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To the Editor: How the many players of the genome and epigenome

orchestrate transcriptional regulation, as well as other molecular

mechanisms related to development or diseases, remains an unre-

solved question in biology. Most sequencing-based genomic or epi-

genomic assays generate high-resolution data suitable to be

represented as 1D curves over the genome (e.g. ChIP-seq) or 2D

heatmaps over 3D space (e.g. chromosome conformation capture

techniques such as Hi-C). Functional data analysis (FDA), a reper-

toire of statistical methods that considers data as evaluations of

curves (mathematical functions) over a discrete grid, plays a critical

role in exploiting the output of Next generation sequencing (NGS)

assays, and allows sophisticated biological interpretation of shape

information. However, despite its potential, FDA has not received

much attention compared to machine learning in general, or deep

learning—which has become increasingly popular. Obstacles to the

spread of FDA in computational biology include, but are not limited

to, the paucity of user-friendly software specifically designed for

omics applications, the absence of functional analogues to some of

the classical multivariate techniques, and the complexities of inter-

preting curvature and derivatives which are keys in FDA but not

even defined in multivariate analysis.

NGS data are subject to several problems such as missing values,

correlations among neighbouring genomic positions, and non-trivial

technology-specific noise sources. Many standard statistical meth-

ods, as well as some machine learning methods, rely on rather sim-

plistic specifications of correlations and noise—and are not robust if

these specifications are not accurate. FDA is an appealing option for

overcoming these problems. Correlations among neighbouring

measurements can in fact be advantageous in FDA—which smooths

such measurements into curves, effectively reducing the dimension

of the data. Importantly, the dimension of smooth data representa-

tions can be controlled selecting the type and number of basis func-

tions employed, while roughness penalties (e.g. on the total

curvature of a function) allow continuous control over smoothness.

By representing the data as functions, FDA also alleviates the impact

of non-trivial noise and ‘fills in’ missing values, improving statistical

power. In addition to improving signal-to-noise ratios, and hence

power, smoothing can unveil information and biological insights

missed by multivariate techniques, as long as the assumption of

smoothing is reasonable (Froslie et al., 2013).

FDA has begun to appear in the computational biology/bioinfor-

matics and ‘omics’ literature during the last 5 years. We identified

three main research directions in which leveraging shape informa-

tion already proved to be effective. These directions could, and in

our opinion should, be expanded to encompass a wider range of

techniques and applications of interest to the research community.

1. Shapes of the genomic landscape. Recent techniques profile

a very large number of features at increasing levels of reso-

lution, generating a multifaceted, fine-detail map of the gen-

omic landscape which includes, e.g. interspersed repeat

densities, replication timing, recombination rates, mutation

rates, etc. Using the shapes of the genomic landscape

increases power and accuracy in contrasting genomic regions

and loci of interest (Cremona et al., 2018). For instance, the
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flanks of old and young endogenous retroviruses can be con-

trasted against background regions to investigate their inte-

gration and fixation preferences in mammalian genomes

(Campos-Sanchez et al., 2016). Contrasting shapes is also

useful in a variety of other applications, e.g. to study how

polymerization speed and error rates are affected by non-B

DNA (Guiblet et al., 2018) (Fig. 1A).

2. Shapes of the epigenome. NGS techniques produce nucleotide

or quasi-nucleotide resolution signals for the epigenome. Shape

information is useful at every step of epigenomic data analysis,

from the pre-processing of sequenced reads to the study of cel-

lular processes and functions. It has been used to improve bind-

ing site detection (Mendoza-Parra et al., 2013; Wu and Ji,

2014), as well as to compare ChIP-seq profiles between differ-

ent replicates, conditions and/or times (Madrigal, 2017;

Schweikert et al., 2013). Techniques have been developed for

clustering ChIP-seq peaks characterized by different shapes

(Cremona et al., 2015; Parodi et al., 2017), and for exploiting

shape variation and co-variation in the identification of histone

mark effects in gene regulation, and between histone modifica-

tions and DNA binding proteins (Madrigal, 2017; Madrigal

and Krajewski, 2015). Additional work is needed to analyze

sparse data in single-cell epigenomics (Kelsey et al., 2017)

(Fig. 1B), incorporate shape in the analysis of chromatin spatial

organization, and integrate 1D epigenomic profiles with 3D

information.

3. Shapes of phenotypes. Information in shapes can be leveraged in

traditional longitudinal and biometric studies, such as growth

curves and gene expression trajectories. Complex phenotypes

represented as functional outcomes, in combination with DNA

sequencing data, can dramatically increase power and accuracy

for detecting relevant variants in genome-wide association

studies (Reimherr and Nicolae, 2014) and for associating

microbiota composition to child weight gain (Craig et al.,

2018). Among the most recent developments in this field are

techniques for feature selection in models where a functional

outcome is regressed against a very large number of potential

predictors (e.g. single nucleotide polymorphisms) (Foygel-

Barber et al., 2017). These techniques can be generalized for

contemporary biomedical imaging, representing quantitative

complex phenotypes as functions; Examples include 2D or 3D

imaging of tissues, organs or body parts (Huang et al., 2017;

Kang et al., 2017) (Fig. 1C).

We also believe that the scope of FDA could be broadened to other

areas of computational biology, with methods that target specifical-

ly data generated by novel assay techniques. The Human Cell Atlas

will soon release millions (perhaps a billion) of single-cell datasets

(Rozenblatt-Rosen et al., 2017). Based on recent contributions

(Clark et al., 2018) (Fig. 1B) we anticipate that, because of severe

sparsity, FDA will be even more useful in single-cell epitranscrip-

tomics or epigenomics than it has been to date.

FDA models could also be used to study dynamics in time

series for NGS data, including transcriptomic measures such as

RNA velocity—the time derivative of RNA abundance (La

Manno et al., 2018). With the popularization of chromatin con-

formation capture and data becoming more spatio-temporal in

nature, investigating variation in the shape of DNA, spatial

smoothing, building predictive models and integrating derivative

information into these models are challenges that could be

addressed using FDA. Development of informative summary sta-

tistics, exploratory techniques and rigorous inferential methods

will all be necessary.

Finally, representing the evolution of shapes over time can be

critically important also for phenotypes and genomic landscape (e.g.

temporal change in the 3D shape of an imaged tumour mass; tem-

poral change in the landscape of mutations, transcription factor

binding, methylation and gene expression, of a cancer genome).

FDA methods able to include temporal evolution in the analysis will

be extremely useful in this context.

For all these reasons, we believe there is ample room for FDA in

computational biology. We hope that an increasing number of

researchers in the community will start using and developing FDA

methods in many different settings, generating novel biological insights.

In the Supplementary Material, we provide a list of online resources,

books and software as a starting point for those interested in FDA.
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