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Abstract

Brain atlases enable the mapping of labeled cells and newly defined projections from different 

brains onto a standard coordinate system. We address two fundamental issues in the construction 

and use of atlases. First, expert neuroanatomists ascertain the fine-scale structure of brain tissue, 

the ”texture” formed by cell structure and organization, to define cytoarchitectural borders. Can 

this approach be automated, so that a machine can locate landmark structures and automatically 

align new brains to a reference atlas? We achieve this goal with a robust procedure that is driven 

by machine learning and bootstrapped from brains annotated by experts. Second, can one 

construct a brain atlas that is active, i.e., augmented and improved with each use? We show that 

the alignment of new brains to a reference atlas can continuously refine the coordinate system and 

associated variance. We apply this approach to the adult murine brainstem and achieve a precise 

alignment of projections in cytoarchitecturally ill-defined regions across brains from different 

animals.

Introduction

Brain atlases provide a visual depository for the everexpanding studies of neuron wiring and 

function [1,2]. The navigability of any atlas depends on demarcation of regional boundaries, 

or landmarks. The modern standard for brain atlas construction is to utilize sets of 

landmarks, shared across brains, to define a reference atlas [3–5] to register data from new 

subject brains to a common standard. The use of landmarks also provides a framework for 

triangulation, so that newly discovered functional brain subregions can be incorporated into 

the atlas [6]. Traditionally, landmark recognition has depended on skilled assessment of 
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brain cytoarchitecture by expert anatomists [7–9]. The primary data typically takes the form 

of Nissl stained histological sections that capture the texture of neural tissue [10], including 

such high resolution features as cell shape, size, orientation and packing density. These 

cytoarchitectural features have enabled discrimination of brain regions with sharp borders, 

such as many cranial nerve motor nuclei and cortical lamina, as well as discrimination of 

small nuclei with more subtle boundaries such as the nucleus ambiguus.

Landmark assignment in magnetic resonant imaging (MRI) reference brain atlases is 

necessarily based on low resolution images where boundaries are determined from large 

shifts in grey levels; more recent experimental brain atlases have adopted these standards in 

part to retain a compatible modality with a three-dimensional reference space dictated by 

magnetic resonant imaging (MRI) of a representative experimental brain [5]. This approach 

has long been known to necessarily limit the types of landmarks that can be used for 

navigation, as regions with subtle boundaries are not recognized; in part for these reasons 

numerous small brainstem structures in mice have not been absorbed into a standardized 

reference atlas. Additionally, the use of single fixed reference atlases does not incorporate 

the expected variance in brain regions of subject mice brains, even though it is known that 

brains of inbred mice can differ in the structural characteristics of neurons within a common 

region [11]. Thus the questions arises as to how to align structures across brains as well as 

how to evaluate the goodness-of-fit of the alignment across brains. In particular, the need to 

quantify and preserve the variation among brains calls for a probabilistic approach during 

the addition of new data into an updatable reference atlas. With this goal, an idealized atlas 

is a dynamic document that incorporates a diversity of landmark structures and also 

progressively improves in accuracy and resolution through the addition of new brains. This 

dynamic document is termed an active atlas.

Active atlases have provided a fruitful approach to collate MRI studies of high contrast brain 

structures in patient populations. However, the ability to chart ill-defined brain regions will 

demand access to the higher-resolution spatial information, such as found from optical 

imaging of brains [12–14]. Toward this goal, we demonstrate a software system that 

functions as an active atlas and is based on automated detection of brain textures. A 

supervised approach is adopted to create texture classifiers that will be used to identify 

landmarks and, further, to bootstrap a reference atlas. The texture classifiers are initialized 

by human expert annotators. The automated alignment process of a new brain with the 

reference atlas is based on machinegenerated detection of multiple landmarks in the new 

brain using the texture classifiers (Figure 1a–d). Final verification is performed by a human. 

Thus the software system serves to align new brains to a standard coordinate system that is 

derived from the reference atlas. The new brain then is used to update and improve the 

reference atlas. This process amortizes the time of expert anatomists. While experts may 

spend a relatively long time annotating each brain, the verification step will take only a small 

fraction of that time. Our end product also provides a means to use landmarks to triangulate 

regions with subtle ill-defined borders and then coalign such regions across separate brains 

with both high precision and known uncertainty (Figure 1e).

We apply our approach to the murine brainstem, i.e., the hindbrain and midbrain, across a 

cohort of mice. The brainstem is a challenging region to map for several reasons. Its 
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mechanical floppiness complicates brain positioning for imaging and sectioning. While its 

cytoarchitecture is marked by well -delineated cranial nerve nuclei, it is also home to 

premotor neurons populations in subregions with at best, subtle borders [15]. These 

premotor regions, mainly in the extensive reticular formation of the brainstem, are of crucial 

importance in regulation of brainstem output functions that range from breathing to orofacial 

sensorimotor behaviors [16]. Thus, issues of automation aside, the failure to form a reliable 

atlas of this region has stifled comparisons of studies across brains and from different 

laboratories. We emphasize that our approach is general. It may be applied across the entire 

brain. It should be useful for all brains in nervous systems that are not wholly characterized 

by identified enumerated neurons [17–20].

Results

Our focus is on the use of brain texture as a means to identify landmarks for the alignment 

of brains. Toward this goal, we used P56, male C57BL/6 mice. Fixed cryoprotected brains 

were sectioned in a sagittal plane on a cryostat and the quality of our histological sections 

was maximized through the use of an improved Cryojane™ tape-transfer method [21]. This 

procedure uses a supporting film during cutting and mounting to minimize physical 

distortion of thin sections and facilitates reliable collection of all serial sections across an 

entire brain of a mouse. We stained the Nissl substance, i.e., ribosomal and message RNA, 

which highlights neural texture across the brain.

Initialization of an active atlas

Expert anatomists were asked to bilaterally mark boundaries for a set of landmark structures 

(Figure 2a,b; Supplemental Figure 7). The processes is aided by a display of the annotation 

that resections the data in the two alternate planes in real-time (Supplemental Figure 8). The 

annotated data serves two purposes. One is to form a training set for our texture-based 

classifiers. The second is to capture the location and approximate shape of each of the 

landmarks and bootstrap the reference atlas. In practice, our experts contoured around each 

of 51 landmarks across three brains (Figure 2c,d); these correspond to 28 different structures 

(Table 1). Note that the right and left sides of five structures that border the midline, e.g., 

hypoglossal nucleus (12N), inferior (IC) and superior (SC) colliculus, area postrema (AP), 

and and reticulotegmental nucleus (RtTg), were fused into a single landmarks.

Training structure-specific texture classifiers—We divide the image of each brain 

section into overlapping square patches that are sufficiently large to contain many cells but 

small enough so that each landmark is tiled by many patches. For concreteness, we choose 

the training patches to be 100 μm in edge with a pitch of 30 μm. Patches within an annotated 

landmark are labeled positive, i.e., ym = +1 for the m-th patch, while patches within a 

boundary region that surrounds the landmark are labeled negative, i.e., ym = −1 (Figure 2e). 

The textural information of each image patch is encoded as a set of numbers, called a feature 
vector and denoted by xm. We used a convolutional neural network (CNN) with fixed 

weights, i.e., the blue channel only of the Inception-BN [22] that was trained on natural 

scenes, to perform the encoding. The rich internal filters appear to effectively represent 
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histological textures in terms of a 1024-dimensional vector that defines xm, so that each 

patch is represented by the pair (xm, ym).

Supervised learning is used to create the texture-based classifiers, one for each landmark and 

denoted flandmark. The classifiers enable us to compute, for a given feature vector x, the 

conditional probability that the corresponding patch is inside any one of the landmarks 

(Figure 2f). We use logistic regression, a generalized linear model, as the functional form of 

our classifier. The logistic function for a given landmark is defined by a weight vector, 

wlandmark and an offset θlandmark. Formally, the logistic function is used to compute the 

conditional probability of the label ym for each landmark given the feature vector xm for 

each patch, i.e.,

f landmark xm = 1

1 + e
− ymxm ⋅ wlandmark − θlandmark (1)

and is a number between 0 and 1. The weight vectors and offsets are found by maximizing 

the likelihood of the training data. The complete set of classifiers, parameterized by 

wlandmarks and θlandmark, enable us to to score a new brain for the probability, flandmark(xn), 

that the n-th patch belongs to each of the landmarks. Operationally, the classifiers represent 

the knowledge of experts that has been captured through machine learning, so that expertise 

outlives the expert.

We assessed the performance of each classifier flandmark in correctly predicting a landmark 

by a single number, the area under the receiver operator characteristic (ROC) curve. We used 

1,000 positive and 1,000 negative patches from each of the annotated brains, chosen at 

random and split as training and testing sets. The area under the ROC curves ranged from 

0.85 to 0.98 (Supplemental Figure 9) with a means of 0.92, compared to a random value of 

0.50 and a maximum of 1.00.

Bootstrapping the reference atlas—The contours for each of the landmarks are 

interpolated to form three-dimensional volumetric annotations that jointly constitute a 

labeled volume for each annotated brain. The labeled volumes of all annotated brains are co-

aligned and the mean and covariance of the coordinates of the centroid for each landmark 

are computed (Supplemental Figure 10a,b) We further derive a probabilistic volume for each 

landmark, denoted plandmark, to represent the average shape by registering all three-

dimensional annotations of the same landmark across all of the brains (Supplemental Figure 

10c–f). We label the regions that are included in the annotations of all brains by plandmark = 

1, while regions that are incorporated by only a fraction of the annotations have plandmark < 
1. The combination of the average shapes and mean centroids of all the landmarks gives rise 

to the initial probabilistic reference atlas (Figure 2c,d; Supplementary Figure 10).

Automated alignment of a new brain with reference atlas

We use the trained classifiers and the reference atlas (Figure 2c,d) to align a new serially 

sectioned brain with the reference atlas. We consider first the use of additional thionin 
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counterstained sections to test the accuracy and reproducibility of our approach (Figures 1a 

and 3a).

Probability maps for each landmark—First, the CNN is used to generate a texture 

feature vector for each of the landmarks across every patch in the brain (Figure 3b). We then 

apply the trained classifiers to the feature vectors and generate a separate three-dimensional 

map for each landmark. These maps report the probability that a given landmark is present at 

each voxel in the map based only on texture rather than location. The maps for three of the 

51 landmarks are illustrated in Figure 3c, where the value of each voxel lies between 0 and 

1.

Alignment of reference atlas—We first align the geometrical center of a bounding box 

for the brainstem of the reference atlas with that of the new brain. This provides a reasonable 

initial offset for subsequent texture-based alignments. We then simultaneously align the 

reference atlas to the probability maps for all of the landmarks in the new brain by means of 

a global affine alignment (Equation 3) (Figure 3d). This transform includes magnification, 

translation, rotation and shear of the reference atlas; shear corrects for a non-vertical cutting 

angle. The global alignment is expected to result in a good overlap between the landmarks in 

the reference atlas and that in the new brain under the constraint that the relative 

configuration of the landmarks is fixed (Figure 3d). Anatomical information is imposed 

since the relative position of all landmarks is stable and constrains the probability maps to 

the correct landmark as false positive results are ignored (Figure 3d).

We next compute a set of individual rigid transforms (Equation 4) that capture the 

independent variation of each landmark in the new brain (Figure 3e,f). The final fit of each 

landmark may be verified, and corrected, by human intervention. Figure 3g,h shows the final 

fit of the reference atlas to the new brain, superimposed on the Nissl stained sections.

The global alignment was formulated to maximize the spatial correlation between the 

reference atlas and the texture scores for all landmarks at coinciding voxels (Equation 3), 

while the local alignment maximizes the correlation between the reference atlas and the 

texture scores for each landmark (Equation 4). To make the local alignment of individual 

landmarks more robust, the region surrounding the structure was considered in addition to 

the structure itself. Further, the covariances in centroid positionthat are stored in the 

reference atlas place landmark-specific constraints on deviations from the nominal position 

along each axis.

Accuracy and confidence of the alignment of a new brain to the atlas—
Accurate quantification of the position of a landmark is critical for comparisons across 

brains. We evaluated the automatic alignment of new brains relative to the reference atlas in 

four ways. The two-dimensional delineations are reconstructed in three dimensions. First, 

the accuracy of the annotation on the initially annotated brains was assessed by measuring 

the overlap between the boundaries drawn by the experts and those assigned by our 

procedure. A simple metric is the fractional overlap, given by the Jaccard index (Equation 

6), of the three-dimensional landmarks in new brains with those in the aligned atlas. As an 

average over 153 landmarks, we achieved a median Jaccard index of 0.61 after the individual 
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alignments (Equation 4) compared to an index of 0.45 after just the global alignment 

(Equation 3) (Supplementary Figure 11a).

The second assessment made use of labeling specific landmarks by cell-type specific 

expression of fluorescent protein. Given the prominence of motor nuclei in the brainstem 

and the general tight clustering of somata within motor nuclei, we made use of transgenic 

mice (3 animals) that expressed tdTomato fluorescent protein (FP) that was driven by the 

promotor for choline acetyltransferase (ChAT) (‘Raw’ in Figure 4a,b). Motor nuclei that 

expressed tdTomato FP were manually delineated in images of individual sections using our 

annotation tool (Supplemental Figure 8).

The reference atlas was formed from thionin rather than Neurotrace blue labeled brains. Are 

textured derived from these two stains equivalent? Images based on Neurotrace blue staining 

can be mapped onto those from thionin staining through matching of intensities 

(Supplementary Figure 13). This permits the thionin-derived classifiers to be used for 

detection of landmarks with Neurotrace blue images. Yet greater detection accuracy for 

landmarks in the Neurotrace-stained brains was achieved by fitting classifiers directly to the 

texture visualized by Neurotrace labeling. This process uses our annotation tool 

(Supplemental Figure 8) to fit the reference atlas derived from thionin training brains (Figure 

2a–d) to a Neurotrace stained brain. The resulting annotations on the Neurotrace images 

were used to train a new set of classifiers optimized to Neurotrace textures. Note that this 

procedure to extend the reference atlas is fast, as one does not manually annotate from 

scratch, and can be used to accommodate any Nissl-like stained brains.

We compared the ChAT delineation with the aligned reference atlas structures, in terms of 

centroid error and volume overlap. As an average over 15 motor nuclei, we achieved a 

median Jaccard index of 0.60 after the individual structure alignment (Supplementary Figure 

14a). The error in centroid location is typically about 50 μm, which is a small fraction of the 

size of a motor nucleus. The difference was systematically larger for the case of the X-th 

motor nucleus. Interestingly, this difference was traced to a bias in the original annotations 

that excluded neurons at the rostral pole of the tenth motor nucleus (10N) (‘Processed’ in 

Figure 4b); this can be used to refine the reference atlas.

For the third assessment, human verification, we asked two experts to review the 

automatically generated boundaries in nine new, unannotated brains and manually corrected 

erroneous boundaries Like the local alignment, the experts were only allowed to translate or 

rotate a given landmark in three-dimensions. We found that in all cases these operations 

were sufficient to transform unacceptable annotations into reasonable ones. An average of 

five corrections, out of 51 landmarks, was made on each of nine brains for a 10% false 

positive rate (Supplementary Figure 12). Of note, less than ten minutes was required for a 

human to correct the annotations for an entire brain using our annotation tool (Supplemental 

Figure 8). This is approximately 200-times less than the 30 hours for the initial annotation.

The fourth assessment quantified the confidence of the calculated alignment between the 

centroids of landmarks in the reference atlas and a new brain. Our procedure was based on 

the amplitude and width of estimated maxima the global (Equation 3) and local (Equation 4) 
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alignment objective functions. We quantify the significance of the fit in terms of a z-score, 

which relates the maximum of these functions relative to their mean in units of standard 

deviation. For the global alignment of nine new brains, we achieve a median z-score of 2.2 

across all landmarks for adjustments in a neighborhood of 50 μm in radius. For local 

alignments, 90 % of 612 alignments achieved a z-score higher than 1.0, with a median z-

score of 1.5 (Supplementary Figure 15a,b). In a companion measurement, the width of the 

peak of the alignment function was characterized by the Hessian matrix of the z-scores 

computed at the peak of the distribution. Within the coordinate frame for each landmark, this 

leads to lower and upper bounds of 66 μm and 193 μm until the z-scores drop to zero, i.e., 

chance (Supplementary Figure 15c–f).

Update atlas and compute variability in alignment across all brains—We now 

turn to the variability of the position of landmarks across brains. This measure will consist of 

the natural biological variability as well as any residual variability from errors in our 

annotation and our automated procedures. Thus the variability serves as an upper bound on 

biological variability as well as on our ability to gauge significance in the overlap of labels 

across brains.

We updated the centroids of the reference atlas with each new brain. We quantified the 

variability with respect to the updated centroid of each landmark across twelve new brains. 

This provides a measure of the deviation of every landmark from the sample means (Figure 

4d). We observe that some landmark structures are non-isotropic in their variability. For 

example, the variability of spinal trigeminal nucleus caudalis (Sp5C) is predominantly along 

the medial-lateral axis, while that of the substantia nigra reticulata (SNr) is primarily along 

the dorsal-ventral axis (Figure 4d).

As a population over all landmarks and all three axes, the sample-averaged root-mean-

square standard deviation is 160 ±40 μm (Figure 4c, Supplemental Figure 16a). This is 

greater than the typical error in estimating centroids, which is based on comparing the 

aligned reference atlas against the ground truth, i.e., motonuclei deduced from ChAT (Figure 

4a–c) and annotations by experts on the basis of thionin cytoarchitecture (Figure 4c). This 

suggests that the sample-averaged standard deviation is dominated by biological variability. 

Of particular note, there was no systematic increase in variability along the rostral-caudal 

axis (Figure 4e), as might occur from poor brain-to-brain fixation. Other axes showed a 

similar lack of systematic behavior (Supplemental Figure 16b–d).

Deformation fields

The alignments between the landmarks in the reference atlas and those in a new brain are 

interpolated to generate a global deformation field (Equation 5). This yields a set of 

deformation vectors for every location in the tissue sections of the new brain that maps to a 

location in the atlas (Supplemental Figure 18). This is used to map markers located between 

landmarks and provides the means to compare the locations of markers, e.g., labeled cells 

and their projections, across different brains.
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Alignment of neuronal projections

As a first example of the utility of automated alignment, we identify the three-dimensional 

spatial distribution of orofacial premotor neurons labeled with a retrograde viral tracer. 

Pseudorabies virus that expresses green FP was injected into the masseter muscle, which is 

responsible for jaw closure. The animal was sacrificed and perfused 86-hours after the 

injection; at this time all pre-motor neurons and some pre2-motor are expected to be labeled 

[23]. We observe extensive labeling of presynaptic populations throughout the brainstem and 

hypothalamus (Figure 5ai–aiii), yet labeling of trigeminal motor (5N) neurons only on the 

ipsilateral side, as expected (Figure 5aiv). Known premotor populations were labeled in 

diverse primary sensory nuclei, e.g., mesencephalic and spinal trigeminal nuclei, the nucleus 

of the solitary tract, the medial vestibular nucleus, the parvocellular, intermediate, 

gigantocellular, lateral paragigantocellular regions of the reticular formation, the pontine 

nucleus and the superior colliculus. These observations replicate known connectivity [24–

28]. Yet they further provide the first threedimensional map of trigeminal premotor 

locations. Additional label in presumed pre2-motor structures include the central amygdala, 

the zona incerta, the hypothalamus, and the periaqueductal grey.

As a second example, we assessed the utility of our texture-based alignment for 

concatenating labeled neurons across multiple brains onto the same coordinate system. We 

injected retrograde tracers from motorneurons into either the jaw region of the trigeminal 

motor nucleus (5N) or the he intrinsic vibrissa protractor muscle region of the facial motor 

nucleus (7N) in separate animals. Specifically, EnvA-pseudotyped G-coat-protein deleted 

rabies [29] that coded green FP was injected into the respective motonucleus of transgenic 

mice that expressed the TVA receptor on motoneurons [30]. The brains were processed and 

countered stained with Neurotrace blue. Two-channel fluorescent detection was used, with 

blue light for landmark detection and alignment to the reference atlas with our texturebased 

classifiers, and green light for detecting the viral label. The sagittal three-dimensional 

projection illustrates the dispersion and heterogeneity of these populations (Figure 5c.ii); red 

points are premotor neurons of 5N and green points are premotor neurons of the facial motor 

nucleus (7N). A close-up of the data reveals a subset of two populations with highly 

overlapped density in the intermediate reticular formation (IRt) and additional overlap in the 

parvocellular reticular formation (PCRt).(Figure 5c.iii insert). The accurate alignment of 

fluorescent tracing data illustrates the power of texture-based classifiers, i.e., approximately 

90 μm root-mean-square deviation (Figure 5) compared with an approximately 500 μm 

overlap (Figure 5c.iii insert). Thus texture-based discrimination provides a measure of 

confidence in the overlap relative to the brain-tobrain variation in landmark positions.

Discussion

We described a method for aligning brains to an atlas, the central step in mapping, that is 

based on determining and matching the high-resolution statistics between images (Figure 1). 

Our central advance is that we use the full spatial resolution of the data set to determine the 

fine-scale texture of all areas in the brain (Figure 2e). We combine this information with the 

current anatomical atlas. This allows us to determine an accurate alignment of landmarks in 

the new brain with those in the atlas (Figure 3). We then use the positions of the landmarks 
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in the new brain to update the mean and variance of all landmarks in the reference atlas 

(Figure 4). Our approach enables the robust integration of experimental data from different 

brains in a standard coordinate system (Figure 5). The integration of non-landmark regions, 

such as newly discovered populations of functionally labeled neurons, occurs through a 

process of triangulation. Labeled cell populations are mapped using a calculated 

deformation field. This links labeled cell position to landmarks in the parent brain which 

then are collectively aligned in relation to the reference atlas landmarks.

Atlases based on texture versus intensity variations

We automate the detection of brain texture at full resolution in single brains and only then 

combine results from different brains. This is opposed to the adoption of approaches that 

average variations in section intensity across brains sections in order to define and align 

landmarks across different brains. Intensity based atlas building is a necessity for MRI brain 

atlases as slice images are represented at low resolution in grey-levels [31–35]. Intensity-

based low resolution detection methods have also been applied to histological data in part to 

permit co-registration of intensities of histological brain sections to homologous MR imaged 

brain slices [36,37]. More recently, intensity based detection schemes have been applied to 

optical sections [38,39] and discrimination of landmark borders is improved by averaging 

intensity maps across three-dimensional brain reconstructions [5, 40]. An inherent limitation 

of intensitybased brain registration pipelines is the requirement for additional routines to 

connect cellular resolution data to intensity- based voxels, as these exceed the typical size of 

neurons. Recognition of this issue is evidenced by development of software applications to 

co-register MRI and histological data at cellular resolution [41,42]. An advantage of texture 

based registration routines is the compatibility of the aligned landmark positioning with cell-

based data sets.

We argue that alignment with images that are smoothed by filtering, or by averaging data 

from multiple brains, will lead to a loss of information about the boundaries of individual 

landmarks. To illustrate this point, we show the full resolution Nissl stain and convert it to a 

smoothed image that blurs the Nissl stained texture to mimic a background intensity image 

that is not Nissl stained, such as those that feed into the Allen Brain Institute atlas [5]. We 

focus on the oculomotor (3N) and the hypoglossal (12N) motonuclei (Figure 6a–c). 

Motonuclei are some of the most discernible landmarks in the brainstem. Yet the boundary 

for the oculomotor nucleus is more difficult to quantify after smoothing (Figure 6b,d,f) 

while that for the hypoglossal nucleus is clearly obliterated (Figure 6c,e,g). This 

demonstrates that smoothing even with texture present sufficiently degrades image so as to 

make boundary detection of low contrast structures difficult. It reinforces our choice of 

annotating individual brains and then combining the result for formal statistics, an approach 

that is a necessity when combining brains with different markers. Lastly, prior methods that 

rely on clusters of neighboring pixels, so called superpixels, of Nissl cytoarchitecture 

similarly fail to capture local patterns, including cell shape and arrangement [43].

Another departure from past approaches is that we use multiple expert anatomists to 

bootstraps the atlas (Figure 2c). Moreover, our approach gains in accuracy from the 

continued involvement of expert anatomists in a number of ways. First, additional annotation 
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of new landmarks improves and expands the reference atlas. Second, verification of the 

alignment of individual landmarks improves the accuracy of the centroids and the accuracy 

of the variation in that centroid (Figure 4c,d). The system maintains the location of each 

landmark in each brain, the expansion and shear parameters in the global transformation and 

relative translation in the local transformation. We use these parameters to update the mean 

and variance of the centroids of each landmark.(Figure 4c,e). With a sufficient number of 

new annotations (Figures 1 and 3), the shape of each landmark could be updated as well. 

Lastly, the incorporation of labels to specific markers, e.g, proteins or message RNA, of cell 

phenotype will increase the accuracy of the cytoarchitecturally based positioning of selected 

landmarks (Figure 5b), as well as annotates the cellular composition of those landmarks.

Our system does not require perfect data. Although our data underwent good quality control, 

there remains considerable variability between different images and different parts of an 

image in terms of brightness, stain quality and focus quality. We train the texture classifiers 

using such data, which makes the detection robust to normal variations in image conditions. 

Thus the alignment proceeds well despite the use of classifiers for some landmarks that may 

be suboptimal, with many false positives (Figure 3c). The confident detection of the 

characteristic textures of many structures allows specimen-specific deviations from the 

current reference atlas to be discovered and contributes to an accurate estimate of the 

variability for each landmark. Simply, the synergy between the anatomical information of 

landmark location and textural information present in each landmark is a key strength of the 

active atlas.

Automatic registration of problematic landmarks can fail with our system. One such 

circumstance is when a landmark is relocated to a nearby region with similar texture. For 

example, the right occular motor nucleus (3N) may be incorrectly aligned to the left occular 

motor nucleus, which is immediately adjacent to it. Registration can fail when a structure is 

incompletely represented in the images. This could occur for structures that are represented 

in very few sections, such as the abducens motor nucleus (6N), which is as little 

approximately 50 μm in extent compared with the 20 μm section thickness. Lastly, 

registration can fail when the textures are diffuse. For example, trigeminal subregions Sp5I 

and Sp5O are difficult to locate because the boundaries between the subregions are not 

clearly defined. This inherent difficulty is reflected in their relatively low classification 

accuracy compared to other structures. In practice, registration of individual landmarks was 

rare and is corrected by human verification (Figures 1 and 3).

Amortization of labor

The system we describe is effective in amortizing the time spent by experimentalists. 

Creation of the initial reference atlas of the landmarks involves a heavy investment of time 

that makes use of multiple expert neuroanatomists and benefits from a diversity annotations 

and annotators. The payoff from this investment is that the time spent for verification of the 

position of landmarks in subsequent brains is relatively modest.

There are three contributions to the amortization of labor. First, the alignment of new brains 

with the atlas is automatic except for a verification step (Table 2). Second, verification 

involves moving three-dimensional landmarks through the reconstructed volume of all serial 
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sections of a new brain. Lastly, the verification steps may be accomplished by less 

experienced anatomists that those needed for the initial annotation.

In the current version of our system, verification by an astute user takes ≃ 5 minutes across 

the 51 landmarks in our current brainstem atlas. Typically five of the landmarks required a 

correction, which takes ≃ 1 minute per landmark, or about 10 minutes total after all 

verification steps. This time must be compared to ≃ the 10 minutes per landmark, in the 

initial annotations or nearly ten hours per initial brain. While human verification of the 

automatic alignment is currently the rate-limiting step, the net throughput is now 60-times 

greater compared to the initial annotation of a brain.

Special challenges of the brainstem

The brainstem contains twelve discrete, well delineated cranial nerve nuclei that serve as 

part of our set of landmarks. However, unlike forebrain areas with their laminar structure, 

there is no apparent long-range order to the organization of neurons in the brainstem. Of 

particular note, the reticular formations are the site of premotor and pre2motor connections 

that transform sensory input and descending corticobulbar signals into motor actions and 

behaviors. However, such reticular areas have few clear cytological boundaries that relate 

function to anatomical structure. Our automated procedure provides a means to localize 

labeled cells and projections based on their triangulation to landmarks that respects the 

underlying variability from brain-to-brain (Figure 5).

Extensions

Our method is applicable to the entire vertebrate brain and to the spinal cord, where the issue 

of illdefined boundaries is especially acute in the cord. More generally, alignment based on 

texture can provide the underlying computational engine for mature annotation systems and 

data bases [3,5,11,31,38,40,44–50]. Refinements to particular steps in the method are readily 

implemented, such as the use of diffeomorphic metric mapping to prevent tears in the 

deformation field for large deformations [51]. A second extension is to move cytological 

imaging beyond the necessity for cryostat sections. The challenge is to achieve Nissl-

labeling in bulk tissue; nuclear stains such as DAPI and labels such as NeuN fail to report 

texture [52]. In principle, Nissl-labeling of the whole brain may be achieved by infusing a 

fluorescent small molecule that stains Nissl bodies, such as methylene blue or cresyl violet, 

or by constructing a transgenic mouse that mimics this pattern of staining, such as by 

fluorescently labeled ribosomes. Natural fluorescence, presumably from molecules in the 

respiratory chain, appears to be be too low in resolution for texturediscrimination [53], 

although new label-free methods show promise [54]. The brains may then be optically 

sectioned through a depth of hundreds of micrometers and then resurfaced by mechanical 

[53] or optical [55] removal of tissue. While improvements in tissue preparation, staining, 

and microscopy will always improve the practice of mapping, the current work provides a 

demonstrated means for automated, high resolution alignment.
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Methods

Subjects and sample preparation

The dataset for building the atlas consists of 12 brains of postnatal day 56 (P56) male 

C57BL/6J mice in which all sections were stained with thionin (Supplemental Table 1). We 

used an additional eight brains of P56 male C57BL/6J mice (JAX no. 000664), three solely 

for alternate sections of thionin and Neurotrace blue staining, two for injection of the 152 

Bartha strain of pseudorabies at a liter of 1×109 particles/mL with Neurotrace blue staining, 

and three for additional tests. Lastly, we used five brains of ChAT-cre mice (JAX no. 

006410), two crossed with the FLEX-TVA mice (JAX no. 024708) with injections of EnvA-

pseudotyped glycoprotein-deleted rabies-eGFP at a titer of at a liter of 3×107 particles/mL 

(Salk Institute for Biological Studies Virus Core) and three crossed with the Ai14 reporter 

(JAX no. 007914). All procedures were approved by Institutional Animal Care and Use 

Committees at the University of California at San Diego and at Cold Spring Harbor 

Laboratories.

Each brain was cryosectioned in the sagittal plane and mounted using an improved tape-

transfer system [21] to yield a set of high-quality 20 μm-thick sections. The sections were 

stained, cover slipped, and imaged by either a Hamamatsu NanoZoomer at 0.46 μm/pixel 

resolution and a digitation depth of 8 bits of a Zeiss AxioScan Z.1 at 0.35 μm/pixel 

resolution and a digitation depth of 16 bits. For animals injected with pseudorabies only, the 

expression of green FP was enchanced by labeling with anti-GFP (Novos Biologicals 

NB600–303) visualized with an Alexa-594 labeled secondary. To reduce memory usage for 

the current analysis, we used only the portion of the images that contain the brainstem, 

i.e.,~270 sections cropped to ~20,000 by 15,000 pixels. Lastly, since the thionin stain is 

largely monochrome, we converted these images to grayscale for subsequent processing.

Alignment of images of the serial sectioned brains

Sections acquired with the tape-transfer system have minimal large-scale distortion. To align 

all sections, we first downsampled the images by a factor of 32; pixel size = 16 μm. We 

aligned the sections by computing 2-dimensional rigid transforms between every pair of 

adjacent sections using Elastix [56] with the mutual information as the optimization criteria 

[57]. The correlation is computed using the grayscale downsampled image for thionin 

sections and using the Neurotrace blue channel for Neurotrace blue images. We then 

composed these transforms to align each section to the largest section in the brain. To assess 

the alignment of sections, we inspected virtual coronal slices of the volume reconstructions 

(Figure 2b). The good quality is demonstrated by the continuity of fine-scale structures such 

as the hippocampus. As rigid transforms were sufficient to align the sections well, we did 

not find the need for using more flexible deformable transforms. Finally, we used the 

transform matrices derived from downsampled images to compute transform matrices that 

correspond to the full resolution images and brought the raw images into alignment.

Human annotation

Annotation of apparent structural boundaries was performed by two neuroanatomists on the 

full resolution sagittal images using an in-house program (Supplementary Figure 8). Manual 
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boundaries were represented by closed polygons and their vertices were recorded. We 

manually annotated every sections. On average it took an annotator one minute to draw one 

boundary and 60 hours to annotate a full brain with the 51 selected structures.

Bootstrapping the reference atlas

We converted each set of annotated images of brain sections to a set of threedimensional 

binary maps that provide the locations of different pre-averaged landmarks, i.e., the 

landmark from an individual unannotated brain. The voxel size of the map is 10 μm. First, 

the manual boundaries within individual sections for each structure were spaced in parallel 

planes according to the section spacing of 20 μm and interpolated to 10 μm resolution to 

achieve isotropic voxels. Next, to distinguish voxels that are inside versus outside of the 

preaveraged landmark, a binary map was formed by filling the voxels in the landmark with a 

value of one and setting the value of all other voxels to zero. These maps were used to 

compute the nominal position and the nominal shape, as an average over each set of 

annotations of a given landmark per hemisphere.

Estimating the center-of-mass of landmarks—First the brains were co-aligned under 

the same coordinate space. The brain with the largest volume was selected as the target and 

the other brains were aligned to it. Alignment of two brains began with aligning the mid-

sagittal planes, which were estimated by fitting to midway points of the centroids of paired 

structures. Under this constraint, we found an affine transform that maximizes the 

correlation between the two sets of binary maps; see Global alignment of a new brain with 

the reference atlas below. Once all brains were aligned, we computed the mean and 

covariance matrix of the coordinates of the center-of-mass over all annotated brains; three in 

the present case. The mean was used as the nominal position of the landmark and the 

covariance matrix was used to regularize its alignment, as described in the section on 

Landmark-specific alignment below.

Estimating nominal shapes—To estimate the nominal shape of a landmark, we aligned 

all instances of the preaveraged landmarks from the individual annotated brains by 

maximizing the overlap of the pre-averaged landmarks using rigid transforms. A 

probabilistic average shape was then created by counting the percentage of pre-averaged 

landmarks that contain each voxel (Supplementary Figure 10c–f). Intuitively, the reference 

atlas is defined by situating the centroid of each shape at its corresponding nominal position.

Training texture classifiers

Patches of grayscale, fullresolution images serve as inputs to the classifiers. We found that a 

size around 100 μm, or 224 by 224 pixels, shows both local brain organization and detailed 

cell shape. Larger patches are also effective (Supplementary Figure 17) but may fail to 

capture small structures. Patches are collected based on a moving window with a pitch of 32 

μm that yielded roughly 40,000 patches per section. Training patches for a certain structure 

are collected from all sections on which this structure was annotated. A patch is labeled 

positive if at least three of the four corners are located inside a boundary of this structure 

(Figure 2e). Similarly, a negative patch must have three corners in the bordering zone of a 

boundary. The use of negative patches that lie in the boundary region, rather than anywhere 
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in the image, improves the fine-scale localization of landmarks without impairing the large-

scale fit of the reference atlas to a new brain.

We used the Inception-bn CNN [22] (implemented by MXNet [58]) to encode the patches. 

This CNN had previously been trained on a subset of ImageNet, a dataset of 21,000 natural 

scene images in 1000 categories, and achieved state-of-the-art classification performance. 

We modified the network to accommodate single-channel input, and used the 1024-

dimensional vector that feeds into the last fully-connected layer as features of the patches.

The texture feature vectors were used to train binary logistic regression classifiers (Equation 

1), which were implemented by Python scikit-learn. Logistic regression assumes a linear 

prediction model and finds a weight vector that maximizes the likelihood of the input data. 

Suppose for a given structure, n training patches are used. We denote the feature vector of 

the i-th patch by xi and its label by yi (Figure 2e). The L2-penalized logistic regression 

minimizes:

∑
i = 1

n
log 1 + e

− yixi ⋅ w − θ
+ α‖w‖2 . (2)

The optimal weight vector w and offset θ define the classifier for this landmark.

Automated landmark detection for new unannotated brains

Given a new brain, we applied the full set of classifiers to a moving window on every 

section. Suppose the feature vector of a patch is x and the weight vector of a particular 

classifier is w, then the predicted probability is y = σ(x·w−θ), where σ(z) = (1+e−z)−1. For 

each classifier, the predicted probabilities for all windows on all sections formed a sparse 

three-dimensional probability map. This was then resampled using cubic interpolation and 

discretized to create a dense map with voxel size of 16 μm on edge (Figure 3c). The 

resolution of these volumes was low so that they can be simultaneously loaded into the 

computer memory as required by the global alignment algorithm.

Global alignment of a new brain with the reference atlas—Alignment of the new 

brain occurs by correlating the three-dimensional texture scores across all landmarks with 

the landmarks in the reference atlas (Figure 3d). Specifically, we computed a three-

dimensional affine transform that maximizes the total correlation between all pairs of texture 

probability maps over the entire domain. The affine transform can be represented jointly by 

a matrix A ∈ ℝ3×3 and a shift vector b ∈ ℝ3. The transform maps a coordinate x in the 

reference atlas to another coordinate Ax + b in the input brain.

Denote by Φ the set of all landmarks. For a particular landmark r, denote the probability 

map of the input brain by Sr and that of the atlas by Qr. Ωr is a subdomain of the reference 

atlas that contains the landmark r, as well as the surrounding area. Global alignment was 

formulated as maximizing the sum:
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Fg(A, b) = ∑
r ∈ Φ

∑
x ∈ Ωr

Sr(Ax + b) Qr(x) − 0.5 (3)

The optimal A and b are found by stochastic gradient ascent. At each iteration the Jacobian 

is computed based on ten thousand randomly sampled voxels from each structure. The 

adaptive gradient algorithm Adagrad was employed to automatically control the learning 

rate. Convergence was usually achieved in less than one hundred iterations.

Landmark-specific alignment—After the global affine transform adjusted the pose of 

the new brain to be roughly the same as that of the reference atlas, we estimated the 

deviations of different landmarks from their nominal positions. In this case we compute a 

rigid transform separately for each landmark. The three-dimensional rigid transform for 

structure r is denoted by G(x;ωr,ur) = R(ωr)x+ur, where ur ∈ ℝ3 is the shift vector and 

R(ωr) ∈ ℝ3×3 is a rotation matrix parametrized by the Euler vector ωr ∈ ℝ3.

For a given structure r, the objective function Fr
l  only involves the probability map 

corresponding to this particular landmark and only concerns the subdomain around it. A 

regularization term is added to penalize large deviations; this term is based on the position 

covariance matrix Cr stored with the reference atlas, so that deviations in different directions 

are penalized differently. We maximize:

Fr
l ur, ωr = ∑

x ∈ Ωr

Sr G x; ωr, ur Qr(x) − 0.5 − βur
TCr

−1ur (4)

where β is the regularization weight; β = 0.01 in our experiments. Optimization used 

gradient ascent on the logarithmic mapping of Lie group SO(3). Convergence was usually 

achieved in 30 iterations.

Deformation field

In order to transform the positions of molecular markers between the landmarks, we 

interpolated the local transforms using the centroids of the landmarks as control points. This 

yielded a deformation field that was defined for every point in the reference atlas 

(Supplemental Figure 18), within and outside all landmarks. For location x, the deformation 

vector is expressed as:

D(x) = 1
Z(x) ∑r

b x − cr G x; ωr, ur (5)

where cr is the centroid of landmark r after alignment, Z(x) = ∑r b x − cr , and b is a radial 

basis function that computes the influence of a control point based on distance. We used b(d) 

= 1/d2.
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Evaluation of alignment accuracy for brains with ground truth evaluation

After computing the global transform and the landmark-specific transform for each 

landmark, we warped each probability map of the reference model to fit the input brain 

using the composition of both transforms. The warped atlas maps can be sliced at the 

position of particular sections and thresholded to generate structure boundaries on the 

original images (Figure 3).

In manually annotated brains, the landmark structures derived from automatic alignment 

were compared to manual annotations, using the isosurface for a probability of p = 0.5. For 

each pair of boundaries for a given structure on the same image, we computed the centroid-

to-centroid distance in three-dimensions and the Jaccard index between the associated three-

dimensions binary masks. The Jaccard index, ranging between 0 and 1, measures the overlap 

of two binary masks A and B, and is defined by:

J(A, B) = A ∩ B
A ∪ B . (6)

Evaluating alignment confidence for brains lacking ground truth evaluation

In addition to accuracy, we evaluated the confidence of each alignment. Specifically, we 

quantified the height and width of the found objective function maximum (Equation 3 and 

4).

Peak height—The value of the maximum was normalized by the mean and standard 

deviation of the values in a neighborhood around the maximum, similar to the computation 

of a z-score. The neighborhood includes translations of ± 50 μm in three directions and 

rotations of ± 15 degrees around three axes.

Peak width—We computed the Hessian matrix of the objective function at the maximum 

with respect to translations in three directions. Based on the eigenvalues and eigenvectors of 

the Hessian, we derived the most certain and the least certain translation directions which 

were not necessarily paraxial. In addition, we computed for each of the directions a 

“margin”, defined as the amount of deviation from the maximum along the given direction 

that the zscore drops to one.

Normalization of fluorescent images

In our dataset, the brightfield thionin-stained sections are imaged at 8-bit and the fluorescent 

Neurotrace blue-stained sections are 16-bit. While thionin staining is fairly uniform, the 

fluorescence intensity for Neurotrace staining has sufficient variability between different 

sections, or different parts of the same section, to confound texture-based learning. We 

mitigated this issue with an adaptive procedure that uses a moving window to high pass filter 

as well as normalize the data. We first choose moderately-sized windows that are evenly 

spaced across image. For each window we compute a linear correction factor to make the 

pixel values have zero mean and unit standard deviation. Correction factors across adjacent 

sections are interpolated to generate a smooth correction surface of factors for each pixel. In 
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detail, 2 mm by 2 mm windows are taken across an image with 1.2 mm even spacing. For 

each window the mean μ and standard deviation σ of the pixel values are computed. Bilinear 

interpolation of each correction factor of all window centers gives the correction factors for 

every pixel. The new intensity value of a pixel x is v′(x) = −μ(x)v(x) + 1/σ(x). This 

normalization step eliminates the variability in fluorescent intensity that is irrelevant to 

texture. It is crucial for the successful learning of texture classifiers and the accurate 

detection on new brain section images.

Training a separate set of classifiers for Neurotrace blue images

We utilized the reference atlas to reduce annotation time. Using the in-house program 

(Supplementary Figure 8), two neuroanatomists manually shifted and rotated the 

probabilistic landmark structures defined in the reference atlas to best fit the images. The 

probability level at which to extract the isosurface was hand-picked for each structure. Once 

the annotations in the form of twodimensional structure boundaries are obtained, the same 

procedure for training thionin detectors was used to train this new set of classifiers specific 

to Neurotrace images. Intensity normalized Neurotrace blue channels are used for training 

and testing.

Data availability

All raw data is publicly available. It may be downloaded, with a listing of files found in 

Supplemental Table 1 and at https://github.com/ActiveBrainAtlas/MouseBrainAtlas/blob/

master/doc/Brain_stack_directories.md, through the Amazon Web Service Storage S3 at the 

bucket named mousebrainatlas-rawdata.

Code availability

All analysis was done following the algorithms detailed in this Methods section. The code is 

written in Python and is available at https://github.com/ActiveBrainAtlas/MouseBrainAtlas 

through the GNU General Public License (GPL). Organization of the code is in a ReadMe.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overarching structure of an automated atlas.
(a,b) Inputs to the system are histological sections from a new brain, in these examples 

horizontal sections of a mouse brain with Nissl staining, exemplified by thionin-stained cells 

for brightfield data (panel a) and Neurotrace blue stained cells for fluorescent data (panel b); 

the brains in panel b are colabeled with red and green tracers, respectively. (c) The reference 

atlas, in this case with only brainstem landmarks. (d) Computational steps involve the 

scoring of features, texture in our case, for the alignment of the new brain with the reference 

atlas. Human experts may then review the alignment and make corrections if necessary to 

the position of specific landmarks. (e) Alignment of two brains to the reference atlas to 

illustrate the power of the automated atlas. One brain contained ΔG-rabies injected into the 

jaw region of the trigeminal motor nucleus, while the other contained ΔG rabies injected into 

the vibrissa region of the facial motor nucleus; in both cases motor and premotor neurons are 

labeled by the expression of green fluorescent protein. The combined data set shows an 

overlap of premotor neurons, red points for jaw and green points for vibrissa, in the 

parvocellular region of the reticular formation. The aligned new brains are further used to 

refine the landmark positions of the reference atlas.
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Figure 2. Workflow for training the atlas, which consists of annotating brain sections followed by 
computation.
The input for training was a set of sagittally cut sections of the entire mouse brain, at a 

thickness of 20 μm, that were stained with thionin and imaged in bright-field a 0.5 μm 

resolution. (a) Expert annotation of landmarks and their boundaries in one section. (b) 

Resliced, three-dimensional view of a stack of successive sections with annotated 

boundaries. (c) The initial reference atlas that bootstrapped from the expert annotation. 

Fuzzy boundaries highlight the probabilistic nature of the shapes of the landmarks as an 
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average across annotations and annotators. The directions are dorsal-ventral (D-V), rostral-

caudal (R-C), and lateral-medial (L-M). (d) The 28 structures in one hemisphere in the 

current reference atlas (Table 1). Surfaces correspond to plandmark = 0.5. (e) Three 

representative image patches in an annotated section that are used to train the texture-based 

binary classifiers (Eq. 1). Patches inside the landmark are extracted from the interior of 

boundaries (green boxes) and tagged as positive, i.e., ym = +1, while patches in a 200 μm 

wide moat that surrounds the landmark (red boxes) are tagged as negative, i.e., ym = −1). (f) 
Training of the classifier for the example of the facial motor nucleus (FN). Each training 

patch is converted to a feature vector, e.g., xm, using a convolutional neural network (CNN) 

with fixed weights. The classifier, fFN, is a function of the weight vector, wFN.
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Figure 3. Workflow to align a new brain with the current reference atlas.
The input has the same Nissl-stain as the training set. (a) An unannotated set of Nissl-

stained sections from a new brain. (b) One example patch that is passed through a CNN to 

be converted into a texture feature vector X. (c) Example of three of the 51 texture-based 

classifiers for each landmark that are applied to all texture feature vectors in the brain 

patches across the entire brain. This results in a probability map for each landmark, 

illustrated here for one section and throughout the brain. Note that the raw data is 

downsample along the R-C and D-V directions directions by a factor of 32 to achieve 

Chen et al. Page 24

Nat Methods. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



isotropic pixels of 20 μ on edge. (d) The atlas after global affine alignment to the probability 

maps for all landmarks. (e, f) Local alignment between individual landmarks in the new 

brain with those in the atlas in three-dimensions (panel e) and for one section superimposed 

on the classifier scores (panel f). The thin mesh is the initial position and thick mesh is the 

final position. Contours are cross-sections of the transformed nominal shapes at plandmark = 

0.5. (g) Illustration of the final aligned result. Greyscale image volume is the reconstruction 

of the Nissl sections. Colored structures are the transformed reference atlas. (g) Contour 

lines from the aligned reference atlas overlaid on the section in panel a.
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Figure 4. Reliability and variability in estimates of landmark position for new brains.
(a,b) An assessment based on comparison of landmark positions found with our texture-

based classifiers, using a brain in which Nissl bodies were labeled with Neurotrace Blue, to 

that found with the centroids for ChAT-tdTomato FP labeled brains. Eleven motor nuclei 

were compared. The plots show the raw. two channel data followed by close-up views of 

selected motor nuclei in the Neurotrace blue and tdTomato FP channels. (c) Compendium of 

the difference, in three dimensions, between centroids found from the Neurotrace channel, 

which reports Nissl bodies, compared to that from the ChAT channel for two brains (red 
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triangles). Also shown is the variation of the positions noted by each of three human 

annotations from the mean position in the reference atlas (gray circles). Lastly, we plot the 

root-mean-square (RMS) variations between centroids across 12 brains (blue bars). (d) Shift 

in position of the aligned landmarks from nine new brains from the centroids of landmarks 

in the initial reference atlas. Different new brains are represented by different colors. We 

show both the full brainstem and for three example landmarks. (e) A compendium of the 

shift in rostral-caudal position of the centroids for for all landmark across all new brains.
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Figure 5. Application of the texture-based alignment to fluorescent imaging within and across 
brains.
(a) Visualization of the labeling motor and premotor inputs to the jaw muscle across all three 

planes (subpanels i through iii). The masseter muscle was injected with pseudorabies (PRV) 

that expressed green FP and visualized with a Neurotrace background stain. The PRV 

labeled cells were manually annotated and aligned with the reference atlas. Note the 

widespread, bihemispheric inputs and, critically, the absence of labeling from the 

contralateral motor nucleus (subpanel iv). (b) Visualization of the labeling of different 

Chen et al. Page 28

Nat Methods. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



populations of premotor neurons in separate brains with overlapped density in the 

parvocellular reticular formation (PCRt). We labeled the premotor neurons of the jaw region 

of the trigeminal motor nucleus (5N) using G-protein deleted rabies (ΔG-RV) that expressed 

green FP (red points; subpanel i) and the premotor neurons of the vibrissa region of the 

facial motor nucleus (7N) using the same construct (green points subpanel ii). Premotor 

neurons predominantly overlap in a border area of the reticular formations IRt and PCRt 

(subpanel iii). The insert shows a magnified view of the overlap of the two premotor 

populations (Figure 1).
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Figure 6. Defining landmark based on texture versus gray scale.
The gray-scale was formed by downsampling from 0.5 to 25 μm resolution. (a) Image of the 

hindbrain and midbrain of a single section stained with thionin. The boxes contain two 

motor nuclei: the oculomotor nucleus (3N) and the hypoglossal nucleus (12N). (b,c) The 

area around each nucleus at higher magnification and a resolution of 0.5 μm. The nucleus 

appears distinct from its surrounding area. (d,e) The same areas as in panels b and c after 

downsampling to 25 μm of resolution. The semi-homogeneous intensity within a landmark 

is required by traditional alignment methods, but precision is sacrificed by the blurred 

boundaries. (f,g) Comparison of the probability of a landmark from the texture-based 

classifier versus the value of gray levels along the lines across the nuclei in panels b to e. All 

values are normalized. Texture-detection results in a steeper plateau to yield a precise 

alignment.
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Table 1:

Landmark structures in active atlas

Symbol Name R/L fused

3N Occulomotor nucleus N

4N Trochlea nucleus N

5N Trigeminal motor nucleus N

6N Abducens nucleus N

7N Facial motor nucleus N

7n Facial nerve N

10N Dorsal nucleus of vagus nerve N

12N Hypoglossal nucleus Y

Amb Nucleus ambiggus N

AP Area postrema Y

DC Dorsal cochlea nucleus N

LRt Lateral reticular nucleus N

LC Locus corelus N

IC Inferior colliculus Y

VCA Ventral cochlea nucleus, anterior N

VCP Ventral cochlea nucleus, posterior N

VLL Ventral lateral lemniscus N

PBG Parabigeminal nucleus N

Pn Pontine grey N

R Red nucleus N

RtTg Reticulotegmental nucleus Y

SC Superior colliculus Y

Sp5C Spinal-trigeminal nucleus, caudalis N

Sp5I Spinal-trigeminal nucleus, interpolaris N

Sp5O Spinal-trigeminal nucleus, oralis N

SNR Substantia niagra, reticular N

SNC Substantia niagra, compact N

Tz Nucleus of trapezoidal body N
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Table 2:

Typical computation times for a new brain

Step Time

Intra-stack registration using downsampled images 0.7 hours

Transform and crop raw images 7.5 hours

Compute features 1.5 hours (8 GPUs)
5.0 hours (1 GPU)

Generate probability maps 0.7 hours

Registration 0.5 hours
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