a combination of temozolomide 
(TMZ) and radiotherapy (RT), while some receive either 
RT or TMZ alone. Molecular information to select from 
these treatment options is lacking. While promoter meth-
ylation of the gene encoding O6-methylguanine-DNA 
methyltransferase (MGMT) may predict for treatment 
benefit from TMZ, there are no biomarkers to inform re-
sponse to RT or multi-modality therapy.1–4

To date, few predictive genomic biomarkers have been 
developed to guide treatment decisions for patients 
with cancer. A notable exception is breast cancer, where 
a 21-gene expression recurrence score guides decision 
making regarding adjuvant cytotoxic chemotherapy.5 
Similar efforts are ongoing in prostate cancer to determine 
which men should receive adjuvant hormonal therapy6 or 
radiation following surgery.7 These efforts to personalize 
treatment have benefited from the high incidence of breast 
and prostate cancers, which facilitates the large number of 
patients and randomized trials necessary for predictive bi-
omarker development.8 Rarer cancers, such as GBM, have 
more limited patient numbers and randomized trial data, 
and require alternative approaches to develop predictive 
biomarkers.

Orthotopic patient-derived xenografts (PDXs), in which 
tumor tissue directly from patients is implanted into the 
relevant body site in mice, recapitulate much of the bi-
ology of human tumors, including the microenvironment, 
intratumoral heterogeneity, and, in GBM, the blood–brain 
barrier.9 Orthotopic PDXs typically maintain the treatment 
responsiveness of their founder tumors10 and can be used 
to assess individual biomarkers.11–13 However, to our knowl-
edge, there are no reported studies utilizing large numbers 
of PDXs combined with high-throughput gene expression 
profiling as a strategy to identify predictive biomarkers for 
treatment response.

In the first study of its kind, we performed RNA 
sequencing on a large cohort of GBM PDXs at baseline. 
We treated these PDXs with RT, TMZ, or RT+TMZ and de-
veloped gene signatures (GS) predicting treatment re-
sponse (termed RT-GS, Chemo-GS, and ChemoRT-GS). 
We then independently validated the gene signatures in 
a clinical GBM cohort to assess the performance of the 
GS as predictive biomarkers, and compared our results 
with MGMT promoter methylation and gene expression.

Methods

Patient-Derived Xenografts

Data on 31 orthotopic GBM PDXs with baseline RNAseq data 
were obtained from the Mayo Clinic PDX National Resource 
(https://www.mayo.edu/research/labs/translational-
neuro-oncology/mayo-clinic-brain-tumor-patient- 
derived-xenograft-national-resource. Accessed June 4, 
2019). Clinical characteristics and genomic data on these 
PDXs are summarized in Supplementary Table 1 and are 
publicly available at (http://www.mayo.edu/research/
documents/7-mayo-pdx-clinical-data/doc-20339608. 
Accessed June 4, 2019) and (http://www.mayo.edu/re-
search/documents/1-mayo-pdx-genotype/doc-20339599. 
Accessed June 4, 2019). These PDX models have been 
used to evaluate various treatments, including RT (n = 67 
experiments on 31 PDXs), TMZ (n =  137 experiments on 
31 PDXs), and RT+TMZ (n = 79 experiments on 29 PDXs), 
as previously described.14,15 Gene expression was log2 
transformed, then centered and scaled using the “scale” 
function in R.  Additional details on the analyses in the 
PDXs can be found in the Supplementary Methods.

Clinical Validation

Independent clinical validation was performed in The 
Cancer Genome Atlas (TCGA)16 GBM cohort because 
of the large numbers of patients and the availability of 
gene expression, treatment data, and clinical outcomes. 
While other published GBM cohorts exist, they lack one 
or more of these required data.17,18 Gene expression 
data were downloaded from the University of California 
Santa Cruz cancer browser.19 Affymetrix U133A micro-
array data were selected for analysis, rather than RNAseq 
data, as microarray data were available on more samples. 
Expression, treatment, and outcomes were available for 
502 patients. Gene expression was centered and scaled 
as above. Patients were classified as having received che-
motherapy if they had received TMZ or other alkylating 
chemotherapy during their treatment course and were 
classified as having received ChemoRT if they had re-
ceived both modalities of chemotherapy and radiation. 

Importance of the Study

Developing predictive genomic biomarkers to guide 
cancer therapy typically requires large randomized 
trials with correlative molecular data. We developed a 
novel alternative approach utilizing a panel of orthotopic 
patient-derived glioblastoma xenografts to identify 
gene signatures that predict benefit from radiotherapy, 
temozolomide, or the combination of the two. We then 

independently validated these signatures in a clinical 
cohort of 502 glioblastoma patients. These signatures 
may be useful to select the optimal treatment for patients 
with glioblastoma or to select patients for clinical trials. 
Furthermore, this approach represents a potentially 
generalizable method to develop predictive biomarkers 
without resource-intensive randomized trials.
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Additional details on the analyses in TCGA can be found 
in the Supplementary Methods.

Gene Signature Development

The primary endpoint for each PDX experiment was 
the ratio of survival time with treatment relative to sur-
vival time without treatment. Spearman’s correlation 
was calculated for each gene to this ratio. Gene expres-
sion signatures for treatment response were developed 
using the genes with the highest absolute correlation 
coefficients. A  score was created from the top genes by 
averaging20,21 their expression. For any gene selected for 
signature development with a negative correlation co-
efficient, the expression was multiplied by −1 such that a 
higher value always corresponded with increased benefit 
from treatment. All model development was performed 
exclusively in the PDXs. To identify biological pathways 
associated with treatment response, we used gene set 
enrichment analysis (GSEA).22 Additional details on the 
PDXs, RNAseq, formulas for the signatures, and GSEA can 
be found in the Supplementary Methods.

Statistical Analysis

The primary endpoint for clinical validation was overall 
survival. Once signatures were defined in the PDX data, 
independent clinical validation was performed without 
further modification. To assess for predictive potential, 
Cox regression was performed to test the interaction be-
tween the signatures and treatment.23 Multivariate anal-
ysis (MVA) of interactions was used to adjust for treatment 
selection bias as previously described.24 Gene signatures, 
MGMT promoter methylation, and gene expression were 
treated as continuous variables in Cox regression. This 
allowed the results to be comparable to each other, and 
is suggested by Janes et al23 for treatment selection bio-
marker evaluation. Therefore, all statistical inference was 
performed using gene signatures as continuous variables. 
Continuous variables are categorized into tertiles within 
Kaplan–Meier curves only for the purposes of visualization 
within the main text. The pre-specified analyses were the 
assessments of the 3 treatment signatures, MGMT pro-
moter methylation, and MGMT expression for treatment 
benefit. P-values <0.05 were considered significant.

Results

The overall study schema is depicted in Fig. 1. We utilized 
the gene expression and treatment response data from the 
PDXs to develop gene signatures for RT, chemotherapy, 
and ChemoRT response, which were then independently 
validated in a clinical cohort.

Patient-Derived Xenografts

The PDXs recapitulated the clinical heterogeneity of 
human GBMs. Sixty-one percent were from male patients 

and 39% from females. The median age at diagnosis was 
63  years, with a range from 38 to 83  years. MGMT pro-
moter methylation occurred in 45% of samples.1 All PDXs 
were isocitrate dehydrogenase 1 (IDH1) wild-type (ie, de-
rived from primary GBMs), but mutations in EGFR, PTEN, 
and TP53 were all present.16 Clinical and molecular char-
acteristics are further summarized in Supplementary 
Table 1, with all data publicly available online at the Mayo 
Clinic PDX National Resource website. Treatment ben-
efit was greatest with TMZ + RT combined, followed by 
TMZ, and then by RT (Supplementary Fig. 1). There was 
limited overlap between the top 100 genes that were 
positively and negatively correlated with response to RT, 
TMZ, and RT+TMZ (Supplementary Fig. 2, Supplementary 
Table 2). Within the top 10 pathways correlated with re-
sistance to RT, GSEA revealed that several were related to 
epithelial-mesenchymal transition and extracellular ma-
trix interactions (Supplementary Fig. 3A). RAS signaling 
pathways were represented in the top pathways correlated 
with TMZ resistance (Supplementary Fig. 3B). For 
pathways correlated with resistance to RT+TMZ, 9 out of 
the top 10 pathways were associated with DNA replication 
(Supplementary Fig. 3C).

Clinical Validation

Patients in the clinical validation cohort (Supplemental 
Table 3, N  =  502) were treated with combined ChemoRT 
(65%), RT alone (16%), or chemotherapy alone (3%) or re-
ceived no treatment (16%). Patients treated with ChemoRT 
had the best outcomes, followed by single modality treat-
ment (RT or chemotherapy), and patients receiving no 
treatment had the worst outcomes (Supplementary Fig. 
4). MGMT promoter methylation was highly inversely 
correlated with MGMT gene expression (Spearman’s 
rho  =  −0.54, P  <  0.0001), as expected, since promoter 
methylation silences MGMT, and is consistent with the 
literature.25

Alkylating Chemotherapy Response Signature

We rank genes for correlation to TMZ response in the PDX 
models and found that MGMT had the second-highest 
ranked absolute correlation coefficient (Spearman’s rho: 
−0.47). Because of the known biology of MGMT promoter 
methylation and increased sensitivity to alkylating chemo-
therapy,26 the fact that it was highly correlated with TMZ 
response in the PDXs supported the validity of our meth-
odology. Therefore, we hypothesized that a gene signa-
ture consisting of the average of MGMT and the only gene 
ranked higher GPRASP1, Spearman’s rho  =  −0.48) would 
predict response to chemotherapy. The absolute corre-
lation of the 2-gene Chemo-GS was higher than MGMT 
alone (Spearman’s rho: −0.53) supporting the addition of 
GPRASP1. To validate clinically, we compared patients who 
received chemotherapy (with or without RT) to patients who 
did not (RT alone or no treatment). The Chemo-GS was as-
sociated with improved survival only in patients who re-
ceived chemotherapy (P < 0.0001, HR = 0.66 [0.55–0.8]), but 
not in those who did not (P = 0.14, HR = 0.81 [0.62–1.07]; Fig. 
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2A, B). Higher Chemo-GS indicated an increased benefit 
from chemotherapy (Fig. 2C). MGMT promoter methylation 
was borderline associated with survival in patients who re-
ceived chemotherapy (P = 0.065, HR = 0.86 [0.74–1.01]) and 
not associated in patients who did not receive chemotherapy 
(P = 0.96, HR = 1.01 [0.78–1.30]; Supplementary Fig. 5A, B). 
MGMT gene expression was borderline associated with 
survival in the chemotherapy treated patients (P  =  0.085, 
HR = 1.1 [0.99–1.23]) and not associated in patients who did 
not receive chemotherapy (P  = 0.48, HR = 1.07 [0.89–1.28]; 
Supplementary Fig. 5C, D). The MVA interactions were not 
significant for Chemo-GS (Table 1), MGMT promoter methyl-
ation (P = 0.64), or MGMT expression (P = 0.25).

Radiation Response Signature

We next examined RT response, for which there are no clin-
ically utilized predictive markers in GBM. Applying the exact 
same methodology used to generate Chemo-GS, we inte-
grated the top 2 most correlated genes from the PDXs into 
RT-GS (average of CHGA, MAPK8, Spearman’s rho = 0.47, 
0.41, respectively). In clinical validation, we compared 
patients who received RT (with or without chemotherapy) 
with those who did not (chemotherapy alone or no treat-
ment). The 2-gene RT-GS was associated with improved 
survival only in the patients who received RT (P = 0.0031, 
HR = 0.78 [0.66–0.92]) and not in patients who did not receive 
RT (P = 0.28, HR = 1.28 [0.82–2.0]; Fig. 3A, B). Higher RT-GS 
scores indicated more of a benefit from RT (Fig. 3C). On in-
teraction MVA, the RT-GS:RT treatment interaction term was 

highly significant (P = 0.0009; Table 1), indicating that RT-GS 
is a predictive biomarker for response to radiation.

Chemotherapy and Radiation Response Signature

We next examined response to combined modality 
therapy, for which there is also no clinically utilized pre-
dictive marker. Since chemotherapy and RT response 
may independently contribute to ChemoRT response, 
we incorporated the individual chemotherapy and RT re-
sponse signatures from above into the combined response 
score. To account for interactions between RT and chemo-
therapy (such as the generation of complex DNA damage), 
we also used the top 2 genes specifically correlated 
with RT+TMZ treatment in the PDXs (ATP6V0A2, FGF7, 
Spearman’s rho  =  −0.7, −0.69, respectively) to develop a 
6-gene ChemoRT-GS. We then compared patients who 
received ChemoRT with those who had received single 
modality treatment or no treatment. As with the other 2 
signatures, ChemoRT-GS was associated with improved 
survival only in patients treated with ChemoRT (P = 0.0001, 
HR  =  0.54 [0.4–0.74]) and not in those not treated with 
ChemoRT (P = 0.26, HR = 0.8 [0.54–1.18]; Fig. 4A, B). Higher 
ChemoRT-GS scores indicated more of a benefit from 
ChemoRT (Fig. 4C). The multivariate interaction term was 
significant (P = 0.02; Table 1), indicating that ChemoRT-GS 
is a predictive biomarker for response to dual therapy with 
ChemoRT. MGMT promoter methylation was associated 
with survival in patients who received ChemoRT (P = 0.033, 
HR = 0.84 [0.71–0.99]) and not associated in patients who 
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did not receive ChemoRT (P = 0.79, HR = 1.03 [0.82–1.31]; 
Supplementary Fig. 6A, B), with a non-significant MVA 
interaction (P  =  0.55). Similarly, MGMT gene expression 
was borderline associated with survival in patients who 
received ChemoRT (P  =  0.057, HR  =  1.11 [1.00-0.25]) and 
not associated in patients who did not receive ChemoRT 
(P = 0.45, HR = 1.07 [0.9–1.27]; Supplementary Fig. 6C, D), 
with a non-significant MVA interaction (P = 0.77).

Clinical and Molecular Associations

Associations between the three signatures and clinical and 
molecular variables are presented in Supplementary Tables 
4–6. Of note, Chemo-GS was associated with MGMT pro-
moter methylation as expected, since MGMT gene expres-
sion is part of the signature. Chemo-GS was also associated 
with age at diagnosis. Higher RT-GS scores were also associ-
ated with younger age at diagnosis, consistent with the ob-
servation that younger patients may benefit more from RT.27 
Similarly, ChemoRT-GS was associated with both MGMT 
promoter methylation and age, which is expected, as both 
Chemo-GS and RT-GS are components of ChemoRT-GS. 
Scores of all 3 signatures were higher in IDH1-mutant tumors, 
suggesting that patients whose tumors harbor the IDH1 mu-
tation may derive increased benefit from multiple therapies. 
When we include IDH1 mutation as a covariate in the MVA in-
teraction, the signature:treatment interactions remain signif-
icant for both RT-GS (P = 0.025) and ChemoRT-GS (P = 0.042), 
suggesting that the IDH1 mutation is not exclusively respon-
sible for the predictive nature of these signatures.

Discussion

In the first study of its kind, we have utilized a PDX-based 
approach to develop 3 different gene signatures to predict 

GBM responsiveness to chemotherapy, radiation, and the 
combination. We independently validated these signatures 
in a clinical cohort of GBM patients. Each signature was 
prognostic only in patients receiving the signature-
associated treatment. RT-GS and ChemoRT-GS represent 
the first molecular predictors of RT and ChemoRT response 
in GBM. The significant interaction between signatures and 
treatments indicate that they predict response to therapy 
rather than simply being prognostic.

The pathways associated with treatment resistance are 
consistent with known biology. MGMT, which predicts 
for TMZ resistance in patients and laboratory models of 
GBM,26 was the second most highly correlated gene with 
TMZ resistance across our PDX cohort. GSEA also re-
vealed biologically relevant pathways associated with 
therapy resistance. Pathways involved with epithelial-to-
mesenchymal transition were associated with GBM PDX 
radioresistance. This finding is in agreement with litera-
ture reports in GBM and other cancers and suggests that 
therapeutic approaches targeting this phenotype should 
be explored in combination with radiotherapy in GBM.28–30 
Increased expression of RAS signaling pathways was as-
sociated with TMZ resistance, which could be due to the 
role of RAS/mitogen-activated protein kinase signaling in 
cell survival.31 Numerous pathways related to DNA elon-
gation and replication were associated with resistance to 
combined TMZ and radiation treatment, perhaps indicating 
that this machinery allows GBMs to detoxify the complex 
DNA damage that forms when radiation is combined with 
alkylating chemotherapy.32

This xenograft-driven methodology may be especially 
beneficial for rare tumors. Conventional approaches to pre-
dictive biomarker development require molecular profiling 
of large numbers of patient samples from patients treated 
with control or the treatment of interest in order to account 
for population-level genomic heterogeneity. This has been 
most successful in cancers with high incidences such as 
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breast and prostate but is less feasible in rarer cancers.5,7 
In our PDX-driven approach, genomically identical PDXs 
are treated with placebo or the treatment of interest, which 
allows for the quantification of gene-level effects on treat-
ment benefit without large numbers of profiled samples. 
While the signatures developed from PDXs must still be 
validated on samples from patients, this methodology 
greatly increases the feasibility of biomarker development 
in cancers where patient numbers or clinical trial samples 
are limiting.

This methodology is also versatile. A single, simple ap-
proach led to predictive biomarkers of 3 standard-of-care 
treatments for GBM. Because PDX cohorts are also ame-
nable to high-throughput testing of novel therapies,13 we 
anticipate that this methodology could be used during 
drug development to identify the patients most likely to 
benefit from a given therapy and potentially guide initial 
clinical trial design. The versatility of this methodology 
is also enhanced by its platform independence. Because 
these biomarkers of response can be applied to tumors 
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whose transcript levels have been quantified by quantita-
tive PCR, microarray, or RNAseq, they do not require that 
a specific commercial test be performed. This platform in-
dependence should facilitate future validation of these 
signatures using clinical trial specimens.

These gene signatures have potential clinical utility. 
Outside of a clinical trial, we expect that most patients will 
continue to receive combined chemoradiation regardless 
of their gene score. However, in patients able to tolerate 
only a single treatment modality, the RT-GS and Chemo-GS 
scores could be used to select RT or TMZ with more preci-
sion than the currently used MGMT promoter methylation 
assay.3,4 In the setting of a clinical trial, patients with a high 
ChemoRT-GS score should strongly consider treatment 
regimens involving both radiation and chemotherapy, 
whereas patients with a low score could be offered trials 
with novel therapy strategies. Patients with high RT-GS 
scores but low RT-Chemo and ChemoRT-GS scores may be 
excellent candidates for trials involving standard radiation 
but novel systemic therapy and/or novel radiosensitizing 
strategies.

Our work has limitations. PDX RNAseq data were 
obtained at a single timepoint, while treatment response 
experiments were performed numerous times over sev-
eral years, during which mouse-specific evolution could 
have occurred.33 Experimental number also varied be-
tween PDXs, which could bias our results toward PDXs 
with more replicates. Despite these limitations, MGMT 
was the second most correlated gene with TMZ response, 
which underscores the validity of this model. While we 
believe this approach may be generalizable to develop 
predictive biomarkers for other therapeutics, care should 
be taken regarding immune-oncology agents, as PDXs 
are typically grown in immunocompromised mice. The 
validation dataset is not a randomized control trial and 
therefore has treatment selection bias, unaccounted 
confounders, and imbalances in the numbers of patients 
receiving different treatment modalities. We attempted to 
adjust for this by including potential confounders in our 
MVA,24 but such corrections are likely imperfect and ad-
ditional validation is needed prior to using these tools in 
the clinic. Clinical validation would ideally be in prospec-
tive trials, with arms containing RT or TMZ monotherapy 
and/or observation. We also noted that TMZ monotherapy 
outperformed RT monotherapy in PDX models, but RT 
monotherapy was more efficacious in TCGA. We be-
lieve that this finding is due to the lower absolute dose 
of RT (20 Gy in 10 fractions) typically used in the PDX 
experiments.

As oncology moves toward the molecular classification 
of tumors, there is a strong need for molecular signatures 
that not only risk-stratify patients (prognostic biomarkers) 
but can also guide treatment decisions (predictive 
biomarkers). These PDX-derived signatures may be useful 
to personalize GBM treatment in the clinic. Furthermore, 
this PDX approach may be a generalizable method to iden-
tify predictive biomarkers, which is especially useful in 
rarer cancers.
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