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Dynamic functional connectivity captures temporal variations of functional connectivity during MRI acquisition and it may be a

suitable method to detect cognitive changes in Parkinson’s disease. In this study, we evaluated 118 patients with Parkinson’s

disease matched for age, sex and education with 35 healthy control subjects. Patients with Parkinson’s disease were classified with

normal cognition (n = 52), mild cognitive impairment (n = 46), and dementia (n = 20) based on an extensive neuropsychological

evaluation. Resting state functional MRI and a sliding-window approach were used to study the dynamic functional connectivity.

Dynamic analysis suggested two distinct connectivity ‘States’ across the entire group: a more frequent, segregated brain state

characterized by the predominance of within-network connections, State I, and a less frequent, integrated state with strongly

connected functional internetwork components, State II. In Parkinson’s disease, State I occurred 13.89% more often than in

healthy control subjects, paralleled by a proportional reduction of State II. Parkinson’s disease subgroups analyses showed the

segregated state occurred more frequently in Parkinson’s disease dementia than in mild cognitive impairment and normal cognition

groups. Further, patients with Parkinson’s disease dementia dwelled significantly longer in the segregated State I, and showed a

significant lower number of transitions to the strongly interconnected State II compared to the other subgroups. Our study

indicates that dementia in Parkinson’s disease is characterized by altered temporal properties in dynamic connectivity. In addition,

our results show that increased dwell time in the segregated state and reduced number of transitions between states are associated

with presence of dementia in Parkinson’s disease. Further studies on dynamic functional connectivity changes could help to better

understand the progressive dysfunction of networks between Parkinson’s disease cognitive states.
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Introduction
Cognitive deficits in Parkinson’s disease are characterized

by marked heterogeneity, variable progression and discrete

underlying pathology (Kehagia et al., 2010; Aarsland et al.,

2017). Resting state functional MRI studies have indicated

that alterations involve brain connectivity at rest and

during the execution of specific tasks (Baggio et al., 2014,

2015; Amboni et al., 2015; Gorges et al., 2015). However,

functional MRI studies cannot provide the information ne-

cessary to understand the spatial-temporal aspects of infor-

mation processing in the human brain. Functional MRI

detects highly localized measures of brain activation, but

its temporal resolution is much longer than the time

needed for most perceptual and cognitive processes.

Magnetoencephalography and EEG would have the neces-

sary temporal resolution to study the dynamics of brain

function, but their poor spatial resolution does not allow

identification of underlying neural sources, particularly in

the case of Parkinson’s disease where degeneration involves

both cortical and subcortical structures (Olde Dubbelink

et al., 2013; Babiloni et al., 2017).

Temporal dynamic changes in brain network connectivity

can be detected by analysing functional MRI acquisitions

(Hutchison et al., 2013; Allen et al., 2014). Dynamic func-

tional connectivity (DFC) alterations have been associated

with specific cognitive states (Elton and Gao, 2015), psy-

chiatric conditions (Damaraju et al., 2014) and neuro-

logical disorders, such as Alzheimer’s disease and

Parkinson’s disease (Jones et al., 2012; Kim et al., 2017;

Cordes et al., 2018; Diez-Cirarda et al., 2018). Specifically,

for Parkinson’s disease, DFC studies suggested alterations

from early Parkinson’s disease stages (Cordes et al., 2018),

linked to disease progression (Kim et al., 2017) and pres-

ence of mild cognitive deficits (Diez-Cirarda et al., 2018).

However, these studies were based on relatively small sam-

ples and included only non-demented Parkinson’s disease.

The primary aim of this work was to investigate the dif-

ferences in dynamic connectivity between healthy control

subjects and patients with Parkinson’s disease with ad-

equate representation across the entire cognitive spectrum,

ranging from normal cognition to dementia, using resting

state DFC. We hypothesized that cognitive states in

Parkinson’s disease are linked to altered DFC temporal

properties, which could possibly define functional neuro-

imaging biomarkers of cognitive decline and dementia.

Materials and methods

Participants

This study included 131 consecutive Parkinson’s disease pa-
tients recruited from the Parkinson Disease and Movement
Disorders Unit, Neurology Clinic Padua and San Camillo
Hospital Venice between January 2013 and March 2017,
and 36 healthy control subjects. Parkinson’s disease was

diagnosed according to the UK Parkinson’s Disease Society
Brain Bank diagnostic criteria (Daniel and Lees, 1993). We
excluded subjects with head injury history, presence of other
significant psychiatric, neurological, or systemic comorbidity,
MRI signal abnormalities (such as cerebral vascular lesions,
white matter hyperintensities, and evidence of space-occupying
lesions) and MRI artefacts. Further, we did not consider
Parkinson’s disease patients with deep brain stimulation and
healthy control subjects with mild cognitive impairment (MCI)
(Pedersen et al., 2013). Healthy controls were matched to
Parkinson’s disease patients in terms of age, gender and
education.

Disease severity was assessed using the motor section of the
Movement Disorder Society Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS-III) (Antonini et al., 2012) and
levodopa equivalent daily dosages were calculated for each
patient (Tomlinson et al., 2010).

The present study was approved by the Venice Research
Ethics Committee, Venice, Italy. Written informed consent
was obtained from all study subjects after full explanation of
the procedure involved. The research was completed in accord-
ance with the Declaration of Helsinki.

Neuropsychological and
neuropsychiatric assessment

All subjects underwent a comprehensive neuropsychological
battery as described previously (Biundo et al., 2014), specific-
ally designed to target cognitive deficits in Parkinson’s disease
according to level II criteria (Dubois et al., 2007; Litvan et al.,
2012) (Supplementary material). Subjective cognitive com-
plaints and their impact on functional autonomy were assessed
during the clinical interview with the Parkinson’s Disease
Cognitive Functional Rating Scale (Kulisevsky et al., 2013),
as well as daily functioning (Katz, 1983).

First, z-scores were calculated for each test and subject,
based on standardized published Italian norms that are ad-
justed for age and education. We classified Parkinson’s disease
patients as having MCI (PD-MCI) if z-score for a given test
was at least 1.5 standard deviations (SD) below appropriate
norms on two tests (i.e. within a single cognitive domain or at
least one test in two or more cognitive domains) (Litvan et al.,
2012). Presence of Parkinson’s disease dementia (PDD) was
assessed based on the Movement Disorders Society Task
force recommendations (Dubois et al., 2007), which included
cognitive, daily functioning and neuropsychiatric assessment.
Patients without cognitive alterations were defined as
Parkinson’s disease with normal cognition (PD-NC). Further,
z composite scores were computed to obtain global meas-
ures for each cognitive domain (i.e. attention/working
memory, executive, memory, language and visuospatial/visuo-
perceptive functions).

Data acquisition and preprocessing

Images were acquired on 1.5 T Philips Achieva scanner
(Philips Medical Systems) using an 8-channel head coil.
Structural 3D T1-weighted images were acquired with turbo
field echo sequence with the following parameters: repetition
time = 8.3 ms, echo time = 4.1 ms, flip angle = 8�, field of
view = 250 � 250 mm, matrix resolution = 288 � 288, number
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of slices = 187, voxel size = 0.87 � 0.87 � 0.87 mm with no
gap, number of total volumes = 240. Resting state data were
acquired using an echo-planar imaging sequence with repetition
time = 1939.4 ms, echo time = 45 ms, number of slices = 25,
flip angle = 90�, field of view = 230 � 230 mm, matrix
size = 80 � 80, voxel size = 2.875 � 2.875 � 5.20 mm with no
gap, and sensitivity encoding factor = 2. Resting state scans were
carried out in two consecutive scanning runs of �8 min each.
During functional MRI, participants were instructed to lie
quietly with their eyes closed and without thinking about any-
thing specific and to avoid falling asleep, confirmed by post-scan
debriefing. Headphones were used to attenuate scanner noise
and head motion was restrained with foam padding; further,
patients with Parkinson’s disease were ON dopaminergic medi-
cation during MRI scanning to control for involuntary head
motions.

Data preprocessing was carried out using SPM12 software
(http://www.fil.ion.ucl.ac.uk/spm/) implemented in MATLAB
(version R2016b, MathWorks, Inc., Natick, MA, USA). Data
were realigned to the first volume to correct for interscan head
motions, segmented into grey matter, white matter and CSF
using the Tissue Probability Map template, normalized into
standard Montreal Neurological Institute space using non-
linear transformations and smoothed with a Gaussian smooth-
ing kernel of 6 mm full-width at half-maximum.

Image quality and motion control

Before data preprocessing, we carried out image quality con-
trol and discarded images with signal dropout in one of the
two scanning runs. As excessive head motion can significantly
affect DFC analyses (Van Dijk et al., 2012; Hutchison et al.,
2013), we applied conservative inclusion criteria to minimize
potential head-motion bias. Namely, we calculated mean fra-
mewise displacement and maximum displacement. The former
index was calculated using the published formula of Power
et al. (2012), as a combination of translational (x, y, z axes)
and rotational (pitch, yaw, roll) scan-to-scan displacement,
using the six parameters obtained for each subject during the
realignment steps. Maximum displacement was defined as the
maximum absolute translation of each volume compared to
the reference volume in x, y and z directions.

Acquisitions were discarded if they had mean framewise dis-
placement values 40.2 mm, or if maximum displacement was
greater than one voxel size, or if outliers accounted for 430%
of the whole sample, in at least one of the two scanning runs.
According to these criteria, we excluded 14 acquisitions from
13 patients with Parkinson’s disease and one healthy control.

Group independent component
analysis

After data preprocessing, resting state data of all participants
were analysed using spatial independent component analysis as
implemented in the GIFT software (Calhoun et al., 2001a;
Erhardt et al., 2011) to decompose the data into functional
networks that exhibited a unique time course profile.

Two data reductions steps were carried out in the principal
component analysis, subject-specific and group-level steps.
First, subject-specific data were reduced to 120 components
and subject-reduced data were concatenated across time.

Further, at group level, data were reduced into 100 group
independent components (ICs) with the expectation-maximiza-
tion algorithm, included in GIFT (Roweis, 1998). Reliability
and stability of the infomax independent component analysis
algorithm in ICASSO (Bell and Sejnowski, 1995) was ensured
by repeating the independent component analysis algorithm 20
times (Himberg et al., 2004).

The resulting components were clustered to estimate their
reliability and components with values 40.80 were selected.
Subject-specific spatial maps and time courses were obtained
using the back-reconstruction approach (GICA) (Calhoun
et al., 2001b).

Among the 100 independent components, we identified rele-
vant intrinsic connectivity networks by applying a previously
described procedure (Allen et al., 2014). We first manually
confirmed if the peak activation coordinates were located pri-
marily in grey matter, showing low spatial overlap with vas-
cular, ventricular, edge regions corresponding to artefacts
(Allen et al., 2011) and then if time course was dominated
by low-frequency fluctuations, with ratio of power 50.10 Hz
to 0.15–0.25 Hz (Cordes et al., 2000). This process resulted in
35 meaningful independent components that we sorted into
seven functional networks, based on the spatial correlation
values between independent components and the template
(Shirer et al., 2012; Allen et al., 2014). As shown in Fig. 1
and Supplementary Table 1, the functional networks were
arranged into: basal ganglia, auditory (AUD), visual (VIS),
sensorimotor (SMN), cognitive executive (CEN), default
mode (DMN), and cerebellar (CB) networks.

As shown by Allen et al. (2014), additional postprocessing
was applied to the time courses of 35 independent components
to remove remaining noise sources. Independent component
time courses were detrended, despiked using AFNI’s
3dDespike algorithm, filtered using a fifth order Butterworth
filter with a 0.15 Hz high frequencies cut-off, and finally we
regressed out the movement parameters.

Dynamic functional connectivity

Sliding window approach

The most common way to investigate DFC is the sliding
window approach; we computed this analysis using the DFC
network toolbox in GIFT. In line with previous studies (Allen
et al., 2014; Damaraju et al., 2014; Kim et al., 2017), resting
state data were divided into windows of 22 repetition times
(44 s) size, in steps of one repetition time, as this segment
length has been demonstrated to provide a good compromise
between the quality of correlation matrix estimation and the
ability to resolve dynamics (Allen et al., 2014). In this regard,
cognitive states seem to be identified at window lengths of 30–
60 s, while topological assessments of brain networks begin to
be stabilized at �30 s (Jones et al., 2012; Shirer et al., 2012).
As covariance estimation using shorter time series can be
noisy, the regularized inverse covariance matrix was used
(Varoquaux et al., 2010; Smith et al., 2011). Further, we
imposed an additional L1 norm of the precision matrix to
promote sparsity in the graphic LASSO framework with 100
repetitions (Friedman et al., 2008). After computing DFC, all
the functional connectivity matrices were transformed to z-
scores using Fisher’s z-transformation to stabilize variance
prior to further analysis. Fisher z-transformed matrices were
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then residualized with nuisance variables, such as age and
gender (Allen et al., 2011).

Clustering analysis

Following a previous study (Allen et al., 2014), we applied a k-
means clustering algorithm on windowed functional connect-

ivity matrices (Lloyd, 1982), to assess the reoccurring func-

tional connectivity patterns (states), as expressed by the
frequency and structure of these states. We used L1 distance

(Manhattan distance) function to estimate the similarity be-

tween window functional connectivity matrices, as it has

been demonstrated to be an effective measure for high-dimen-
sional data (Aggarwal et al., 2001). Further, to estimate the

optimal number of clusters, a cluster validity analysis (silhou-

ette) was carried out on the exemplars of all the subjects. We
used the subset of windows (consisting of local maxima in

functional connectivity variance) as subject exemplars to de-

crease the redundancy between windows and computational
demands (Allen et al., 2014). As shown by others, subsampling

produced reliable results from whole windows and without

biasing group clusters (Allen et al., 2014), and thus the repro-

ducibility of functional connectivity states was established
using replication on bootstrap resampling and split-half

sample methods.
As in a previous study (Kim et al., 2017), we determined

the optimal number of clusters as equal to two (k = 2), based

on the silhouette criterion of cluster validity index
(Rousseeuw, 1987), computed as how similar a point is to

other points in its own cluster, when compared to points in

other clusters.

Group differences in dynamic
connectivity: temporal properties
and strength

We investigated the temporal properties of DFC states by com-
puting the average dwell time and fractional windows in each

state, as well as the number of transitions from one state to

another. Mean ‘dwell time’ is defined as the number of con-
secutive windows belonging to one state, ‘fractional windows’

as the number of total windows belonging to one state, and

‘number of transitions’ is defined as the number of transition-

ing between states and represents the reliability of each state.
We tested if there were any differences between the two scan-

ning runs on these temporal measurements, by performing a

repeated-measures ANOVA, using the two scanning runs as
within-subject factor. Group differences in dwell time, frac-

tional windows and number of transitions, between age-,

gender-, and education-matched healthy controls and
Parkinson’s disease patients were examined using a two-

sample t-test [P50.05, false discovery rate (FDR) correction].

Between-group differences among the Parkinson’s disease sub-

groups (PD-NC, PD-MCI and PDD) were investigated using
an analysis of covariance and including education, levodopa

and dopamine agonist equivalent daily doses as covariates

(P5 0.05, FDR correction).
Subject-specific medians corresponding to each group-level

state were estimated and two sample independent t-tests
were used to compare the connectivity strength of each state

at each unique regional pairing (595 pairings; P5 0.05, FDR

correction) between groups.

Figure 1 Independent components (n = 35) identified by group independent component analysis. (A) Independent component

spatial maps divided on seven functional networks [basal ganglia (BG), AUD, VIS, SMN, CEN DMN and CB] based on their anatomical and

functional properties. (B) Group averaged static functional connectivity between independent component pairs was computed using the entire

resting state data. The value in the correlation matrix represents the Fisher’s z-transformed Pearson correlation coefficient. Each of the 35

independent components was rearranged by network group based on the seven functional networks.
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Further, ANOVA was run to compare strength abnormal-
ities associated with cognitive deficits by comparing
Parkinson’s disease subgroups (P5 0.05, FDR correction).

Clinical and neuropsychological data
analysis

Statistical analyses were performed using SPSS Statistic, release
version 24.0 (Chicago, IL, USA). Healthy control subjects and
patients with Parkinson’s disease were compared using
Student’s t-test, while Parkinson’s disease subgroups were com-
pared across cognitive states (PD-NC, PD-MCI and PDD) with
three-level one-way ANOVAs. To compare all four subgroups
(healthy controls, PD-NC, PD-MCI and PDD), four-level one-
way ANOVAs were run. Pearson’s chi-square test was used to
compare categorical variables. We carried out Pearson’s cor-
relation analyses between altered temporal properties and cog-
nition in the whole group [Montreal Cognitive Assessment
(MoCA), Mini-Mental State Examination (MMSE) and cogni-
tive performance in each domain] as well as motor severity
(MDS-UPDRS-III) in Parkinson’s disease. Statistical signifi-
cance threshold was set at P50.05 and corrected for multiple
comparisons.

Data availability

Data supporting the findings of this study are available from
the corresponding author, upon reasonable request.

Results

Demographic, clinical and cognitive
characteristics

Our sample consisted of 35 healthy controls and 118 pa-

tients with Parkinson’s disease. No significant differences

were found between healthy controls and Parkinson’s dis-

ease patients as whole group (Supplementary Table 2), in

age, education and gender. Forty-six patients (39.0%) ful-

filled the criteria for MCI, 20 (16.9%) for dementia and the

remaining 52 (44.1%) were cognitively normal (Table 1).

Neuropsychological differences
between groups

Table 2, Fig. 2 and Supplementary Tables 3 and 4 show

differences in neuropsychological performance between

groups. Patients with PDD were mainly impaired in atten-

tion/working-memory domain (84.2%), followed by

memory (72.2%), executive, visuospatial (70.6%), and lan-

guage abilities (38.9%). In the PD-MCI group, attention/

working memory was the most impaired domain (42.2%),

followed by the visuospatial (40.0%), memory, executive

and language abilities (26.1%, 22.2%, 8.7%, respectively).

There was no difference between healthy controls and PD-

NC.

Intrinsic connectivity networks

Spatial maps of all 35 independent components, identified

using the group independent component analysis, are

shown in Fig. 3. Independent components were grouped

in the following seven networks based on their anatomical

and presumed functional properties: basal ganglia (IC 7),

AUD (ICs 97, 98), VIS (ICs 47, 54, 31, 58, 27, 37, 55, 74),

SMN (ICs 2, 10, 5, 4, 1), CEN (ICs 17, 66, 48, 51, 25, 71,

18, 9), DMN (21, 73, 35, 38, 45, 34, 56, 72), and CB (36,

44, 65). The detailed information and spatial maps of in-

dependent components are listed in Supplementary Table 1

and Supplementary Fig. 1.

Dynamic functional connectivity
state analysis

Temporal properties

We identified two patterns of structured functional connect-

ivity states, recurring during individual scans, across sub-

jects and between the two scanning runs. Namely, a more

frequent and relatively sparsely connected State I, and a less

frequent and stronger interconnected State II. The percent-

ages of total occurrences of these two states were quite

different, with State I more frequent (66%) than State II

(34%). Figure 3 shows these two common functional con-

nectivity states and the corresponding visualized connectiv-

ity patterns (centroids of clusters). Within-group repeated

measure ANOVA excluded that differences in the temporal

properties were related to the scanning runs and a relation

with groups.

Figure 4A and B shows state- and group-specific cluster

centroids obtained by the k-means cluster analysis. We

observed that in healthy controls and Parkinson’s disease

patients, State I was characterized by sparse interindepen-

dent component connections that were located mostly

within each network (AUD, VIS, SMN, CEN, DMN and

CB), while stronger internetwork connections were

observed in State II, involving the AUD, VIS, SMN, CEN

and DMN networks. In Parkinson’s disease, State I was

more frequently observed (69.42 � 27.10%) than State II

(30.58 � 27.10%); whereas in healthy controls, State I

occurred less frequently (55.53 � 26.43%) (P = 0.008)

and State II more commonly (44.47 � 26.43%)

(P = 0.008) compared to Parkinson’s disease (Fig. 5A).

Further, State I was more frequent in PDD

(83.65 � 21.70%) than in PD-MCI (65.19 � 29.12%)

and PD-NC (67.69 � 25.65%) (P5 0.05, FDR correction);

while the opposite pattern was observed for State II, which

was less frequent in PDD (16.35 � 21.70%) than in PD-

MCI (34.81 � 29.21%) and PD-NC (32.31 � 25.65%)

(P5 0.05, FDR correction).

As reported in Fig. 5B, significant group differences

(Parkinson’s disease versus healthy controls) were identified

in the mean dwell time of State I. Specifically, the Parkinson’s

disease group showed a significantly longer mean dwell time
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in State I (Parkinson’s disease: 75.48 � 58.67, healthy con-

trols: 46.39 � 39.60; P = 0.007), while there was a trend for

a longer mean dwell time in State II in the healthy controls

group (healthy controls: 30.13 � 24.43, Parkinson’s disease:

23.10 � 24.48; P = 0.137).

Between-group comparisons among Parkinson’s disease

subgroups revealed that patients with PDD spent signifi-

cantly more time in State I than PD-MCI and PD-NC pa-

tients (PDD: 115.75 � 63.80, PD-MCI: 67.51 � 53.12, PD-

NC: 67.05 � 55.91, P5 0.05, FDR correction), and less

time in State II as compared to PD-MCI (PDD:

12.88 � 17.26, PD-MCI: 29.72 � 31.08, P5 0.05, FDR

correction) and PD-NC, although the latter was seen only

as a trend (PDD: 12.88 � 17.26, PD-NC: 21.18 � 18.08,

P = 0.080).

Healthy controls (5.94 � 2.32) changed more frequently

between brain states than patients with Parkinson’s dis-

ease (4.59 � 2.64) (P = 0.007). Finally, the Parkinson’s

disease subgroup analysis unveiled that the PDD group

made fewer transitions compared to the PD-MCI

and PD-NC groups (PDD: 3.20 � 2.28, PD-MCI:

4.59 � 2.65, PD-NC: 5.13 � 2.62, P5 0.05, FDR correc-

tion) (Fig. 5C).

Overall, these changes in DFC suggested that Parkinson’s

disease patients with major cognitive alterations stay longer

in State I, which is characterized by sparsely within-net-

work functional connectivity, making fewer transitions

and dwelling shorter in the strongly interconnected State II.

Strength of dynamics states

We compared the strength of connections in the

Parkinson’s disease and healthy control groups among

states. For State I, we observed 60 stronger within- and

between-network connections in healthy controls compared

to patients with Parkinson’s disease (healthy

controls4Parkinson’s disease, P5 0.0125, FDR correc-

tion). Twenty per cent of these connections were within-

network (SMN and DMN); the remaining were between-

networks (AUD-VIS, AUD-SMN, VIS-SMN, VIS-DMN,

VIS-CEN, SMN-CEN, CEN-DMN, CEN-CB and DMN-

CB). We also observed 13 between-network connections,

which were stronger in Parkinson’s disease patients com-

pared to healthy controls (SMN-CEN, VIS-DMN, SMN-

DMN, AUD-DMN, CEN-DMN, SMN-CB, CEN-CB)

(Parkinson’s disease4 healthy controls, P5 0.05, FDR

correction) (Fig. 4B).

In addition, the 56.67% (34/60) of healthy

controls4Parkinson’s disease connections positively corre-

lated (P5 0.05, FDR correction) with attentive, executive,

memory and/or visuospatial domains—while 46.1% (6/13)

of Parkinson’s disease4 healthy controls connections cor-

related negatively (P5 0.05, FDR correction) with atten-

tive, memory and/or visuospatial domains. Interestingly,

23% of these Parkinson’s disease4healthy controls con-

nections were between DMN and CEN networks, which

are normally displayed as anti-correlations.

Figure 2 Neuropsychological performance in each cognitive domain as assessed by z composite score. HC = healthy controls.

Table 2 Percentages of patients with z-scores below

�1.5 SD in each cognitive domain and across cognitive

states

PD-NC

(n = 52)

PD-MCI

(n = 46)

PDD

(n = 20)

Attention/working memory 0% 42.0% 84.2%

Executive 3.8% 22.0% 70.6%

Visuospatial 1.9% 40.0% 70.6%

Memory 3.8% 26.1% 72.2%

Language 0% 8.7% 38.9%
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Overall these analyses suggest that poorer Parkinson’s

disease cognitive performance could be associated with

alterations in the strength of connections. In particular,

Parkinson’s disease4 healthy controls connections in

DMN and CEN networks are possibly associated

with the underlying cognitive deficits in Parkinson’s

disease.

Further, when we compared the strength of connection

across Parkinson’s disease cognitive states, there were no

significant differences except for the within-network (VIS)

connection (PDD5 PD-MCI5 PD-NC), which positively

correlated with all cognitive domains.

Repeating the same analyses for State II, we found that

healthy controls had two stronger between-network

Figure 4 Functional connectivity state results. (A) Group centroid matrices for each state [percentage of total occurrences for states I

and II: 55.5% and 44.5% in the healthy controls and 69.4% and 30.6% in the Parkinson’s disease groups, respectively]. (B) Functional connectivity in

each state, where Parkinson’s disease had a weaker or stronger functional connectivity pattern in comparison to the healthy controls group.

BG = basal ganglia; HC = healthy controls; PD = Parkinson’s disease.

Figure 3 Results of the clustering analysis per state. Cluster centroids for each state. The total number of occurrences and percentage of

total occurrences are listed above each cluster median. BG = basal ganglia.
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connections compared to Parkinson’s disease patients (AUD-

VIS and DMN-CB) (P5 0.0125, FDR correction), while

Parkinson’s disease had stronger connections in CEN-

DMN and DMN-SMN networks, again suggesting increased

activity in networks that are normally anti-correlated.

However, these State II connections did not correlate with

any cognitive domain. Finally, we did not find any differ-

ences in strength of connections across Parkinson’s disease

cognitive states except in the VIS-DMN internetwork

(PDD5PD-MCI5 PD-NC), which positively correlated

with the cognitive performance in the attentive, memory

and language domains (P5 0.05, FDR correction).

Correlation between clinical
measures and dynamic functional
connectivity properties

Correlation analyses were carried out to test whether DFC

properties were associated with clinical characteristics.

Notably, we found that dwell time in State I was negatively

correlated with cognitive performance on the attention/

working memory, executive, memory and visuospatial do-

mains, as well as on global cognitive scales (MMSE and

MoCA) (Table 3). This means that worse cognitive per-

formance associated with long time spent in the more

Figure 5 Temporal properties of DFC states for the Parkinson’s disease and healthy control groups, and across Parkinson’s

disease cognitive states. (A) Percentage of total time subjects spent in each state. (B) Mean dwell time and (C) number of transitions between

states were plotted using violin plots. Horizontal lines indicate group medians and interquartile range (solid and dashed line, respectively).

*P5 0.05, **P5 0.01. HC = healthy controls; PD = Parkinson’s disease.
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sparsely within-network connected State I. On the contrary,

dwell time in State II did not correlate with cognitive

scores. We found negative associations between fractional

windows and cognitive performance on memory, visuo-

spatial domains as well as on MoCA, suggesting that a

higher percentage of total time spent in each state was

associated with poorer cognitive function. Further, the

number of transitions was positively associated with cogni-

tive performance (on all cognitive domains and global cog-

nitive scales). Additionally, it is worth noting the temporal

properties of DFC did not correlate with MDS-UPDRS-III.

Discussion
This is the first study in a large Parkinson’s disease and

healthy controls cohort that applied a DFC analysis to

identify differences in the dynamic connectivity across

Parkinson’s disease cognitive states, ranging from normal

cognition to dementia, with a focus on the temporal prop-

erties (fractional windows, dwelling time, number of tran-

sitions) and on the strength of functional connectivity

states.

We found two distinct connectivity states across the

entire group. A more frequent brain state characterized

by the predominance of within-network connections, State

I, or segregated state; and a less frequent brain state char-

acterized by the prevalence of strong connections between

distinct functional network components, State II, or inte-

grated state. We observed that in patients with Parkinson’s

disease, State I occurred 13.89% more often than in

healthy controls, and the expression of integrated State II

was lower. Specifically, the occurrence of the segregated

State I was observed more frequently in PDD, paralleled

by a proportional decreased expression of the integrated

state, suggesting that reduced ‘crosstalk’ between brain net-

works and increased segregation were associated with cog-

nitive decline. This confirms our hypothesis of altered

temporal properties in dynamic connectivity in association

with Parkinson’s disease significant cognitive dysfunctions.

Our results are consistent with the DFC study by Diez-

Cirarda et al. (2018), who found functional connectivity

alterations in Parkinson’s disease with MCI. Both studies

showed that significant altered dynamic temporal properties

can be seen in Parkinson’s disease patients with greater

cognitive severity. However, they did not include patients

with dementia and their cohort might have been too small

to detect differences between PD-NC and PD-MCI in the

post hoc analysis.

There is growing evidence of an altered resting state con-

nectivity pattern associated with cognitive impairments in

Parkinson’s disease (Baggio et al., 2014, 2015; Amboni

et al., 2015; Gorges et al., 2015). Our findings are consist-

ent with a previous functional networks study, using graph-

theoretical analyses, wherein Parkinson’s disease with cog-

nitive deficits showed increased local connectivity (modu-

larity and small-worldness) and altered long-range

connectivity (Baggio et al., 2014). In this regard, Göttlich

et al. (2013) described Parkinson’s disease as a ‘disconnec-

tion syndrome’, characterized by increased connectivity

within the sensorimotor network and reduced interaction

with other brain modules. Therefore, our findings add to

the view that Parkinson’s disease-associated dementia is

characterized by a more segregated brain state compared

to PD-MCI and PD-NC.

This is in line with evidence suggesting that integrative

between-network communication is crucial for efficient cog-

nition while within-network communication is crucial for

motor execution (Cohen and D’Esposito, 2016).

Interestingly, we found that increased brain network func-

tional segregation was closely linked with cognitive per-

formance, but not with motor dysfunctions (as assessed

by MDS-UPDRS-III), corroborating the independence of

motor-associated network (Niethammer and Eidelberg,

2012; Kim et al., 2017; Schindlbeck and Eidelberg,

2018). However, we cannot fully exclude that the lack of

Table 3 Correlations between dynamic functional connectivity temporal properties and clinical characteristics

MDS-UPDRS

IIIa
MoCA MMSE Cognitive domains

Attention/

working

memory

Executive Memory Language Visuospatial

Dwell time State 1 r 0.143 �0.256 �0.202 �0.170 �0.169 �0.248 �0.158 �0.270

P-value 0.159 0.001 0.012 0.035 0.037 0.002 0.051 0.001

Dwell time State 2 r �0.070 0.178 0.090 0.000 0.060 0.097 0.049 0.109

P-value 0.496 0.027 0.269 0.998 0.458 0.232 0.544 0.181

Fractional windows r 0.141 �0.242 �0.159 �0.138 �0.165 �0.186 �0.130 �0.200

P-value 0.167 0.003 0.050 0.089 0.041 0.021 0.108 0.014

Number of transitions r �0.152 0.229 0.218 0.242 0.229 0.252 0.189 0.243

P-value 0.135 0.004 0.007 0.003 0.004 0.002 0.019 0.003

Pearson’s correlation test was used, followed by multiple comparisons correction.
aCorrelation performed for the Parkinson’s disease group (n = 118). Significant results are reported in bold type.

MDS-UPDRS = Movement Disorder Society Unified Parkinson’s Disease Rating Scale; MMSE = Mini-Mental State Examination; MoCA = Montreal Cognitive Assessment.
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an association with the MDS-UPDRS-III is due to basal

ganglia network parcellation.

Further, we observed that, patients with Parkinson’s dis-

ease have overall significantly different DFC temporal prop-

erties than controls. Namely, the former dwelled longer in

the segregated State I, and showed a lower number of tran-

sitions to the strongly interconnected state compared to

healthy participants. These temporal dynamic differences

were mainly driven by PDD patients, who spent more time

in the State I and remained for a shorter period in the

strongly interconnected State II, than PD-MCI and PD-NC.

These results are consistent with those obtained in other

neurological (Alzheimer’s disease and epilepsy) and psychi-

atric (schizophrenia) conditions, all showing altered mean

dwelling time (Jones et al., 2012; Damaraju et al., 2014;

Liu et al., 2017; Lottman et al., 2017; Diez-Cirarda et al.,

2018) and number of transitions compared to controls (Liu

et al., 2017; Diez-Cirarda et al., 2018). In healthy controls,

probability of transitioning positively correlated with ex-

ecutive function measures, indicating greater functional dy-

namics and cognitive flexibility (Nomi et al., 2017).

Moreover, in epileptic patients, higher number of transi-

tions was inversely associated with disease duration (Liu

et al., 2017). Thus, aligned with these reports, our findings

lead us to suggest that reduction in transitioning between

brain states differentiates demented from non-demented

Parkinson’s disease patients, but is not able to differentiate

patients with preserved cognition and PD-MCI. PDD pa-

tients are characterized by the lowest rate of transitions,

possibly as a measure of reduced cognitive flexibility.

In addition, DFC temporal properties were closely asso-

ciated with cognitive performance on several domains (i.e.

attention, executive, memory and visuospatial). Indeed,

worsening of cognitive performance correlated with

higher State I proportion in the fractional windows,

increased dwell time and reduction in the number of tran-

sitions in this segregated state. Taken together, these find-

ings confirm the vulnerability of the resting state network

in Parkinson’s disease with cognitive deficits (Baggio et al.,

2014, 2015; Amboni et al., 2015) and underline the im-

portance of investigating Parkinson’s disease-related cogni-

tive signature to temporal dynamic of functional

connectivity. Hence, prospective studies are needed to de-

termine whether functional segregation as well as decreased

number of transitions between states can be a potential

biomarker of cognitive decline in Parkinson’s disease.

Moreover, we observed that healthy controls segregated

State I was generally characterized by stronger within- and

between-network connections compared to Parkinson’s dis-

ease patients who, conversely, showed only few stronger con-

nections than healthy controls. These were associated with

worse cognitive performance in the attentive, memory and

visuospatial domains and a subset of these connections was

located between DMN and CEN networks, which are usually

characterized by anticorrelations (Fox et al., 2009; Raichle,

2015). These findings emphasize that cognitive deficits in

Parkinson’s disease are also characterized by a reduction of

the normal decoupling between DMN and CEN (Baggio

et al., 2015). Finally, we found a weaker connection in the

PDD group within the visual network in State I and between

the VIS-DMN in State II compared to the other patients,

which may express poor visual information processing.

There are a few limitations and shortcomings in the pre-

sent work that have to be considered. First, patients were

taking their normal dose of dopaminergic medication

during the resting state MRI to reduce discomfort,

motion artefacts as well as for ethical reasons (Van Dijk

et al., 2012). We cannot exclude that dopaminergic therapy

had some effect on functional connectivity (Berman et al.,

2016) and possibly increased connectivity (Esposito et al.,

2013; Prodoehl et al., 2014), reducing the magnitude of the

observed effect. Second, it has been suggested that DFC

analyses should be performed in resting state acquisitions

of at least 10 min (Hindriks et al., 2016). The length of our

resting state acquisitions was 8 min, which according to

recent evidence, allows stable static resting state functional

MRI data (Tomasi et al., 2016). In addition, we acquired

two scanning runs for each participant (16 min per subject)

and checked for the consistency of the analyses, as reported

above. We acknowledge our data were acquired with 1.5 T

MRI, as other recent DFC studies, which used magnetic

resonance scanners with the same field strength (Demirtas

et al., 2016; Allen et al., 2018). Further, our voxel dimen-

sion and repetition time did not differ from other 3 T MRI

studies (Kim et al., 2017), minimizing possible bias in in-

dependent components discrimination.

To summarize, this is the first large study to assess dy-

namic connectivity properties across the Parkinson’s disease

cognitive spectrum, ranging from normal cognition to de-

mentia. Importantly, we have shown that temporal proper-

ties of functional dynamics (fractional windows, dwelling

time and number of transitions) are altered in Parkinson’s

disease versus healthy controls as well as in patients with

Parkinson’s disease and dementia. Our findings show that

increased dwell time in the segregated state and reduced

number of transitions between states were associated with

presence of dementia in Parkinson’s disease. We believe this

approach, particularly the temporal dynamics of functional

connectivity, could be a useful imaging biomarker to moni-

tor cognitive changes in Parkinson’s disease.
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