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Abstract

The protein misfolding avoidance hypothesis explains the universal negative correlation between protein abun-
dance and sequence evolutionary rate across the proteome by identifying protein folding free energy (DG) as the
confounding variable. Abundant proteins resist toxic misfolding events by being more stable, and more stable
proteins evolve slower because their mutations are more destabilizing. Direct supporting evidence consists only of
computer simulations. A study taking advantage of a recent experimental breakthrough in measuring protein
stability proteome-wide through melting temperature (Tm) (Leuenberger et al. 2017), found weak misfolding
avoidance hypothesis support for the Escherichia coli proteome, and no support for the Saccharomyces cerevisiae,
Homo sapiens, and Thermus thermophilus proteomes (Plata and Vitkup 2018). I find that the nontrivial relation-
ship between Tm and DG and inaccuracy in Tm measurements by Leuenberger et al. 2017 can be responsible for not
observing strong positive abundance–Tm and strong negative Tm–evolutionary rate correlations.
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Introduction
After decades of protein evolutionary studies, the major se-
quence evolutionary rate (ER) constraint has been discovered
to be gene expression (Sharp 1991; P�al et al. 2001; Rocha and
Danchin 2004; Lemos et al. 2005; Drummond et al. 2006). A
strong negative expression–ER correlation is observed in
organisms’ proteomes from the three kingdoms of life
(Drummond and Wilke 2008; Zhang and Yang 2015).
However, it is unknown why this correlation is universal.
The first mechanism proposed is the protein misfolding
avoidance hypothesis (MAH). Originally formulated by
Drummond et al. (2005) as the translational robustness hy-
pothesis and later modified (Yang et al. 2010; Serohijos et al.
2012), MAH claims that proteins with high abundance (A) are
under strong selection to stably fold (DG ¼ Gfold � Gunfold)
because misfolded proteins are toxic to the cell. Greater sta-
bility ensures fewer misfolded proteins (m) by the following
equation, derived from equilibrium statistical mechanics and
which assumes two-state folding (Drummond and Wilke
2008):

m ¼ Atot � A

¼ A

Pnat
� A

¼ Að1þ ebDGÞ � A ¼ AebDG

: (1)

The parameter b is the inverse energy of the environment
and is equal to 1/(kbT), where kb is the Boltzmann constant
and T is the ambient temperature. Misfolded proteins in the
MAH framework are considered to be equally toxic, regardless
of differing protein identities (Drummond and Wilke 2008;
Geiler-Samerotte et al. 2011). An organism’s proteins with the
same abundance are under the same selection to stably fold
according to MAH. Although gene expression and protein
abundance are not interchangeable (Greenbaum et al. 2003;
Taniguchi et al. 2010), data from the relatively recent advent
of experimental techniques to measure abundance on the
proteome scale have demonstrated a universal A–ER corre-
lation as well (Drummond et al. 2006; Plata and Vitkup 2018;
Razban et al. 2018).

Since its original proposal, MAH assumptions have been
refined. Mistranslation was first thought to be the main phys-
ical driver of misfolding (Drummond et al. 2005; Drummond
and Wilke 2008). Later, Yang et al. (2010) showed that mis-
folding of correctly synthesized proteins also contributes to
explaining the A–ER correlation, when explicitly modeling
misfolding of mistranslated and correctly translated lattice
proteins in computer simulations. Yang et al. (2010) coined
the name MAH to encompass the greater breadth.

Another assumption altered is the relationship between
DG and ER, in light of abundance. A paradox in MAH is that
more stable proteins are more robust to misfolding in the cell
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but also fix fewer mutations (Drummond et al. 2005). One
would instead expect that an increased robustness to mis-
folding would lead to greater tolerance for mutations and
hence a higher chance for mutations to fix, since such pro-
teins should be able to tolerate more mutations before losing
marginal stability. The paradox was first resolved by distin-
guishing between mutations that cause a loss of protein func-
tion and mutations that are more generic. The former
determines ER for low A; the latter, for high A (Wilke and
Drummond 2006). Although their model recapitulates the
A–ER correlation, Wilke and Drummond (2006) note that
their model predicts an exponential decline in ER with
increasing A, rather than the experimentally observed
power law.

Serohijos et al. (2012) suggested another resolution by
showing that more stable proteins evolve more slowly in
simulations if there exists a sufficiently strong anticorrelation
between DGwild�type and DDG ¼ DGsingle mutant�
DGwild�type. Such anticorrelation arises from the fact that ran-
dom mutations attempted in a very stable protein are more
likely to be destabilizing and thus less likely to fix than random
mutations on a less stable protein. Serohijos et al. (2012)
argued that previous computer simulations (Drummond
and Wilke 2008; Yang et al. 2010) in support of MAH un-
knowingly satisfied this condition by using sequence-based
models of lattice proteins. Serohijos et al. (2012)’s resolution
of the paradox is superior to that of Wilke and Drummond
(2006) because Serohijos et al. (2012) recapitulated the
known power-law dependence between A and ER.

Figure 1 summarizes MAH expected correlations between
protein properties (horizontal arrows) and the assumptions
underlying them (vertical arrows). Single-sided, rather than
double-sided, arrows are used because causation is implied in
MAH’s explanation of why higher A causes lower ER. Figure 1
reflects the current formulation of MAH; it is a synthesis of its
initial proposal as the translational robustness hypothesis
(Drummond et al. 2005; Drummond and Wilke 2008) with
later developments (Yang et al. 2010; Serohijos et al. 2012).

Although MAH correlations are exhibited in different sim-
ulation frameworks (Wilke and Drummond 2006;
Drummond and Wilke 2008; Yang et al. 2010; Serohijos
et al. 2012), explicit experimental support is lacking. Yang
et al. (2010) and Plata et al. (2010) used limited DG data
from the Protein Thermodynamic database (ProTherm)

(Gromiha et al. 2016) for 5 Saccharomyces cerevisiae and 23
Escherichia coli proteins, respectively, and found no correla-
tion between A and DG. On the other hand, indirect support
for MAH has been reported elsewhere. Highly expressed pro-
teins in several proteomes, including E. coli, S. cerevisiae, and
Homo sapiens, were shown to have sequences similar to those
of thermophiles. Highly expressed proteins in S. cerevisiae also
showed some enhanced features of proxies for DG, such as
strength of hydrogen bonds and interatomic contacts, both
calculated by Eris (Serohijos et al. 2013). However, more direct
experimental support than those presented in and Serohijos
et al. (2013) is still needed to prove that more abundant
proteins are more stable, as posited by MAH.

The scarcity of proteome-wide data on DG limited the
ability to test key predictions stemming from MAH. This sit-
uation seems to have changed with the recent advance of
proteome-wide measurements of melting temperature (Tm)
(Leuenberger et al. 2017). Using Tm as a proxy for DG, MAH
can be indirectly assessed experimentally with hundreds of
proteins per organism. In Leuenberger et al. (2017), support
for MAH was shown for E. coli when parsing proteins in three
bins based on Tm. When considering each protein as an in-
dividual data point, Plata and Vitkup (2018) found the MAH-
consistent positive correlation between ln A and Tm to be
weakly significant and the Tm–ln ER correlation to be nonex-
istent for the E. coli proteome. (The natural logarithm (ln) of A
and ER are taken because the observed power-law depen-
dence of A–ER becomes linear for ln A–ln ER, yielding more
informative Pearson correlation coefficients.) More discour-
agingly, the three other organisms for which proteome-wide
Tm was measured—S. cerevisiae, H. sapiens, and Thermus
thermophilus—demonstrated none of the MAH-consistent
correlations, even though they demonstrated the universal
negative correlation between ln A and ln ER (Plata and Vitkup
2018).

Based on the analysis of correlations between Tm and other
protein properties, Plata and Vitkup (2018) have raised
doubts concerning the validity of MAH. However, it is unclear
whether limitations from using Tm as a proxy for DG could be
responsible for the apparent lack of support for MAH. As
shown in figure 1, MAH posits DG, not Tm, to be the con-
founding physical variable. Plata and Vitkup (2018) took Tm

and DG measurements from ProTherm and reported a Tm–
ln�DG Pearson correlation of 0.75 when including multiple

FIG. 1. The protein misfolding avoidance hypothesis (MAH). Horizontal arrows denote expected correlations between protein properties. Vertical
arrows denote the assumptions underlying their respective horizontal arrow. Throughout the text, DG is defined such that more stable proteins
have more negative DG values. If Tm is substituted in place of DG, correlations described here would have opposite signs because more stable
proteins have more positive Tm values.
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measurements per protein as individual data points, and 0.48
for one averaged Tm and one averaged DG measurement per
protein. Both correlations are significant, with P values of 2E-
40 and 3E-8, respectively (Plata and Vitkup 2018).

It remains unclear whether the correlation between Tm and
DG is large enough such that MAH can be assessed with Tm. In
this article, I investigate the relationship between the two pro-
tein stability measurements with respect to MAH. In the first
part of my results, I consider whether ln A–Tm and Tm–ln ER
correlations directly correspond to ln A–DG and DG–ln ER
correlations, respectively. In the second part, I carefully obtain
a simpler relationship between Tm and DG that can be
currently evaluated with experimental data, starting from
the canonical equation relating the two stability metrics
and employing two approximations. With my derived relation-
ship, in the third part I create a DG variable that is consistent
with MAH by construction. I study how correlations are af-
fected when transforming the perfect, MAH-consistent DG
into Tm.

Results

Correlations Are Generally Not Transitive
A common misconception is that Pearson correlation coeffi-
cients (r) are transitive: if X and Y positively correlate, and Y and
Z positively correlate, then X and Z must also positively corre-
late (Castro Sotos et al. 2009). As a counterexample, Langford
et al. (2001) tabulated the number of base hits, triples and
home-runs of New York Yankees’ players in the 2000 regular
season. Although base hits and triples positively correlate, and
base hits and home-runs positively correlate, triples and home-
runs were found to negatively correlate! This surprising nega-
tive correlation can be reconciled by noting that players hitting
home-runs are bigger and more powerful, whereas players
getting triples are more agile and run faster to third base.

Notwithstanding the hitting records of the Yankees’, there
can be specific pairs of correlations in which the assumption
of transitivity is valid. To identify cases in which r is transitive,
Langford et al. (2001) derived an equation characterizing the
range in possible rYZ, depending on rXY and rXZ values.

rXYrXZ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

XYð Þ 1� r2
XZð Þ

q
� rYZ

� rXYrXZ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

XYð Þ 1� r2
XZð Þ

q
: (2)

A three-dimensional plot of the volume enclosed by equa-
tion (2) demonstrates that for large and positive rXY and rXZ,
I can count on rYZ being large and positive too (supplemen-
tary fig. S1). However, when rXY and rXZ become smaller in
magnitude, then I cannot narrowly define rYZ. In this case, rYZ

could be negative or positive, regardless of rXY and rXZ signs.
I can apply equation (2) for correlations between Tm and

protein properties to define a range of possible corresponding
correlations between ln�DG and protein properties.
Inserting Tm for X, ln�DG for Y and ln A for Z in equation
(2), I find r(ln�DG, ln A)’s range given Plata and Vitkup
(2018)’s reported r(Tm, ln�DG), and r(Tm, ln A) for the re-
spective organism.

r Tm; ln� DGð Þr Tm; lnAð Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r Tm; ln� DGð Þ2
� �

½1� r Tm; lnAð Þ2�
q

� r ln� DG; lnAð Þ

� r Tm; ln� DGð Þr Tm; lnAð Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r Tm; ln� DGð Þ2
� �

½1� rðTm; lnAÞ2�
q

: (3)

Inserting r(Tm, ln�DG) ¼ 0.75 and r(Tm, ln A) ¼ 0.09
from figure 1 in Plata and Vitkup (2018) into equation (3), E.
coli r(ln�DG, ln A) is calculated to range from �0.59 to
0.73. That is, the resulting r(ln�DG, ln A) correlation could
be as low as �0.59—in strong variance with MAH—around
0, just like r(Tm, ln A), or as high as 0.73—in complete sup-
port of MAH. Known correlations of Tm with other protein
properties poorly define resulting ln�DG correlations, even
though r(Tm, ln�DG) is relatively large. Equation (2) dem-
onstrates that Tm as a proxy for ln�DG narrowly identifies
r(ln�DG, ln A) only if r(Tm, ln�DG), as well as r(Tm, ln A)
are close to 1. Strong Tm correlations are capable of proving
or disproving MAH because such correlations (e.g., jr(Tm,
ln A)j � 1) lead to ranges in the corresponding DG correla-
tions which are strong as well.

By the same logic as in equation (3), an inequality character-
izing r(ln�DG, ln ER) can be derived from r(Tm, ln�DG) and
r(Tm, ln ER). From figure 2 in Plata and Vitkup (2018), r(Tm,
ln ER) ¼ 0.045, making E. coli r(ln�DG, ln ER) range from
�0.63 to 0.69. Again, I am unable to reject MAH because of
Tm correlations. I perform the same procedure for S. cerevisiae
and H. sapiens Tm correlations and find similarly large ranges in
corresponding ln�DG correlations that cannot discount
MAH (fig. 2). No A data set could be found for T. thermophilus
(Materials and Methods), thus it is not included in my analyses.

Although r(Tm, ln�DG) is reported in Plata and Vitkup
(2018), r(Tm, �DG) ¼ 0.76 is essentially identical to r(Tm,
ln�DG) ¼ 0.75. Therefore, ranges illustrated in figure 2 for
r(ln�DG, ln A) and r(ln�DG, ln ER) are essentially identical
to ranges for r(ln A, �DG) and r(�DG, ln ER) when r(Tm,
�DG) is employed.

Relationship between Tm and DG
The previous subsection highlighted that possible ranges for
DG correlations could be broad given those involving Tm

measured by Leuenberger et al. (2017). Equation (2) considers
all possible relationships between variables. If I could find an
equation relating Tm to DG, I could obtain narrower ranges
for ln A–DG and DG–ln ER correlations from corresponding
ln A–Tm and Tm–ln ER correlations, respectively. Under the
experimentally validated assumption that the change in heat
capacity at constant pressure (DCp) is independent of tem-
perature during protein folding, Becktel and Schellman (1987)
derived a relationship between Tm and DG in terms of DCp

and the change in enthalpy (DHm) at Tm, using the Gibbs–
Helmholtz equation.
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DG ¼ �DHm 1� T

Tm

� �
þ DCp Tm � T þ Tln

T

Tm

� �
:

(4)

As seen in equation (4), the dependence between DG and
Tm involves two other protein-specific variables: DHm and
DCp. Generally, no simple monotonic relationship exists be-
tween Tm and DG. I find a weakly significant Tm–DG corre-
lation r ¼ �0.36 (P value¼ 0.02) when taking the Tm, DHm,
and DCp reported for 43 proteins in Rees and Robertson
(2001, table 1A) and calculating DG according to equation
(4) (supplementary fig. S2A).

After employing two biologically motivated approxima-
tions, I obtain an equation that is evaluable proteome-wide,
while maintaining the original accuracy of equation (4)
(Materials and Methods).

DG � �N 2:92þ 0:058 Tm � 333ð Þ½ � Tm � T

T

kJ

mol
: (5)

My analytical foray has failed to yield a monotonic rela-
tionship between DG and Tm because the number of residues
(N) in a protein confounds the relationship. However, I can
still narrow down the DG correlation ranges I found in the
previous subsection from corresponding Tm correlations by
evaluating equation (5) with Tm from Leuenberger et al.
(2017) and N from the Universal Protein Resource (UniProt
Consortium 2018). In figure 3, no MAH-consistent correla-
tions are recovered with DG(Tm, N) across E. coli, S. cerevisiae,
and H. sapiens proteomes.

In many cases, correlations opposite of MAH expectations
are seen in figure 3. For all three organisms, a significant neg-
ative r(ln A,�DG) is seen, which is opposite of MAH expect-
ations. The r(ln A, �DG) correlation is driven by the

significant negative r(ln A, N) correlation seen for all three
organisms (supplementary fig. S4). This correlation is consis-
tent with the gene length–expression correlation previously
reported for H. sapiens (Chiaromonte et al. 2003; Grishkevich
and Yanai 2014). For S. cerevisiae, a significant positive r(�DG,
ln ER) is seen, which is again opposite of what I would expect
from MAH because a significant positive r(N, ln ER) correla-
tion is present. Escherichia coli and H. sapiens do not have
significant r(N, ln ER), thus no significant r(�DG, ln ER) is seen
(supplementary fig. S4).

Analyzing the Perfect MAH Correlate with Tm

It remains unclear whether the lack of MAH-consistent cor-
relations is due to possible inaccuracies in Tm measurements
by Leuenberger et al. (2017) or the fundamental inaccuracy in
Tm representing DG being confounded by N. In other words,
could perfectly accurate Tm measurements ever result in cor-
relations consistent with MAH?

To free ourselves from having to know proteome-wide
protein stabilities, I take advantage of a previously derived
equation relating DG and ln A within the MAH framework
(Serohijos et al. 2013) (supplementary eq. S2, Supplementary
Material online). For completeness, I should also explicitly
define ln ER as a function DGMAH, however, to do so requires
an equation relating ln ER and DG, which is currently un-
known. Thus, I limit my analysis to just half of the MAH—
the ln A–DG correlation.

Expressing equation (5) in terms of Tm and then evaluating
the resulting expression using DGMAH (supplementary eq. S3),
there exists no Tm values that are in better agreement with
MAH because the DGMAH that Tm approximates is con-
structed to yield r(ln A, �DGMAH) ¼ 1. I analyze the ln A–
TMAH

m correlation and find a strong MAH-consistent correla-
tion across all three organisms (fig. 4). Even for S. cerevisiae
and H. sapiens which exhibit negative ln A–Tm correlations

FIG. 2. Wide ranges of Pearson correlation coefficients for ln�DG
with ln A and ln ER from corresponding Tm correlations with ln A and
ln ER demonstrate that Tm measured by Leuenberger et al. (2017)
cannot assess the protein MAH. Ranges are obtained by evaluating
equation (2) with r(Tm, ln�DG) ¼ 0.75 from supplementary figure
1a, and r(Tm, ln A) and r(Tm, ln ER), which are represented as dots,
taken from figures 1 and 2, respectively, of Plata and Vitkup (2018).

FIG. 3. My derived DG(Tm, N) does not recover any MAH-consistent
correlations. Corresponding Tm correlations have dashed lines and
are derived from my curated data sets, with Tm from Leuenberger
et al. (2017) (Materials and Methods). Asterisks above or below bar
plots denote P value ranges: x< 10�10, ***<0.001, **<0.01, and
*<0.05.
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with Leuenberger et al. (2017) data, MAH-consistent positive
ln A–TMAH

m correlations are seen. The r(ln A, TMAH
m ) value is

directly the result of the r(TMAH
m , DGMAH) value, that is, r(ln A,

TMAH
m ) ¼ r(TMAH

m , �DGMAH) because r(ln A, �DGMAH) ¼ 1
(eq. 2). I conclude that perfectly accurate Tm could in princi-
ple yield MAH-consistent correlations.

In light of finding TMAH
m correlations consistent with MAH,

does the lack of MAH-consistent correlations in the
Leuenberger et al. (2017) Tm data set indicate that MAH is
wrong? Leuenberger et al. (2017) reported that Tm from their
study had a Pearson correlation coefficient of 0.36 (P value¼
3E-4) with experimental Tm measurements listed in
ProTherm for E. coli proteins. Tm in ProTherm can be as-
sumed to more accurately characterize a protein’s Tm in iso-
lation because differential scanning calorimetry, the standard
protocol for Tm measurement (Robertson and Murphy 1997),
is used. Tm in Leuenberger et al. (2017) employs a novel tech-
nique to measure Tm proteome-wide by employing limited
proteolysis coupled with mass spectroscopy on cell extracts.
The relatively low correlation between Leuenberger et al.
(2017) Tm values and ProTherm Tm values signifies that sup-
plementary equation (S3), is not valid as written for
Leuenberger et al. (2017) Tm because of uncertainty in Tm

measurements. To make my previous analysis comparable to
the Leuenberger et al. (2017) Tm data set, I explicitly account
for the inaccuracy in measurements by defining,

Ta
m ¼ TMAH

m þ aNð0; 1Þ: (6)

Ta
m represents Leuenberger et al. (2017) Tm, TMAH

m refers to
ideally accurate Tm consistent with MAH as described previ-
ously, and a � N(0, 1) captures the inaccuracy between the
two variables. N(0, 1) is the normal distribution with a mean
of 0 and variance of 1. The noise strength a modulates the

variance. The added a� N(0, 1) term is appropriate because
the histogram of residuals from linearly fitting Leuenberger
et al. (2017) Tm to ProTherm Tm resembles a normal distri-
bution centered at 0 (Leuenberger et al. 2017), a general
property of accurate linear relationships (Anscombe 1973).

I can analytically solve for a in terms of r(TMAH
m , Ta

m) start-
ing from the definition of the Pearson correlation coefficient
and employing properties of the covariance (Cov) (Rice 2007).
Then, writing down r(ln A, Ta

m) in terms of r(ln A, TMAH
m ) and

inserting the expression for a (supplementary eqs. S4 and S5),

r lnA; Ta
m

� �
¼ r lnA; TMAH

m

� �
r TMAH

m ; Ta
m

� �
: (7)

Inserting r(ln A, TMAH
m ) ¼ 0.36 (fig. 4) and r(TMAH

m , Ta
m) ¼

0.36 (Leuenberger et al. 2017) for E. coli into equation (7),
yields r(ln A, Ta

m) ¼ 0.13. My r(ln A, Ta
m) for E. coli is identical

to what I find for r(ln A, Tm) ¼ 0.13 using the Leuenberger
et al. (2017) data set (Materials and Methods). My analysis
demonstrates the possibility that MAH may be completely
true, however the imperfect Tm–DG relationship and inaccu-
rate Leuenberger et al. (2017) Tm values reduce the MAH
expected positive correlation between ln A and Tm.

It would be useful to compare these results for E. coli to
those for S. cerevisiae and H. sapiens, however, it is difficult to
repeat this analysis for these organisms because there are few
reported S. cerevisiae and H. sapiens Tm measurements in
ProTherm. Regardless, my approach of adding noise to TMAH

m

(eq. 6) would not be able to recapitulate the opposite than
MAH expected ln A–Tm correlations observed for S. cerevisiae
and H. sapiens using Leuenberger et al. (2017) Tm (Materials
and Methods). The addition of noise to a perfect MAH corre-
late cannot explain this result because added noise only erases
any correlation present; it cannot recreate a significant corre-
lation in the opposite direction. An important assumption is
that Leuenberger et al. (2017) Tm must actually relate to DG
according to equation (4). The negative ln A–Tm correlation
for S. cerevisiae and H. sapiens could be the result of some
variable confounding the Tm measurement, rather than dis-
proving MAH. I propose that this confounding variable weakly
affects E. coli because a significant r(TMAH

m , Ta
m) is found.

What could be confounding Leuenberger et al. (2017) Tm

measurements and why would it affect organisms unequally?
Leuenberger et al. (2017) attributed discrepancies between
their Tm measurements and those of ProTherm to their meas-
urements being made in the cellular milieu. The methodology
developed by Tan et al. (2018) specifies how the cellular mi-
lieu could be responsible for the discrepancy between
ProTherm and Leuenberger et al. (2017) Tm values. Tan
et al. (2018) used heat to induce protein aggregation and
to subsequently identify proteins involved in protein com-
plexes for H. sapiens. Tan et al. (2018) briefly noted that ther-
mally induced protein aggregation could affect Leuenberger
et al. (2017) Tm measurements since lysed cell samples must
be exposed to wide temperature ranges to measure Tm.
Indeed, using a similar experimental technique as
Leuenberger et al. (2017) to measure Tm, Becher et al.
(2018) did find individual H. sapiens proteins in complexes
having similar Tm values to each other.

FIG. 4. Utilizing the quoted equation for DGMAH, my derived TMAH
m

recovers MAH expected correlations. Corresponding Tm correlations
have dashed lines and are derived from my curated data sets, with Tm

from Leuenberger et al. (2017) (Materials and Methods). X marks and
asterisks above or below bar plots denote P value ranges: xx< 10�50,
x< 10�10, ***<0.001, **<0.01, and *<0.05. No r(TMAH

m , ln ER) corre-
lations are presented because no equation exists to describe the MAH
expected DG–ln ER relationship.
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I find that the number of stable protein–protein interac-
tions (PPIs) are right shifted for S. cerevisiae and H. sapiens
compared with that of E. coli (median PPI for E. coli ¼ 8, S.
cerevisiae¼ 16, and H. sapiens¼ 25), consistent with previous
reports (Reid et al. 2010; Schad et al. 2011). Escherichia coli Tm

from Leuenberger et al. (2017) would more likely correspond
to Tm in ProTherm because cellular PPI effects on stability are
less prevalent than in S. cerevisiae and H. sapiens. In supple-
mentary figure S5, I reanalyze the Leuenberger et al. (2017) Tm

data set by only including proteins with PPIs less than or equal
to the median PPI found for the proteome of the respective
organism, hoping to recover the weakly consistent MAH
correlations seen in E. coli, in S. cerevisiae and H. sapiens as
well. However, MAH-consistent correlations are not recov-
ered for S. cerevisiae and H. sapiens. For E. coli, the MAH-
consistent ln A–Tm correlation is retained, however, the
MAH-consistent Tm–ln ER correlation is lost. This seems to
be the result of E. coli proteins with more PPIs evolving slower
(Razban et al. 2018).

Further study is required to elucidate whether measured
Tm values of protein complexes are strongly influenced by
current experimental methods, or are biologically significant.
It remains unknown whether the stability of the protein in
isolation, or the stability of the protein in the midst of other
proteins and metabolites present in the cell, is more biolog-
ically important in light of evolution. Simulation frameworks
testing MAH have only considered the former case. It would
be insightful to elucidate how MAH correlations obtained
from simulations change when considering PPIs on an indi-
vidual protein’s DG.

Discussion
My analysis of MAH with recent proteome-wide Tm measure-
ments (Leuenberger et al. 2017) finds MAH not necessarily
invalidated by experimental evidence. Simply put, MAH does
not posit Tm to be the biophysical property underlying the
negative A–ER correlation. Although Tm and DG are both
metrics for protein stability, I show that the two are not
interchangeable in assessing MAH by noting that,

• Pearson correlation coefficients of Tm with ln A or ln ER
do not directly correspond to those of DG because
Pearson correlation coefficients are generally not transi-
tive (fig. 2).

and finding that,

• Tm is capable of reproducing MAH-consistent correlations
when Tm is a proxy for the perfect MAH-consistent DG
(fig. 4). However, inaccuracies in Leuenberger et al. (2017)
Tm measurements are too large to reproduce strong
MAH-consistent correlations for E. coli and any MAH-
consistent correlations for S. cerevisiae and H. sapiens.

Results supporting my claim are obtained for all three
organisms’ proteomes for which A, Tm, and ER experimental
measurements are currently available—E. coli, S. cerevisiae,
and H. sapiens. I consider the Tm–ln�DG correlation of
0.75 reported in Plata and Vitkup (2018) in the

“Correlations Are Generally Not Transitive” subsection, al-
though I demonstrate that its true value is likely much lower
and that the Tm–ln�DG relationship is unfounded in the
“Relationship between Tm and DG” subsection. No explicit
Tm–ln�DG dependence is present in equation (4), the ca-
nonical equation relating Tm and DG. A more appropriate
comparison is Tm–DG, supported analytically by equation (8)
when assuming DHm to be constant.

Leuenberger et al. (2017)’s study has provided insight into
proteome-wide trends in stability, such as structure and se-
quence signatures of stable and unstable proteins, how PPI
networks relate to temperature induced cell death, and in-
trinsically disordered protein structures in the context of the
cellular matrix. My analysis demonstrates that one area the
Tm data cannot be freely extended towards is testing MAH.
Tm measured by any experimental technique, not just that
from Leuenberger et al. (2017) has a ceiling in its correlation
magnitude for capturing corresponding DG correlations
(fig. 4). Recent advances in proteome-wide Tm measurements
(Becher et al. 2018; Mateus et al. 2018) may lead to stronger
MAH support than that found with Leuenberger et al. (2017),
however, I expect no r(ln A, Tm) calculated from other Tm

data sets to exceed r(ln A, TMAH
m ).

Other known proxies for DG exist, but they correlate at
least just as poorly as Tm does with DG. As noted in Materials
and Methods, Robertson and Murphy (1997) found thermo-
dynamic terms making up DG: DHm, DCp and entropy, to
correlate strongly with N. Combining these linear fits with N
leads to an equation for DG at any T, only as a function of N
(Ghosh and Dill 2009). However, the correlation between DG
and N is not found bioinformatically (supplementary fig. S6A)
because the thermodynamic terms that make up DG are
orders of magnitude larger. When subtracting large terms
from each other, noise in those large terms suppresses any
signal in the resultant value (Ghosh and Dill 2009).

I attempt to use contact density calculated for proteins
with solved structures listed in the Protein Data Bank
(Berman et al. 2000) as a proxy for stability (England et al.
2003; England and Shakhnovich 2003; Choi et al. 2017). Using
DG assembled from ProTherm and reported in Plata and
Vitkup (2018, supplementary figure 1b), I find no significant
correlation between DG and contact density (supplementary
fig. S6B). I also computationally calculate DG using FoldX,
although FoldX was only trained to make accurate single
mutant DDG predictions (Guerois et al. 2002). If accurate
DGs could be derived from FoldX, I could then test MAH
bioinformatically with computationally calculated DGs. A sig-
nificant Spearman rank correlation is observed between
DGFoldX and DGProTherm. However, FoldX-calculated DGs are
unrealistic, with outputted DGs ranging from �200 to
900 kcal/mol (supplementary fig. S6C).

Only accurate DG measurements can fully assess whether
MAH expected correlations, so far only seen in simulations,
extend to reality. Currently, it is difficult to assess the validity
of MAH compared with other alternative hypotheses pro-
posed more recently to explain the universal A–ER correlation
(Tartaglia et al. 2007; Cherry 2010b; Plata et al. 2010; Yang
et al. 2012; Park et al. 2013; Kepp and Dasmeh 2014). Unlike
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MAH, experimental support in the S. cerevisiae proteome has
already been found for alternative hypotheses, such as exper-
imentally determined PPI partners (Chatr-aryamontri et al.
2017) for the protein misinteraction avoidance hypothesis
(Yang et al. 2012), and experimental measurements of
mRNA folding strengths (Zur and Tuller 2012) for the
mRNA folding hypothesis (Park et al. 2013).

Materials and Methods

Bioinformatics Data
Escherichia coli and S. cerevisiae data sets, except for Tm from
supplementary table S3 of Leuenberger et al. (2017), are taken
from ProteomeVis (Razban et al. 2018). Because only proteins
with a Protein Data Bank structure have biophysical proper-
ties listed on the ProteomeVis web app, I access the complete
data sets on ProteomeVis’ GitHub page. Abundance in
ProteomeVis was originally reported in parts per million, how-
ever, here we use absolute abundance because that is the
biologically relevant unit.

Homo sapiens data are currently not reported on
ProteomeVis, and I use the same strategies employed in
ProteomeVis’ data curation to pick A and ER data sets. My
chosen A data set (Beck et al. 2011) has the largest coverage
and is the most accurate that explicitly measures absolute
abundance from a single reference, according to the Protein
Abundances Across Organisms database (PaxDb) (Wang et al.
2015) (accessed April 2019). The A data set corresponds to
expressed proteins in the U2OS (human osteosarcoma) cell
line. Homo sapiens ER data are taken from the same overall
data set that E. coli and S. cerevisiae ER data originate (Zhang
and Yang 2015). ER in this article is the sequence identity
between aligned, orthologous protein sequences (Zhang and
Yang 2015). It was shown that this metric correlates very well
with nonsynonymous substitutions per nonsynonymous site
(dN) (Razban et al. 2018). I avoid using dN/dS as the metric for
ER because dS has been shown to be selected (Wall et al. 2005;
Jacobs and Shakhnovich 2017) and its selection pressure may
differ from that of dN, in light of MAH (Drummond and Wilke
2008). Because I compare ERs across proteins in a proteome, I
do not need to normalize by divergence time, which dS is
assumed to capture when considering dN/dS. PPIs for H. sapi-
ens are taken from the same database as for E. coli and S.
cerevisiae, the IntAct database (Orchard et al. 2014).

As of April 2019, I could not find any protein abundance
data for T. thermophilus, thus I did not include it in my anal-
yses. Plata and Vitkup (2018) resorted to employing mRNA
abundance, also called gene expression, as a proxy for protein
abundance for T. thermophilus. I hesitate to do the same
given the relatively poor correlation found between mRNA
and protein abundance for E. coli (Taniguchi et al. 2010) and S.
cerevisiae (Greenbaum et al. 2003; Lahtvee et al. 2017).

I reproduce the weak positive Pearson correlation coeffi-
cient between ln A and Tm for E. coli (table 1) that Plata and
Vitkup (2018) reported. I also find a negative Tm–ln ER cor-
relation that is barely significant for E. coli, consistent with
Plata and Vitkup (2018) when they included ribosomal pro-
teins in their analysis. In general, I include all proteins that

have measurements for all three protein properties—A, Tm,
and ER—regardless of protein function. Both correlations for
S. cerevisiae are not significant (table 1), however, Plata and
Vitkup (2018) found a weakly significant negative ln A–Tm

correlation that goes against MAH expectations. The same
observation was seen for H. sapiens (Plata and Vitkup 2018),
which ProteomeVis recapitulates.

My A and ER data sets are different from those employed
by Plata and Vitkup (2018), in terms of their source and units.
Plata and Vitkup (2018) utilized whole organism integrated A
data sets reported by PaxDb in units of parts per million for all
three organisms. The metric of ER used by Plata and Vitkup
(2018) is dN, which they generate themselves by running
PAML (Yang 2007) on pairs of orthologous gene sequences
for all three organisms. Nonetheless, my reported correlations
are roughly consistent with those reported by Plata and
Vitkup (2018) for the three organisms considered. This indi-
cates that reported correlations are not biased by any specific
curation procedure in selecting A and ER data sets.

My employed data sets can be downloaded from the
Supplementary Material online.

Approximating Equation (4) Such That It Is Evaluable
Proteome-Wide While Still Maintaining Accuracy
As an attempt to obtain a simpler DG–Tm relationship that is
physically motivated, I approximate equation (4) by writing
Tm¼ Tþ dm and Taylor expanding to first order around dm/
T¼ 0. The approximation is not drastic because tempera-
tures in equation (4) are in Kelvin (T � 300 K) and proteins
have a mean stability of 333 K (Robertson and Murphy 1997),
making dm/T� 1.

DG ¼ �DHm 1� T

T þ dm

� �
þ DCp dm þ Tln

T

T þ d

� �

¼ �DHm 1� 1þ dm

T

� ��1	 

þDCp dm � Tln 1þ dm

T

� �	 


�� DHm 1� 1� dm

T

� �	 

þ DCp dm � T

dm

T

� �	 


¼ �DHm
dm

T
¼ �DHm

Tm � T

T
(8)

Equation (8) demonstrates that DCp can be neglected to
first order in dm/T. When fitting DG to the right-hand side of
the final expression in equation (8) (which I define as x1) with

Table 1. Pearson Correlation Coefficients (r) and P Values in
Parentheses between Two Variables When Including All Proteins
with Experimental Data for the Three Protein Properties:
Abundance (A), Melting Temperature (Tm), and Evolutionary Rate
(ER).

r(ln A, Tm) r(Tm, ln ER) r(ln A, ln ER) N

E. coli 0.13 (0.004) 20.09 (0.03) 20.32 (4E-15) 577
S. cerevisiae 20.07 (0.1) 0.03 (0.5) 20.39 (5E-18) 468
H. sapiens 20.16 (0.03) 0.004 (0.96) 20.18 (0.02) 175

NOTE.—n ¼ numbers of data points.
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the Rees and Robertson (2001, table 1A) data set, I find
r¼ 0.91 (P value ¼ 2E-17) with a best-fit line of DG ¼ 0.43
� x1 � 5.9 kJ/mol (supplementary fig. S2B). If equation (8)
is perfectly valid, DG ¼ 1� x1 þ 0. I reason that the imper-
fection is a result of the dm/T� 1 approximation. When only
considering half the data set with lower Tm, equation (8)
holds stronger with r(x1, DG) ¼ 0.95 (5E-11) and a best-fit
line of DG¼ 0.61� x1þ 0.08 kJ/mol. The slope in this case is
closer to 1 and the intercept is nearly 0 because the dm/T� 1
approximation is less severe for proteins with lower Tm.

Although equation (8) is simpler than equation (4), equa-
tion (8) still does not guarantee a monotonic relationship
between Tm and DG because in the equation, DG still
depends on one other protein property besides Tm: DHm.
Moreover, DG cannot be evaluated explicitly because
proteome-wide DHm values are currently unknown. A previ-
ous study found DH and DCp to scale with the number of
residues (N) in a protein (Robertson and Murphy 1997) at
333 K, where DH(T¼ 333 K) ¼ 2.92N kJ/mol and DCp ¼
0.058N kJ/mol. Thus, DHm ¼ DH(T¼ 333 K) þ DCp (Tm �
333 K) ¼ 2.92Nþ 0.058N (Tm � 333 K). Compact and cubic
lattice proteins, the simplest model that captures contacts
present in globular proteins that are important for assuming
native conformations (Shakhnovich 1997), can motivate the
N dependence. The energy of folded lattice proteins scales
with the number of contacts and the number of contacts can
be shown to scale as 2N as N approaches infinity for compact
and cubic lattice proteins (supplementary eq. S1,
Supplementary Material online). I assume that DHm� energy
of the folded lattice protein (Gin et al. 2009; Best et al. 2013).
Because DCp is the temperature derivative of DHm, the N
scaling immediately follows. Inserting the DHm(Tm, N) rela-
tionship into equation (8) yields equation (5).

When fitting DG to the right-hand side of equation (5)
(which I define as x2) with Rees and Robertson (2001,
table 1A), I find r¼ 0.80 (9E-11) with a best-fit line of DG
¼ 0.38� x2� 9.67 kJ/mol (supplementary fig. S2C). r(x2, DG)
is not drastically smaller than the previous r corresponding to
equation (8) (r¼ 0.91). The slight loss in accuracy is accept-
able given that DG no longer depends on DHm and depends
on N, a protein property that is known proteome-wide.

In principle, I could omit the first approximation alto-
gether, and plug in N-dependent values directly into equation
(4). When doing so, the corresponding correlation with DG is
similar to that seen for r(x2, DG), r¼ 0.82 (3E-11). This makes
sense because equation (5) only has one protein-specific value
that is approximated by N, whereas equation (4) has two. The
inaccuracy from employing N as a proxy for both DHm and
DCp terms in equation (4) is similar to employing N as a proxy
for just DHm in equation (5) after approximating equation
(4). Besides depending less on the assumption that thermo-
dynamic properties making up DG scale with N, I keep the
first approximation because the resulting equation relating
DG and Tm is simpler and has the added benefit of being
analytically invertible, that is, I can write Tm as a function of
DG (supplementary eq. S3). Results discussed are presented
only for equation (5), however they remain unaltered if

I employ N as a proxy for both DHm and DCp terms in
equation (4).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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