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Abstract

Objective: We study the performance of machine learning (ML) methods, including neural 

networks (NNs), to extract mutational test results from pathology reports collected by cancer 

registries. Given the lack of hand-labeled datasets for mutational test result extraction, we focus on 

the particular use-case of extracting Epidermal Growth Factor Receptor mutation results in non-

small cell lung cancers. We explore the generalization of NNs across different registries where our 

goals are two-fold: (1) to assess how well models trained on a registry’s data port to test data from 

a different registry and (2) to assess whether and to what extent such models can be improved 

using state-of-the-art neural domain adaptation techniques under different assumptions about what 

is available (labeled vs unlabeled data) at the target registry site.

Materials and Methods: We collected data from two registries: the Kentucky Cancer Registry 

(KCR) and the Fred Hutchinson Cancer Research Center (FH) Cancer Surveillance System. We 

combine NNs with adversarial domain adaptation to improve cross-registry performance. We 
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compare to other classifiers in the standard supervised classification, unsupervised domain 

adaptation, and supervised domain adaptation scenarios.

Results: The performance of ML methods varied between registries. To extract positive results, 

the basic convolutional neural network (CNN) had an F1 of 71.5% on the KCR dataset and 95.7% 

on the FH dataset. For the KCR dataset, the CNN F1 results were low when trained on FH data 

(Positive F1: 23%). Using our proposed adversarial CNN, we match the F1 of the models trained 

directly on each registry’s data. The adversarial CNN F1 improved when trained on FH and 

applied to KCR dataset (Positive F1: 70.8%). We found similar performance improvements when 

we trained on KCR and tested on FH reports (Positive F1: 45% to 96%).

Conclusion: Adversarial domain adaptation improves the performance of NNs applied to 

pathology reports. In the unsupervised domain adaptation setting, we match the performance of 

models that are trained directly on target registry's data by using source registry's labeled data and 

unlabeled examples from the target registry.

Graphical Abstract

Convolutional neural networks are used to extract EGFR results from pathology reports Classifiers 

trained on local data do not perform well on reports from different registries Adversarial domain 

adaptation improves cross-registry generalization Using data from multiple registries with 

adversarial learning improves prediction
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1. Introduction

Population-based cancer registries are the most valid source for measuring the incidence of 

cancer in a population. Registry data are essential to guide and evaluate evidence-based 

cancer prevention and control activities, including playing an increasingly important role in 

rapidly identifying patient cohorts and biospecimen cohorts across the spectrum of basic, 

clinical and population-based translational science. The Surveillance, Epidemiology, and 

End Results (SEER) program, sponsored by the National Cancer Institute (NCI) and the 

National Program of Cancer Registries, reports population-based cancer statistics for the 

United States. For example, SEER registries manually assign International Classification of 

Disease for Oncology Version 3 (ICD-O-3) codes based on pathology reports to designate 
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the site (topography) and histology and behavior code (morphology) of neoplasms [24]. 

Although considerable amounts of information regarding cancer diagnoses is documented in 

pathology reports [1], much of it is in the form of unstructured text. Manually extracting all 

of the relevant information is costly due to the growing number of cancer cases and the 

increasing number of tumor characteristics that cancer registries are required to report.

Molecular testing is an important tool to identify personalized treatments for patients with 

actionable mutations, a crucial enabler of precision medicine. While mutational test results 

may be discussed in pathology reports, they are not coded in structured data sources 

collected by cancer registries. Therefore, SEER registries do not currently report results of 

mutation tests. Thus, automatically extracting mutational test results as disclosed in 

pathology reports offers an excellent opportunity to enable personalized treatments and 

clinical trial recruitment. To this end, the SEER program funded rapid response studies at the 

Kentucky Cancer Registry (KCR) and the Fred Hutchinson Cancer Research Center (FH) to 

develop automated methods to extract mutational test results for Epidermal Growth Factor 

Receptor (EGFR) and Anaplastic lymphoma kinase (ALK) in non-small cell lung cancers 

(NSCLCs). NSCLC patients with EGFR mutations are often candidates for targeted therapy 

directed at their mutation and have longer survival than with chemotherapy [17, 5]. While 

the pathology reports collected by different cancer registries may follow annotation 

standards established by the College of American Pathologists, they may differ with respect 

to writing styles, jargon and document formatting such that simple machine learning tools, 

or rule-based systems, are ineffective at extracting the relevant information with high recall 

and accuracy.

In this paper, we present generalization techniques to extract EGFR test results from 

unstructured text in pathology reports of NSCLC patients using hand-labeled datasets 

created by the SEER sponsored studies1 at KCR and FH. This information will provide 

cancer registries with an efficient tool to rapidly report genetic biomarkers that carry a 

relevant clinical implication in non-squamous NSCLC for the selection of candidates for 

effective oral targeted therapies. SEER registries currently lack the capacity of reporting 

genetic testing results. The use of validated tools to ascertain EGFR tests will potentially 

assist SEER registries to provide modern, updated clinical, and genomic information in 

nationally representative population samples of cancer patients. The tools will enable 

population health researchers to conduct epidemiological and outcomes research in 

clinically relevant, molecularly defined subgroups of NSCLC patients.

1.1. Biomedical Text Classification

Extracting information from biomedical documents has been studied for a wide variety of 

problems. Methods have been developed to extract diagnosis and procedure codes (ICD-9-

CM) from electronic medical records [21, 13, 28]. ICD-9-CM codes are used by all 

healthcare facilities to standardize diagnosis reporting for billing purposes. Similarly, there 

are machine learning methods that extract ICD-O-3 codes from pathology reports [26].

1Due to extremely small number of positive instances for the ALK mutations, this study is limited to EGFR test results
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Biomedical text classification methods generally fall into one of two groups: linear or neural 

network models. Tsoumakas et al. (2013) trained nearly 27 thousand Linear SVM models, 

one for each MeSH term [31]. For medical coding, Perotte et al. (2013) developed a 

hierarchical SVM to extract diagnosis and procedure codes from electronic medical records 

[25]. Goulart et al. [8] show that simple rules can be combined with an SVM model to 

extract EGFR and ALK results from pathology reports. Compared to their effort, our work 

differs in two major ways. First, we explore neural network-based methods to extract EGFR 

results – not only linear models. As we show in the discussion section of this paper, simple 

rules do not work well on pathology reports collected at all registries. Second, our work 

focuses on cross-registry performance. We test whether and to what extent machine learning 

methods generalize across different cancer registries.

Deep neural networks have been advancing state-of-the-art results across a wide range of 

biomedical tasks including bioinformatics [14, 16] and healthcare [19]. For text 

classification, Mullenbach et al. (2018) introduced a label-wise attention mechanism for 

medical coding [21]. In Rios and Kavuluru (2018), we introduced a matching network-based 

method – originally developed for few-shot learning – that further improved medical coding 

results [28]. Similar to this paper, Qiu et al. (2018) apply convolutional neural networks 

(CNNs) to pathology reports [26]. However, they focus on extracting topography and 

histology ICD-O-3 codes from the reports, not genetic testing results.

1.2. Generalization in Deep Learning

Generalization in deep learning has been studied theoretically [11] and empirically. At a 

high level, generalization of machine learning methods is important for many biomedical 

applications. Small and/or rural healthcare institutions and cancer registries may not have 

access to the data required to train neural networks or may not have the resources to annotate 

large amounts of data. If large institutions are able to share models and/or data with smaller 

institutions, then the smaller institution can dedicate resources to other tasks. With respect to 

cancer registries, if our models do not perform well on pathology reports collected by 

different registries, then our models have poor generalization. Developing methods that 

generalize across varying data distributions is known as domain adaptation. Both domain 

adaptation, and similar methods such as transfer learning, have been applied to medical 

documents [9, 32, 29]. There are two main domain adaptation settings studied by 

researchers: supervised and unsupervised. For both adaptation settings, we have access to 

two datasets — a source dataset and a target dataset. To illustrate, assume we have data from 

two cancer registries, C1 and C2. C2 (source) shares their data with C1 (target). C1 wants to 

use a classifier based on data from C2, however, their objective is to maximize the 

performance of the classifier on their own data. In the supervised adaptation setting, data 

from both registries (C1 and C2) have ground truth annotations. Multi-task learning [6] is a 

methodology in machine learning where multiple problems (tasks) are solved 

simultaneously. Similar to multi-task learning methodologies, models can be trained on both 

datasets simultaneously. For the unsupervised setting, only the source dataset (data from C2) 

is annotated. Therefore, the C1 registry must incorporate their unlabeled target data – similar 

to semi-supervised learning. Contrary to multi-task and semi-supervised learning, domain 

adaptation tries to make better use of the auxiliary data by matching the data distributions. 

Rios et al. Page 4

J Biomed Inform. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For instance, if the C2 registry’s dataset differs substantially from C1’s data in terms of topic 

or style, then simply combining the two datasets could reduce the overall performance of the 

model [30].

There are several methods proposed for domain adaptation. Jiang and Zhai (2017) used an 

instance weighting-based approach for text [10]. They simply remove source instances that 

are significantly different from the target data. Daumé (2007) used a feature augmentation 

method where they have special features for the source data, the target data, and also shared 

feature representations for both the source and target data [4]. Ganin and Lempitsky (2015) 

developed an adversarial domain adaptation technique for neural networks [7]. Intuitively, 

they train a domain classifier that takes a mid-level CNN representation as input for each 

example, and predicts if the example comes from the source or target datasets. Using the 

domain classifier, the CNN parameters are modified to make the performance of domain 

classifier worse, thereby matching the data distributions. In Rios et al. (2018), for relation 

classification, we use a two stage approach for adversarial learning [30]. First, we train on 

the source data, then we fine-tune the model to match the source and target data 

distributions.

1.3. Domain Adaptation Scenarios in Cross-Registry Settings

In this paper, we present a neural network-based adversarial domain adaptation method to 

extract EGFR results from pathology reports. There are a few scenarios in which both 

supervised and unsupervised domain adaptation may arise for cancer registries. Therefore, 

our experiments investigate the following research questions (RQs):

RQ1. Can machine learning methods, including neural networks, accurately extract 
EGFR information from pathology reports? Before studying the various domain 

adaptation scenarios, we first examine the performance of machine learning methods when 

applied to the EGFR classification task. For this scenario, we assume each registry has 

access only to its datasets.

RQ2. Are EGFR test results described differently in pathology reports collected at 
different SEER registries? Will EGFR models trained on pathology reports from a 
single cancer registry generalize to other registries? In this setting, we analyze the cross-

registry performance without any adaptation. For example, if a registry shares a pre-trained 

model, but did not give access to their data, then we want to examine how it will perform.

RQ3. Can unsupervised adversarial domain adaptation techniques improve the cross-
registry performance of neural networks? This setting assumes a registry has access to 

another registry’s annotated data; however, we assume the registry’s own data is not 

annotated. If the registry does not have the resources to create a large high-quality annotated 

dataset, then this scenario can arise. We test if our unsupervised domain adaptation method 

can match the results produced when training on the source data directly.

RQ4. Do supervised domain adaptation methods improve the performance of models 
trained jointly on two registries’ labeled datasets? To answer this question, we assume 

that a registry has access to high quality annotated data from their registry and labeled data 
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from another registry. We hypothesize that if we apply our supervised adversarial domain 

adaptation method, then we can improve on the performance of models simply trained on 

the combination (union) of both datasets.

Overall, to the best of our knowledge, this is the first effort to explore generalization of text 

classifiers across different registries. Furthermore, we evaluate the use of state-of-the-art 

techniques for domain adaptation on our novel task.

2. MATERIALS AND METHODS

RQ1 and RQ2 are based on conventional ML configurations, whose methodological aspects 

are well-known and hence are briefly mentioned in the Results section. In this section, we 

specifically discuss neural adversarial adaptation techniques to answer RQ3 and RQ4, the 

main contributions in this paper.

2.1. Datasets

This study is based on data from patients diagnosed with histologically confirmed, stage IV 

non-squamous NSCLC between 2011 and 2013, and reported to two SEER registries: KCR 

and the Cancer Surveillance System of FH. For each NSCLC case, staff at each registry 

retrieved electronic pathology reports, and following manual review labeled each as one of 

three categories: Unknown/Technical Difficulties, Positive, and Negative. The Unknown 

class is assigned to reports if it is not clear if the EGFR test was done or if the result cannot 

be ascertained properly; this class also represents instances where the test was done, but the 

result was not reported. If the test results are reported, then the positive and negative classes 

are used, respectively. Both datasets are annotated for EGFR mutation results and Anaplastic 

Lymphoma Kinase (ALK) fusion results. However, the KCR dataset only has 3 pathology 

reports that mention a positive ALK result. Therefore, for the purposes of this study, we 

focus on extracting EGFR test results because we have more positive examples in both 

datasets. The relative counts of different classes for both datasets are shown in Table 1.

2.2. Method overview.

In Figure 1, we provide an overview of our method. Our model has three main components: 

the CNN (F), the classifier (C), and the discriminator (D). The discriminator is a multi-layer 

neural network where the final layer is a single sigmoid unit. During training, the 

discriminator is trained to learn if a given pathology report comes from the KCR or FH 

datasets. The CNN, F, is the adversary of the discriminator, D. Intuitively, the CNN 

parameters are updated to minimize the classification loss, while maximizing the error of the 

discriminator. The CNN and the discriminator compete during training, with the CNN 

eventually producing representations that are indistinguishable by the discriminator.

2.3. Convolutional neural networks for text classification.

For the CNN component, we use a standard model from Kim (2014) [12]. Word vectors 

form the base element of the model. Given a pathology report, let wi
j ∈ ℝd represent the j-th 

word’s vector in the i-th document. As shown in Figure 1, each pathology report is 
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represented as a matrix Xi ∈ ℝ
Ni × d

 by concatenating the word vectors, where Ni is the 

number of words in the i-th document, and d is the size of the word vectors. Given the 

document matrix Xi, the CNN produces a fixed size feature representation. To produce a 

fixed size vector, the CNN uses max-over-time pooling. Each convolution filter q produces a 

feature map mq ∈ ℝ
Ni − c + 1

 where c is the span of the convolution filter (the filters in Figure 

1 span 3 words). To produce a fixed-sized vector with max-over-time pooling we take the 

max value for each feature map to represent a pathology report. We define the final output of 

the neural network as

F Xi = CNN Xi

where F Xi ∈ ℝ f ⋅ s, s is the number of convolution filter sizes, and f is the number of filters 

per size.

2.4. Classification loss.

Extracting EGFR test results from pathology reports is a multi-class classification problem. 

Therefore, we pass the feature vector returned by F(Xi) to a fully-connected softmax layer

C Xi = so f tmax F Xi

where C Xi ∈ ℝr and r is the number of classes. Next, we can train the classifier C(), and the 

CNN F(), using a multi-class cross-entropy loss

ℒC = − 𝔼
i, yi ∈ S  ∪  T j = 1

r
yi, jlog C Xi j

(1)

where yi, j ∈ 0, 1  is a binary indicator for the i-th pathology report’s j-th class and C()j is 

the prediction for the j-th class. S and T represent the index set of source and target 

instances. In the unsupervised domain adaptation setting, we only include S. Likewise, T is 

only used when training on the target dataset – the supervised classification setting. The 

combination of F() and C() form the CNN model introduced by Kim (2014) and has been 

shown to work well on a wide variety of biomedical text classification tasks [2, 27].

2.5. Adversarial Loss.

We are interested in training a model to extract EGFR test results from pathology reports. 

We want the model to generalize across datasets collected by different cancer registries. 

However, the pathology reports collected by separate cancer registries may differ in terms of 

writing style, format, and jargon. Some registries may collect reports that are thorough and 

document everything, while others may only have high-level summaries. Furthermore, 

EGFR testing may be outsourced by the reporting lab with results incorporated as addenda 
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in a variety of formats across different labs. To overcome these issues we combine the CNN 

with an adversarial domain adaptation method.

First, we define the discriminator for report Xi as

D Xi = sigmoid MLP F Xi

where MLP(F(Xi)) is a multi-layer feed-forward neural network with a single sigmoid unit 

for the final layer. The discriminator is trained using a binary cross-entropy loss

ℒadv = max
θF

min
θD

− 𝔼i ∈ Slog D Xi + 𝔼 j ∈ Tlog 1 − D X j (2)

where θF represents the parameters of the CNN, θD represents the parameters of the 

discriminator, and 𝔼 represents the expected value of the loss over different input instances. 

For example, 𝔼i ∈ S represents the expectation over source instances. Intuitively, the loss is 

minimized (gradient descent) with respect to θD such that the discriminator is trained to 

predict which cancer registry each pathology report is from. The CNN weights, θF, are 

updated to confuse the discriminator by maximizing the loss (gradient ascent), making it 

hard for the discriminator to distinguish the CNN feature representations with respect to 

different cancer registries.

For gradient-based training, we use a gradient reversal layer (GRL) which takes a gradient as 

input and reverses the gradient’s sign [7]. As shown in Figure 1, we apply the GRL between 

the CNN and discriminator. Formally, this GRL is defined as

GRL
∂ℒadv

∂θF
= − λ

∂ℒadv
∂θF

where ∂ℒadv/ ∂θF is the gradient of the adversarial loss with respect to the CNN parameters. 

λ weights the intensity of the GRL. A large λ will encourage larger changes of the CNN, 

making the CNN a stronger adversary for the discriminator. Following Ganin and Lempitsky 

(2015), instead of using a static λ value, we modify its value over the course of training as

λp = 2
1 + exp −γ ⋅ p

where p ∈ [0, 1] measures the training progress and γ ∈ ℝ+ is a hyperparameter. Following 

prior work, we set γ to 10 [7]. Likewise, after each epoch, we linearly increase p from 0 to 1 

by increments of size 1/#epochs. By starting with a λ of 0, the CNN parameters are not 

initially affected by the discriminator. At the early stages of training, the CNN is mostly 

affected by the classification loss. Therefore, in the beginning, we control the noisy signal of 

the discriminator.
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2.6. Training

For both the supervised and unsupervised domain adaptation scenarios, both the 

classification loss from Equation 1 and the adversarial loss from Equation 2 are combined as

ℒ = ℒC + ℒadv,

such that the CNN, classifier, and discriminator parameters are learned jointly. In the base 

scenario, where we only have access to the labeled target dataset, ℒadv is ignored. However, 

depending on the training scenario, the training process will slightly differ. Both loss 

functions are used in the unsupervised domain adaptation setting, with the exception that 

only the annotated source examples are used to train θF with ℒC. Finally, for the supervised 

domain adaptation scenario, the annotated source and target examples are used by ℒC.

3. RESULTS

3.1. Evaluation Method and Baselines

For this study, we use nested 5-fold cross-validation, where the inner-loop is used to pick the 

best hyperparameters [3]. Here by inner-loop we refer to the second level of cross-validation 

that lets us select potentially different sets of hyperparameters for each test fold in the main 

cross-validation setup. It should be noted that the neural network-based methods can vary 

run-to-run – especially for the positive class which has a small number of positive examples. 

Therefore, for each neural network-based model, and for each cross-validation fold, we train 

5 models using a different random seed and we report the average of the 5 runs. When two 

datasets are used in a supervised and unsupervised domain adaptation scenario, for each fold 

of the target dataset, we append the entire source dataset to the target training split. For 

example, in the “FH + KCR” section of Table 2, we perform cross validation on the KCR 

dataset and we append the entire FH dataset to the training KCR fold. The testing fold will 

only contain KCR examples.

We report the precision (P), recall (R), and F1-Score (F1) for the unknown, positive, and 

negative classes, respectively. We also combine the Positive and Negative classes into a 

single class at test time. This combined class measures how well our models can predict if 

the results are stated in the report, even though we may predict the wrong result. We refer to 

this as the “known” class. Meaning, if we predict either Positive or Negative, we change the 

prediction to “known”.

For evaluation purposes, we experiment with 4 models: 2 linear models and 2 neural 

network-based models. We briefly describe the models below:

• Rule-based – We experiment with a simple rule-based method that uses the 

following regular expressions: “positive (\w+\s){1,7}egfr”, “egfr[ :](\w+\s)

{1,7}positive”, and 2 similar regular expressions where the word “positive” is 

replaced with “negative”. If one of the regular expressions is matched, then we 

predict the class it represents, otherwise we return “Unknown”. For example, the 

string “the patient tested positive for an egfr mutation” matches the regular 
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expressions we created. At a high level, this regular expression matches all 

strings that contain the word “positive” followed by, or preceded by, “egfr”; and 

the string “egfr” must be no more than seven words away from “positive”.

• SVM – This model uses TF-IDF weighted ngrams as features to train a linear 

SVM. The model is trained using Scikit-Learn’s Linear SVC method [23]. We 

grid-search over the C regularization parameters [1e-4, 1e-3, 1e-2, 1e-1, 1., 10], 

the set of class weight options (“None” and “Balanced” in scikit-learn), and the 

combination of unigrams, bigrams, trigrams, and 4-grams.

• BSVM – Similar to the SVM method, this model uses ngrams as features and we 

grid-search over the same parameters. However, instead of using a TF-IDF 

weighting scheme, we use a binary representation, 1 if a feature is present, and 0 

otherwise.

• BioBERT [15] – BioBERT is a method of pre-training neural networks. 

Specifically, BioBERT trains a general-purpose “language understanding” model 

on a total of 29 million PubMed citations. We fine-tune the parameters of 

BioBERT on our task.

• CNN – A standard CNN model for text classification [12].

• CNN + Adv. – The method proposed in this paper. As stated in the previous 

section, this method will vary slightly depending on the domain adaptation 

scenario, unsupervised or supervised.

For each CNN-based model, we use convolution filters that span 3, 4, and 5 words. We learn 

300 filters for each size. We use dropout with a value of 0.5 and apply it after the CNN and 

before the classifier and discriminator. We also use L2 regularization over all CNN and 

classifier parameters with weight of 1e-3. For the discriminator, we use a 3-layer MLP, 

where the first two layers have 1024 hidden units with ReLU activation functions [22]. The 

final layer of the discriminator is a single output unit using a sigmoid activation function. 

Dropout is added between each layer of the discriminator with a value of 0.5. Furthermore, 

each CNN-based model is trained using the Adam optimizer with the learning rate 1e-3. 

Finally, we initialize the word embeddings with word2vec vectors trained on PubMed 

articles and abstracts. The word embedding size is 300.

With the exception of CNN Adv., each model is tested in three different scenarios:

1. “KCR/FH Only”, where we assume that each cancer registry only has access to 

its own data. Therefore, the “CNN + Adv.” method is not considered for this 

scenario.

2. “KCR + FH”, with which we test the supervised domain adaptation setting, 

where we assume we have access to ground truth annotations from both cancer 

registries regardless of which site is the target.

3. “KCR ⇒ FH”/“FH ⇒ KCR”, with which we assess the unsupervised domain 

adaptation setting, where we assume the target registry’s pathology reports have 

not been manually annotated. However, the registry has access to source 
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registry’s annotated data. For this scenario, grid-search is performed on a subset 

of the source dataset’s training split because we assume that we do not have 

access to annotated target data.

3.2. Experiments

In this section, we address each of the research questions stated in Section 1.3.

RQ1. How difficult is it to extract EGFR test results for an unstructured pathology report? 

To answer this question, we analyze the results in the “KCR Only” and “FH Only” sections 

of Tables 2 and 3, respectively. For the KCR data, in Table 2, we find that the CNN 

outperforms both linear methods substantially across all four classes. For the Unknown 

class, the CNN outperforms the best linear method (SVM) by nearly 3%, from 0.948 to 

0.975 F1. For the Positive class, which has only 47 examples in the dataset, the CNN 

outperforms the SVM method by 18%. Furthermore, we find that the SVM method, which 

uses TF-IDF weighted features, outperforms BSVM across all four classes. We find that the 

Unknown, Negative, and binary Known class F1 scores slightly vary across folds for the 

CNN in “KCR Only” with standard deviations 0.017, 0.034, and 0.026 (not shown in the 

table), respectively. For the linear models, and for all classes except the Positive class, the 

standard deviations are all around 0.015. Because of the limited number of Positive 

examples, the F1 standard deviation is much higher with a value around 0.11 for the SVM, 

BSVM, and CNN methods. We also find that BioBERT does not perform well overall on our 

task. For the Positive class on the KCR dataset, BioBERT achieves the best F1 of 0.804, but 

the performance on the Unknown and Negative classes is much worse. Because the 

Unknown and Negative classes occur more often, the Known F1 is also lower than the SVM.

For the FH dataset, all 3 methods achieve an F1 score of 0.95 or higher across all four 

classes. Similar to what happened with the KCR dataset, the CNN method generally 

outperforms the two linear models, with an exception for the positive class. However, unlike 

the KCR dataset, the CNN model does not outperform the linear models by much. All the 

improvements are less than 1%. Given the high level of performance across all models, 

substantial improvements may not be possible in the FH dataset. We also find that BSVM 

slightly outperforms SVM. We find that machine learning may not be as important to extract 

EGFR test results for the FH dataset because the rule-based method achieves an F1 greater 

than 90% for every class. However, machine learned models still improve the results with a 

≥ 4% improvement in F-score for the positive class. We do not report the standard deviations 

in Table 3, for the FH dataset. For all FH results, except for KCR ⇒ FH, the standard 

deviation is less than 0.01.

Overall, when the EGFR test results are recorded in the pathology report, we find that it is 

possible to extract the information using machine learning-based methods. However, we find 

that the performance can vary substantially at different registries. For example, the simple 

rule-based method achieves an F1 of 0.923 on the FH dataset in Table 3 for the Positive 

class. The rule-based F1 on the KCR dataset is only 0.097. This result suggests that the 

language used to describe EGFR results is more varied in the KCR dataset. We examine this 

more in the Discussion section.
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RQ2. For the second research question, we test the cross-registry generalization of models 

trained on a single registry’s data. The results related to this question can be found in the 

“FH ⇒ KCR” and “KCR ⇒ FH” sections of Tables 2 and 3. For the KCR dataset in Table 

2, generalization suffers across all classes when applying a model trained only on the FH 

dataset. For the Unknown class, the CNN’s F1 drops from 0.975 to 0.875 – a 9% drop in 

performance. The best method for the Positive class is the BSVM with an F1 of 0.253. 

However, the BSVM method still has a drop of 24% if we compare it to training on the KCR 

(target) dataset. For the frequent classes, TF-IDF weighting seems to help. Overall, we find 

that the CNN generalizes better than both linear models on three of the classes: Unknown, 

Negative, and Binary.

For the FH dataset, we find a large drop in performance in F1 for both the Positive and 

Negative classes. For the positive class, the SVM performance drops from 0.960 to 0.155. 

Likewise, the negative class results drop from 0.968 to 0.504. The BSVM linear model 

outperforms the SVM across all 4 classes. Nonetheless, while the linear models perform 

similar to the CNN when trained in the “FH only” setting, in the cross-registry scenario the 

CNN provides the best performance for all 4 classes.

RQ3. If a cancer registry has access to another registry’s annotated data, but does not have 

the time or resources to annotate their own data, do unsupervised domain adaptation 

methods help? The results for this question are in the “FH ⇒ KCR” and “KCR ⇒ FH” 

sections of Tables 2 and 3 (“CNN + Adv” rows). Overall, on both the KCR and FH datasets, 

we achieve substantial improvements using adversarial learning in the unsupervised domain 

adaptation setting. For the KCR dataset in Table 2, “CNN + Adv” performs similar to the 

CNN that is trained on both the FH and KCR datasets (KCR + FH). Also, compared to the 

CNN trained only on FH data and applied to the KCR dataset, the “CNN + Adv” improves 

the performance on the Unknown class by 10% and the Positive class improves by more 

than 50%, from 0.244 to 0.780 in F1. On the FH dataset, when we train on the KCR dataset 

and test on the FH dataset, we match the performance of the CNN that is trained directly on 

the FH dataset for all classes. For the Positive class, “CNN + Adv” models slightly 

outperform the corresponding models trained on the target datasets (“FH Only” and “KCR 

Only” in Tables 2 and 3) in this unsupervised domain adaptation setting (“KCR ⇒ FH”/“FH 

⇒ KCR”).

RQ4. When annotated datasets are available for both registries, do adversarial learning 

techniques improve on methods that train on both datasets? For this research question, we 

focus on the “FH + KCR” sections in both results tables. First, for the KCR dataset, every 

method shows improvements when compared to training only on the KCR dataset. For 

example, for the positive class, SVM improves from 0.530 to 0.612, an 8% absolute 

improvement in F1. The CNN also improves by 3%. Furthermore, without adversarial 

learning, the CNN outperforms both SVM and BSVM when we use both datasets. When we 

train the CNN on both datasets and use adversarial learning, we outperform all other 

methods on the KCR dataset in the “FH + KCR” scenario. Finally, we achieve the largest 

improvement for the positive class where the F1 improves from 0.746 to 0.801.
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For the FH dataset, unlike the KCR dataset, we achieve little to no improvement when we 

train on both datasets. Likewise, our proposed CNN adversarial method does not perform as 

well as the CNN which only trains on the FH dataset. Because the overall performance is 

very high when we only train on the FH dataset, there is not much to be gained by training 

on both datasets.

4. DISCUSSION

Based on our results in Tables 2 and 3, we find that there are multiple factors to consider if 

one is deciding to use adversarial domain adaptation techniques – at least for pathology 

reports from cancer registries. Does the cancer registry have access to annotations for their 

own data? If so, how well do the models perform when trained only on their data? As seen 

on the FH dataset, if the model performs very well (> 0.95 F1), then domain adaptation 

techniques may not help. However, as seen in the supervised domain adaptation setting on 

the KCR dataset, adversarial learning can help if the performance is not particularly good 

with locally annotated data. If the cancer registry does not have the resources to annotate 

their own data, but they have access to another registry’s annotated data, then adversarial 

domain adaptation techniques achieve similar results as if they were training on an annotated 

dataset from their registry.

Overall, the performance across all four classes is higher on the FH dataset when compared 

to the KCR results. There are two possible reasons for the differences in F1. First, the FH 

dataset is three times as large as the KCR dataset. The largest difference in performance 

between the two datasets is found with the Positive class, which has the smallest number of 

labeled examples. Are the differences in F1 on the Positive class between the two datasets 

caused by different dataset sizes? In Figure 2, we plot the learning curve of the BSVM 

method on the FH dataset. The best result on the KCR dataset is marked with an X (i.e., the 

CNN). With 1000 training examples, we find that the Positive class performance is still 

higher on the FH dataset. Via manual examination, we find that the reports in the FH dataset 

are much more consistent. For examples, the simple regular expression “positive (\w+\s)

{1,7}egfr” correctly predicts 188 out of 232 pathology reports for the Positive class in the 

FH dataset. Furthermore, the rule only results in 3 false positives. For the KCR dataset, 

using the same regular expression, we match 13 pathology reports. However, only 3 of the 

reports are correctly matched with the Positive class. This explains why the “KCR ⇒ FH” 

F1 scores were higher than the “FH ⇒ KCR” setting, even though the FH dataset was larger. 

Interestingly, we find that adversarial learning provides large improvements in the “FH ⇒ 
KCR” setting, even though the FH dataset is relatively simple. This suggests that if we can 

create training datasets for many genomic tests using simple rules (i.e., distant supervision 

[18]), then we may be able to use unsupervised adversarial domain adaptation to match the 

results we would obtain if we had a hand-labeled gold standard dataset.

5. CONCLUSION

In this paper, we study the generalization of machine learning methods across different 

cancer registries to understand many questions: Will models shared between registries 

perform well? Can we combine two registries datasets to improve performance? Do 
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pathology reports collected by different registries substantially differ? Many machine 

learning methods, including neural networks, perform well when trained with carefully 

annotated data. However, if these models are shared with other registries, the performance 

may suffer. Therefore, we introduced an adversarial domain adaptation method for neural 

networks. Using adversarial learning, we improve the cross-registry generalization 

substantially, sometimes outperforming methods that were trained on datasets from both 

registries. There are two avenues we plan to explore in the future:

• We performed adversarial learning via backpropagation using a GRL. The GRL 

method is known to have vanishing gradient issues [30]. If the discriminator 

becomes very accurate, then the gradients backpropagated to the CNN will be 

small. Therefore, the CNN will not overcome the discriminator to produce vector 

representations of the pathology reports that are indistinguishable between 

registries. Hence, we plan to explore other adversarial methods in the future.

• There are many genomic tests of interest to cancer registries, including, but not 

limited to, EGFR, KRAS, and ALK. In this paper, we focused on extracting 

EGFR test result information. A natural next step would be to apply our methods 

to other genomic tests. However, curating datasets for each test is costly. In 

future work, we plan to use distance supervision in combination with domain 

adaptation to overcome curation issues.

• Our method only extracts generic EGFR mutations in the context of NSCLC. 

Ideally, we should develop techniques to identify specific EGFR mutations. For 

example, EGFR exon 20 insertions predict tyrosine kinase inhibitors (TKI) 

resistance which occurs in approximately 10% of EGFR positive patients [20] at 

diagnosis. In addition, specific EGFR mutations have prognostic implications: 

exon 19 deletions are associated with longer overall survival compared with exon 

21 L858R mutations, irrespective of treatment with EGFR TKIs. Future 

development will also focus on refinements to the current algorithms to extract 

specific EGFR mutations. Because of the high cost of annotating data for 

different mutation types, we expect distance supervision-based methods and our 

adversarial domain adaptation approach can be combined to reduce study costs.

ACKNOWLEDGEMENTS

We thank Tiffany Janes, one of the project managers at the Cancer Surveillance System (SEER FH registry) for her 
assistance with data transfer from FH to KCR; and Dr. Christina S Baik, for contribution as an annotator of FH and 
KCR data.

6. FUNDING

We are grateful for the support of the U.S. National Cancer Institute (NCI) through grant P30CA177558 and 
Surveillance, Epidemiology, and End Results Program (SEER) contracts HHSN261201300013I and 
HHSN261201800013I for enabling this effort. SMS and BG are supported through the NCI SEER contract 
HHSN26100007 and grant P30CA015704. RK’s efforts are also partially supported by the U.S. National Center for 
Advancing Translational Sciences via grant UL1TR001998.

Rios et al. Page 14

J Biomed Inform. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

[1]. American College of Surgeons, 2012 Cancer program standards 2012: Ensuring patient-centered 
care https://www.facs.org/~/media/files/quality%20programs/cancer/coc/
programstandards2012.ashx. Accessed: July 2, 2019.

[2]. Baumel T, Nassour-Kassis J, Cohen R, Elhadad M, Elhadad N, 2017 Multi-label classification of 
patient notes a case study on ICD code assignment. arXiv preprint arXiv:1709.09587

[3]. Cawley GC, Talbot NL, 2010 On over-fitting in model selection and subsequent selection bias in 
performance evaluation. Journal of Machine Learning Research 11, 2079–2107.

[4]. Daume H III, 2007 Frustratingly easy domain adaptation, in: Proceedings of the 45th Annual 
Meeting of the Association of Computational Linguistics, pp. 256–263.

[5]. Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, Cheney RT, 
Chirieac LR, D’Amico TA, Dilling TJ, et al., 2016 NCCN guidelines insights: non–small cell 
lung cancer, version 4.2016. Journal of the National Comprehensive Cancer Network 14, 255–
264. [PubMed: 26957612] 

[6]. Evgeniou T, Pontil M, 2004 Regularized multi–task learning, in: Proceedings of the tenth ACM 
SIGKDD international conference on Knowledge discovery and data mining, ACM pp. 109–117.

[7]. Ganin Y, Lempitsky V, 2015 Unsupervised domain adaptation by backpropagation, in: 
International Conference on Machine Learning, pp. 1180–1189.

[8]. Goulart BHL, Silgard ET, Baik CS, Bansal A, Sun Q, Durbin EB, Hands I, Shah D, Arnold SM, 
Ramsey SD, et al., 2019 Validity of natural language processing for ascertainment of EGFR and 
ALK test results in SEER cases of stage iv non–small-cell lung cancer. JCO clinical cancer 
informatics 3, 1–15.

[9]. Hassanzadeh H, Nguyen A, Karimi S, Chu K, 2018 Transferability of artificial neural networks for 
clinical document classification across hospitals: A case study on abnormality detection from 
radiology reports. Journal of biomedical informatics 85, 68–79. [PubMed: 30026067] 

[10]. Jiang J, Zhai C, 2007 Instance weighting for domain adaptation in NLP, in: Proceedings of the 
45th annual meeting of the association of computational linguistics, pp. 264–271.

[11]. Kawaguchi K, Kaelbling LP, Bengio Y, 2017 Generalization in deep learning. arXiv preprint 
arXiv:1710.05468

[12]. Kim Y, 2014 Convolutional neural networks for sentence classification, in: Proceedings of the 
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association 
for Computational Linguistics, Doha, Qatar pp. 1746–1751.

[13]. Kocbek S, Cavedon L, Martinez D, Bain C, Mac Manus C, Haffari G, Zukerman I, Verspoor K, 
2016 Text mining electronic hospital records to automatically classify admissions against disease: 
Measuring the impact of linking data sources. Journal of Biomedical Informatics 64, 158–167. 
[PubMed: 27742349] 

[14]. Lan K, Wang D.t., Fong S, Liu L.s., Wong KK, Dey N, 2018 A survey of data mining and deep 
learning in bioinformatics. Journal of medical systems 42, 139. [PubMed: 29956014] 

[15]. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J, 2019 BioBERT: pre-trained biomedical 
language representation model for biomedical text mining. arXiv preprint arXiv:1901.08746

[16]. Li Y, Huang C, Ding L, Li Z, Pan Y, Gao X, 2019 Deep learning in bioinformatics: introduction, 
application, and perspective in big data era. arXiv preprint arXiv:1903.00342

[17]. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, Jenkins RB, 
Kwiatkowski DJ, Saldivar JS, Squire J, et al., 2013 Molecular testing guideline for selection of 
lung cancer patients for egfr and alk tyrosine kinase inhibitors: guideline from the college of 
american pathologists, international association for the study of lung cancer, and association for 
molecular pathology. Journal of Thoracic Oncology 8, 823–859. [PubMed: 23552377] 

[18]. Mintz M, Bills S, Snow R, Jurafsky D, 2009 Distant supervision for relation extraction without 
labeled data, in: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and 
the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 
2-Volume 2, Association for Computational Linguistics pp. 1003–1011.

[19]. Miotto R, Wang F, Wang S, Jiang X, Dudley JT, 2017 Deep learning for healthcare: review, 
opportunities and challenges. Briefings in bioinformatics 19, 1236–1246.

Rios et al. Page 15

J Biomed Inform. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.facs.org/~/media/files/quality%20programs/cancer/coc/programstandards2012.ashx
https://www.facs.org/~/media/files/quality%20programs/cancer/coc/programstandards2012.ashx


[20]. Morgillo F, Della Corte CM, Fasano M, Ciardiello F, 2016 Mechanisms of resistance to egfr-
targeted drugs: lung cancer. ESMO open 1, e000060. [PubMed: 27843613] 

[21]. Mullenbach J, Wiegreffe S, Duke J, Sun J, Eisenstein J, 2018 Explainable prediction of medical 
codes from clinical text, in: Proceedings of the 2018 Conference of the North American Chapter 
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 
(Long Papers), pp. 1101–1111.

[22]. Nair V, Hinton GE, 2010 Rectified linear units improve restricted Boltzmann machines, in: 
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814.

[23]. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer 
P, Weiss R, Dubourg V, et al., 2011 Scikit-learn: Machine learning in python. Journal of machine 
learning research 12, 2825–2830.

[24]. Percy C, Holten V.v., Muir CS, Organization WH, et al., 1990 International classification of 
diseases for oncology

[25]. Perotte A, Pivovarov R, Natarajan K, Weiskopf N, Wood F, Elhadad N, 2013 Diagnosis code 
assignment: models and evaluation metrics. Journal of the American Medical Informatics 
Association 21, 231–237. [PubMed: 24296907] 

[26]. Qiu JX, Yoon HJ, Fearn PA, Tourassi GD, 2018 Deep learning for automated extraction of 
primary sites from cancer pathology reports. IEEE journal of biomedical and health informatics 
22, 244–251. [PubMed: 28475069] 

[27]. Rios A, Kavuluru R, 2015 Convolutional neural networks for biomedical text classification: 
application in indexing biomedical articles, in: Proceedings of the 6th ACM Conference on 
Bioinformatics, Computational Biology and Health Informatics, ACM pp. 258–267.

[28]. Rios A, Kavuluru R, 2018 EMR coding with semi-parametric multi-head matching networks, in: 
Proceedings of the 2018 Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 2081–
2091.

[29]. Rios A, Kavuluru R, 2019 Neural transfer learning for assigning diagnosis codes to EMRs. 
Artificial intelligence in medicine 96, 116–122. [PubMed: 31164204] 

[30]. Rios A, Kavuluru R, Lu Z, 2018 Generalizing biomedical relation classification with neural 
adversarial domain adaptation. Bioinformatics 34, 2973–2981. [PubMed: 29590309] 

[31]. Tsoumakas G, Laliotis M, Markantonatos N, Vlahavas I, 2013 Large-scale semantic indexing of 
biomedical publications at bioasq, in: Proceedings of the First Workshop on Bio-Medical 
Semantic Indexing Question Answering, a Post-Conference Workshop of Conference Labs of the 
Evaluation Forum (CLEF).

[32]. Wiens J, Guttag J, Horvitz E, 2014 A study in transfer learning: leveraging data from multiple 
hospitals to enhance hospital-specific predictions. Journal of the American Medical Informatics 
Association 21, 699–706. [PubMed: 24481703] 

Rios et al. Page 16

J Biomed Inform. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
High-level overview of method for determining EGFR status of NSCLC cases from 

pathology reports. The architecture has three main components: a CNN (F), classifier (C), 

and discriminator (D). F returns a fixed size feature representation of a pathology report. C 

is a standard softmax output layer, and D is an MLP that predicts which registry a report 

originates. The reverse gradient changes the sign of the gradient, such that C is optimized to 

maximize the loss involving D, while D is optimized to minimize the loss (i.e., correctly 

predict the original registry).
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Figure 2: 
Learning curve measuring the F1 score of the Positive EGFR test result on the FH dataset. 

We also mark the CNN method’s KCR cross-validation results from Table 2, section “KCR 

Only”, with an X
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Table 1:

Number of pathology reports for the three classes in the FH and KCR datasets.

Cancer Registry # Unknown # Positive # Negative

Fred Hutch. (FH) 2921 232 1126

KCR 599 47 354
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Table 2:

Model performances on the KCR dataset. Precision (P), Recall (R), and F1-Score (F1) are reported for the four 

major classes: Unknown, Positive, Negative, and Known. Note that the models were not trained on the Known 

class. The Known class metrics were calculated by merging the metrics for the Positive and Negative classes.

Unknown Positive Negative Known

Method P R F1 P R F1 P R F1 P R F1

Rule-based 0.620 0.881 0.728 0.200 0.064 0.097 0.524 0.203 0.292 0.524 0.196 0.284

KCR Only

SVM 0.945 0.951 0.948 0.612 0.476 0.530 0.881 0.896 0.888 0.927 0.918 0.922

BSVM 0.934 0.958 0.946 0.767 0.329 0.446 0.893 0.867 0.879 0.937 0.898 0.916

CNN 0.973 0.977 0.975 0.858 0.626 0.715 0.923 0.948 0.935 0.966 0.960 0.963

BioBERT 0.937 0.933 0.935 0.826 0.791 0.804 0.884 0.895 0.889 0.901 0.907 0.904

FH + KCR

SVM 0.956 0.946 0.951 0.761 0.540 0.612 0.901 0.913 0.906 0.935 0.918 0.926

BSVM 0.966 0.972 0.968 0.732 0.518 0.595 0.906 0.924 0.914 0.959 0.948 0.953

CNN 0.980 0.969 0.974 0.885 0.667 0.746 0.925 0.968 0.945 0.956 0.970 0.962

CNN + Adv. 0.973 0.980 0.976 0.899 0.729 0.801 0.941 0.952 0.946 0.970 0.959 0.964

FH ⇒ KCR

SVM 0.848 0.820 0.832 0.100 0.147 0.118 0.742 0.749 0.742 0.746 0.779 0.760

BSVM 0.804 0.855 0.828 0.259 0.249 0.253 0.691 0.647 0.668 0.760 0.689 0.723

CNN 0.867 0.888 0.875 0.273 0.230 0.244 0.741 0.737 0.732 0.832 0.791 0.805

CNN + Adv. 0.965 0.979 0.972 0.900 0.708 0.780 0.938 0.938 0.938 0.969 0.948 0.958
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Table 3:

Model performances on the FH dataset. Precision (P), Recall (R), and F1-Score (F1) are reported for the four 

major classes: Unknown, Positive, Negative, and Binary (Known). Note that the models were not trained on 

the Binary class. The Binary class metrics were calculated by merging the Positive and Negative classes.

Unknown Positive Negative Known

Method P R F1 P R F1 P R F1 P R F1

Rule-based 0.941 0.998 0.969 0.971 0.879 0.923 0.995 0.859 0.922 0.995 0.866 0.926

FH Only

SVM 0.983 0.994 0.988 0.987 0.936 0.960 0.977 0.959 0.968 0.986 0.963 0.975

BSVM 0.983 0.996 0.989 0.979 0.952 0.963 0.985 0.959 0.972 0.990 0.964 0.977

CNN 0.991 0.994 0.993 0.979 0.937 0.957 0.978 0.979 0.978 0.988 0.981 0.984

BioBERT 0.982 0.979 0.981 0.935 0.840 0.885 0.930 0.955 0.943 0.956 0.961 0.958

KCR + FH

SVM 0.983 0.995 0.988 0.996 0.940 0.967 0.979 0.960 0.969 0.988 0.962 0.975

BSVM 0.989 0.996 0.993 0.979 0.961 0.969 0.987 0.972 0.979 0.992 0.976 0.984

CNN 0.991 0.994 0.993 0.972 0.948 0.959 0.982 0.978 0.980 0.988 0.981 0.984

CNN + Adv. 0.989 0.993 0.991 0.981 0.940 0.960 0.976 0.974 0.975 0.985 0.977 0.981

KCR ⇒ FH

SVM 0.792 0.981 0.876 0.234 0.116 0.155 0.780 0.375 0.504 0.916 0.445 0.597

BSVM 0.853 0.984 0.914 0.435 0.378 0.387 0.903 0.555 0.685 0.953 0.634 0.758

CNN 0.956 0.994 0.975 0.545 0.389 0.452 0.882 0.843 0.862 0.986 0.902 0.942

CNN + Adv. 0.988 0.993 0.990 0.984 0.941 0.962 0.976 0.973 0.974 0.984 0.974 0.979
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