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Abstract

The Antibody Mediated Prevention (AMP) efficacy trials are the first studies to evaluate whether 

passive administration of a broadly neutralizing monoclonal antibody (mAb) can prevent HIV 

acquisition. The trials randomize 4600 HIV-negative volunteers to receive 10 infusions of the mAb 

VRC01 or placebo. The primary objective compares the incidence of HIV infection between the 

study groups. The secondary objective assesses whether and how a marker defined as the serum 

concentration of VRC01 over time associates with the instantaneous rate of HIV infection, using a 

two-phase sampling design, a pharmacokinetic (PK) model for the time-concentration curve, and 

an estimator of HIV infection times. While a Cox model with a time-dependent covariate 

constitutes an important approach to this problem, the low inter-individual vs. intra-individual 

marker variability limits its power, motivating us to develop two alternative methods that condition 

on outcome status: 1) an indirect method that checks whether HIV-infected cases have 

unexpectedly long times from the most recent infusion to the estimated infection date; and 2) a 

direct method that checks whether the marker itself is unexpectedly low at estimated infection 

dates. In simulations and a pseudo AMP application, we find that method 2) (but not 1) has greater 

power than the Cox model. We also find that the quality of the infection time estimator majorly 

impacts method performance and thus incorporating details of an optimized estimator is critical. 

The methods apply more generally for assessing a time-dependent longitudinal marker as a 

correlate of risk when the marker trajectory is modeled pharmacokinetically.
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1. Introduction

The HIV pandemic continues to incur a large burden of morbidity and mortality. While a 

highly efficacious preventive vaccine is likely required to end the pandemic, only one 

modestly efficacious vaccine has been identified.1 Over the past decade, many anti-HIV 

antibodies have been isolated from HIV infected individuals that broadly neutralize most 

strains of HIV. Several of these broadly neutralizing monoclonal antibodies (mAbs) have 

been developed for potential use to prevent HIV infection via passive administration and has 

generated optimism that highly efficacious vaccines that elicit broadly neutralizing 

antibodies against HIV can be developed.2,3

The first studies to evaluate HIV prevention efficacy of a mAb began in March of 2016, the 

Antibody Mediated Prevention (AMP) studies of the VRC01 mAb. AMP consists of two 

linked efficacy trials in two cohorts at high risk of acquiring HIV infection: (1) men and 

transgender persons who have sex with men in the U.S., Peru, Brazil, and Switzerland; and 

(2) women in sub-Saharan Africa. The two AMP trials have identical study designs and 

harmonized protocols, which we refer to collectively as AMP. AMP randomizes HIV 

negative volunteers in 1:1:1 allocation to one of three study arms– 10 mg/kg VRC01 (low 

dose), 30 mg/kg VRC01 (high dose), or placebo– each administered via infusion every 8 

weeks for 10 infusions. The primary objective compares the cumulative incidence of HIV 

infection by the Week 80 study visit between the two VRC01 study groups pooled versus the 

placebo group. The secondary objective assesses the association of the serum concentration 

of VRC01 over time in VRC01 recipients with the instantaneous rate of HIV infection. 

Identification of an association would aid HIV vaccine development by setting a bar for the 

required potency of a vaccine-induced immune response to putatively achieve a high level of 

protection, thus helping define study endpoints in Phase 1 and 2 trials that vet candidate HIV 

vaccines for their potential efficacy. Using AMP as an illustration, we develop and evaluate 

statistical methods for assessing a time-dependent longitudinal biomarker–whose value 

changes over time in a cyclical fashion and can be appropriately modeled with a population 

pharmacokinetic (PK) model– as a correlate of risk of an interval censored failure time.

Appropriate statistical methods need to account for the following statistical issues. First, 

because the longitudinal marker of interest is costly to measure, it is measured in VRC01 

group participants using a sub-sampling design such as classic case-cohort (e.g., Self-

Prentice4) or case-control/two-phase sampling (e.g., Breslow et al.5). AMP plans two-phase 

sampling, measuring the marker in all participants experiencing the primary endpoint HIV 

infection by Week 80 (cases), and in a stratified random sample of participants who 

complete follow-up to Week 80 HIV negative (controls). In controls, the marker is measured 

every 4 weeks from Week 0 to Week 80 plus at 5 days post second infusion, and in cases the 

marker is measured on the same schedule up until HIV infection diagnosis. Second, for all 
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participants in the case-control sample, a PK model is used to estimate the true serum 

concentrations S(t) of VRC01 over continuous time t since study entry, which has an error 

term due to the fact that S(t) is only measured at discrete time points. The PK model also 

needs to account for the heterogeneity among participants in the timing and number of 

infusions received, which occurs due to variability in days between infusion visits and to 

missed infusions. Third, the time from enrollment until HIV-1 infection is interval censored 

given the periodic HIV diagnostic tests (administered every 4 weeks in AMP), which means 

that S(t) at the HIV infection date has an additional source of uncertainty.

One direct approach to studying the association question of interest would link S(t) modeled 

by a PK model with the hazard of HIV infection via a Cox proportional hazards model and 

use joint longitudinal survival modeling methods that account for the error in estimation of 

S(t); however to our knowledge the literature for these methods [e.g., work by Wu6 and later 

references] has not considered a PK model for S(t). While this approach is worth pursuing 

given its interpretability, when we discovered that an approximate joint modeling method 

[regression calibration applied with the Self-Prentice4 and Lin7 Cox models for a case-

cohort or two-phase sampled time-dependent covariate] had surprisingly low power for 

AMP, we launched new research to consider alternative methods that instead of modeling 

the infection hazard conditional on S(t), turn the problem around and model S(t) conditional 

on HIV infection time. This affords multiple simplifications as described below, yielding 

two methods of study– one that assesses if HIV infections tend to occur late in infusion 

intervals (when concentrations S(t) must be low), and a second that assesses if S(t) at HIV 

infection tends to be low compared to expected levels of S(t) at times of HIV exposures. 

This alternative approach also advantageously allows use of measurement error methods that 

directly account for uncertainty due to the interval censoring of HIV infection times, 

something not done by existing joint modeling methods. In particular, the new approaches 

modularly incorporate a model for predicting HIV infection dates of cases from collected 

data including on HIV-1 diagnostics, HIV-1 viral loads, and intra-host diversification of 

HIV-1 sequences. Moreover, the first of the alternative approaches has resource advantage of 

not needing any measurements of S(t).

The article is organized as follows. Section 2 defines the target parameters and associated 

hypothesis tests of interest. Section 3 summarizes the PK model of mAb concentration S(t) 
over time. Section 4 describes the two newly proposed methods for estimating the target 

parameters and obtaining confidence intervals and p-values. Section 5 compares power and 

precision of the two new methods – plus a comparison with two alternative methods (a Cox 

model that handles two-phase sampling and a case-only sign test) – via a simulation study of 

AMP. Section 6 illustrates application of the methods to a pseudo-example data set 

representative of what is anticipated from AMP. Section 7 concludes with discussion.

2. Target Parameters and Hypothesis Tests

The methods we develop restrict the analysis to participants assigned to receive VRC01. For 

simplifying the methods exposition we do not account for assignment to low or high dose 

VRC01, although the inferential methods account for this factor through stratification/

covariate-adjustment, and we also account for dose in the Simulations and Application.

Gilbert et al. Page 3

Stat Med. Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.1. Notation

We first define the failure time information. Let T be the time from enrollment to HIV 

infection, and C be the time from enrollment to right-censoring, defined as loss to follow-up 

or reaching the final follow-up visit at time τ without any HIV positive test results (τ = 

Week 80 for AMP). Let Tdx be the time from enrollment to HIV infection diagnosis (based 

on a positive HIV test result at a study visit), where generally Tdx > T because infection 

dates cannot be observed due to the periodic HIV tests. Let Y = I(T ≤ τ) be the indicator of 

infection occurrence during study follow-up. Let X = min(T,C), Xdx = min(Tdx,C), Δ = I(T ≤ 

C), and Δdx = I(Tdx ≤ C). Note that “cases” are participants with Tdx ≤ τ and “observed 

cases” are participants with Δdx = 1. We assume that for every observed case, an interval [L, 
U] can be determined such that T lies within [L, U] with probability 1. (A critical 

methodological issue is estimation of L and U, which we address in the Simulations and 

Supplement E.) Thus T is interval censored, whereas Tdx is subject to right censoring. Let 

Yobs = 0 define “eligible controls” – participants who reach the final follow-up visit τ HIV 

negative (defined by Yobs = 1 − (1 − Δdx)I(C = τ)) – which constitutes the set from which 

controls are sampled for a case-control study.

We next define other variables. Let Z be baseline covariates. Suppose Nmax infusions are 

planned and no more than Nmax infusions are actually administered. Let N be the number of 

infusions actually received, with T in f  (τ) = T1
in f , ⋯, TN

in f T
 the set of infusion times (since 

enrollment) with 0 = T1
in f < T2

in f < ⋯ < TN
in f ≤ τ. Here we assume infusions do not occur 

after HIV infection, which is approximately true in AMP because infusions are discontinued 

after HIV infection diagnosis. Let 939547 be a participant’s average of his/her infusion 

interval times. For cases let Tdiff be the time elapsed between HIV infection and the most 

recent infusion before infection: Tdi f f = T − TN
in f . To define the longitudinal VRC01 

concentration marker process data, let S(τ) = S(u), 0 ≤ u ≤ τ  with S(u) the marker value at 

time u, and let S(τ) = 1
Xdx∫ 0

Xdx
S(t)dt be a participant’s average log-transformed concentration 

during his/her follow-up period. Participants eligible for measurement of S(τ) are cases and 

eligible controls, from which participants are randomly sampled for measurement of the 

marker (the “case-control sample”). Let ϵ be the indicator that a participant is selected into 

the case-control sample. For participants with ϵ = 1, suppose Mmax measurements of the 

marker are planned and no more than Mmax measurements are made. The marker is 

measured at the M time points Tms(τ) = T1
ms, ⋯, TM

ms T
 with 0 = T1

ms < T2
ms < ⋯ < TM

ms ≤ τ, 

with observed marker values W = (W1,···,WM)T , where Wm = S Tm
ms . Note that M may vary 

over individuals. Lastly, let Zpost denote any post-baseline covariate information collected 

from all participants before infection diagnosis other than Tinf(τ), and let V be information 

collected at and after HIV infection diagnosis such as HIV diagnostic test results, HIV viral 

loads, and HIV-1 amino acid sequences, which may be useful for predicting T.

The observed phase-one data (i.e., measured from everyone) are Ω1 = (Z,Xdx,Δdx, Zpost; Tinf 

(τ), ϵ) and the observed phase-two data (i.e., only measured in the case-control sample with 
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ϵ = 1) are Ω2 = (Tms(τ),W,ΔdxV). We assume Ωi
1, ϵiΩi

2  are an iid sample, i = 1, ⋯ , n, for 

the n participants assigned to receive VRC01. The sampling indicator ϵ may depend on a 

discrete phase-one baseline covariate as well as outcome status, constituting a two-phase 

sampling design.5

Figure 1 shows the AMP schedules of infusions, HIV diagnostic tests, and sampling of 

VRC01 concentrations, and Figure 2 shows data on measured VRC01 concentrations, PK 

model fits to the data, and simulated concentration data for randomly selected VRC01 

recipients in the HVTN 104 Phase 1 trial8 based on the PK model summarized in Section 3. 

Figure 2 shows a sawtooth pattern of concentrations that peak within hours of each infusion, 

drop rapidly in the next few days followed by a slower decline until the lower detection limit 

of the assay or the next infusion.

2.2. Target Parameters and Hypothesis Tests of Interest

We define the true target parameters of interest in terms of underlying events of interest, 

such as the actual infection indicator Y and infection time T. For VRC01 group individuals, 

the “Times Method” compares two parameters, the first for infected individuals (Y = 1) – the 

mean time between the last pre-infection infusion date and the infection date, and the second 

for uninfected individuals (Y = 0) – one-half the mean of the participant-specific average 

time interval between infusions. These two mean parameters of interest are:

μTcase ≡ E Tdi f f Y = 1  and  μTctrl ≡ E T in f ⋅ int Y = 0 . (1)

Assuming that participant exposures to HIV are uniformly distributed across the follow-up 

period, μTcase > μTctrl/2 would support that higher concentrations are associated with a lower 

rate of HIV infection, based on the known sawtooth pattern of S(t) illustrated in Figure 2. 

For example, with infusions administered every 8 weeks as in AMP, we know that μTctrl/2 is 

approximately 4 weeks, and a result where infections occur on average 7 weeks after the last 

infusion (μTcase = 7 weeks) would imply that S(t) tends to be low at infection. As we will see 

in the Simulations and Application, for data analysis, a result of the estimate of μTcase 

exceeding the estimate of μTctrl/2 does not necessarily support higher concentrations are 

associated with a lower rate of HIV infection, if a large proportion of cases have 

T < TN
in f < Tdx. Thus a critical objective of the Times Method is design of a good enough 

estimator of μTcase to make valid such an implication.

The second approach, the “Marker Method,” compares the mean VRC01 concentration at 

the time of infection for VRC01 group cases, with the mean participant-specific average 

VRC01 concentration over follow-up time, where the former mean being smaller would 

again support that higher concentrations are associated with a lower rate of HIV infection. 

The participant-specific average VRC01 concentration over follow-up time is intended to 

reflect the expected concentration at the time of a random HIV exposure, where, as for the 

Times Method, we assume that HIV exposures are uniformly distributed across the follow-

up period. (Supplement C considers an extension relaxing this assumption.) For the Marker 

Method, the mean parameters of interest are:
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μScase ≡ E[S(T) Y = 1]  and  μSctrl ≡ E[S(τ) Y = 0] . (2)

The null hypotheses of interest are:

H0
T : μTcase = 1

2 μTctrl  and  H0
S: μScase = μSctrl . (3)

Interest centers on the 1-sided alternatives H1: μTcase > 1
2 μTctrl and H1

S: μScase < μTctrl, and 

below we develop Wald tests of H0
T and H0

S.

2.4. The Marker Method Approximately has the Desirable Forward Interpretation

As noted in the Introduction, a direct approach to assessing correlates would study the 

hazard of T conditional on S(t), λ(t|S(t) = s) ≡ limh→0 P(T ∈ [t,t + h)|T ≥ t,S(t) = s)/h, where 

a detected association would have clear interpretation as subgroups with higher S(t) have 

lower hazard of infection. However, while there are methods implementing this approach 

with interval-censored failure times (e.g., see work by Sun9), they have not accounted for 

covariate sub-sampling designs, and turn out to have relatively low power for our motivating 

AMP application as shown in Section 5. Moreover, examining the null hypothesis shows that 

reversing the order of S(t) and T yields an interpretable test, especially if the failure outcome 

is rare as in our application. In particular, with λ(t) ≡ limh→0 P(T ∈ [t,t+h)|T ≥ t)/h, 

straightforward calculation (see Supplement A) shows that the null hypothesis 

H0
Shaz:λ(t |S(t) = s) = λ(t) for all t ∈ (0,τ] and all s, has implication that E[S(t)|T = t] = E[S(t)|

T > t], and moreover E[S(t)|T > t] approximately equals E[S(t)|T > τ], as long as (i) P(T ∈ 
(t,τ]) or (ii) |E[S(t)|T > τ]−E[S(t)|T ∈ (t,τ]]| is small. Term (i) is small in the rare event 

setting, and term (ii) is small under the null hypothesis H0
Shaz, justifying this approximation 

(see Supplement B for more details). Now, E[S(t)|T = t] = E[S(t)|T > τ] for all t ∈ (0,τ] 

implies E[S(T) Y = 1] = E[S(τ) Y = 0], which is the null hypothesis H0
S of the Marker Method 

(Supplement A), showing that the Marker Method provides a way to reject H0
Shaz.

Under a random censoring assumption T ⫫ C, simple calculation shows that the approximate 

equation E[S(t)|T = t] = E[S(t)|T > τ] for all t ∈ (0,τ] may be rewritten as E[S(t)|T = t,Δdx = 

1] = E[S(t)|Yobs = 0] for all t ∈ (0,τ]. Next, we add a missing at random assumption for 

measuring W, P(ϵ = 1|Ω1, Ω2) = P(ϵ = 1|Ω1)), which yields the result that H0
Shaz

approximately implies the directly testable null hypothesis

H0
Sobs:E S(t) T = t, ϵΔdx = 1 = E S(t) ϵ 1 − Yobs = 1 (4)
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for all t ∈ (0,τ]. Therefore, for a test designed to reject H0
Sobs, when it rejects H0

Sobs it will 

also reject H0
Shaz with its desirable forward association interpretation. In the simulations we 

also include a direct forward association method for comparison – a Cox model with a time-

dependent covariate.

2.5. Remarks on Causality

Our forward parameter of interest, λ(t|S(t) = s), is a statistical parameter, not a causal 

parameter, such that an association between S(t) and T ∈ [t,t + h) could be partly due to 

covariates associated with both T ∈ [t,t + h) and with S(t) and/or I(T > t). While an 

alternative causal parameter could be defined for a hypothetical world where all participants 

were assigned S(t) = s, in this article we restrict attention to the statistical parameter. 

Nevertheless, in a Cox model analysis of λ(t|S(t) = s), it is useful to control for baseline 

covariates that capture information on the amount of HIV-1 exposure, because if S(t) varies 

with an unaccounted for exposure variable then the regression parameter for S(t) measures a 

gradient in infection risk across subgroups defined by S(t) that vary in both biological and 

exposure/behavioral factors. Controlling for exposure variables increases the ability of the 

regression parameter to capture only biological variability, which makes it most useful for 

applications.

3. PK Model of Antibody Concentration S(t)

As a component of the Marker Method and the Cox model method described in the next 

section, we specify a two-compartment PK model for S(t), t ∈ (0,τ], after k ∈ {1, ⋯, N} 

doses of VRC01 with dose amount Dj (j = 1, …, k) administered at times T j
in f t ≥ Tk

in f :

S(t) = ∑
j = 1

k
D j Ae

−α t − T j
in f

+ Be
−β t − T j

in f
, (5)

where α and β are slopes for the distribution (rapid decline) and elimination (slower decline) 

phases, and A and B are intercepts on the y-axis for each exponential segment of the time-

concentration curve. This PK model assumes that the IV infusion administration time (about 

20–30 minutes) is brief relative to the half-life of the mAb and that the PK of the mAb after 

a single dose is not altered by multiple doses, although cumulations of drug concentrations 

over multiple doses are accommodated. Both assumptions are reasonable based on the robust 

fit it provided to repeated-dose PK data from recent Phase 1 studies of VRC01.8,10

As described in more detail in Huang et al.,10 the population PK (popPK) model (that 

includes (1)) of the set of observed concentrations W considers both interindividual 

variabilities (IIVs) of the PK parameters (A, B, α, and β) for S(t) and a combination 

proportional + additive residual error via non-linear mixed effects (NLME) modeling. For 

IIV, an exponential inter-individual random effects model is considered with PK parameters 

log-normally distributed and random effects normally distributed. Specifically, we consider 
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θi = TVθi
* exp ηθi

, where θi denotes individual i’s PK parameter value that is log-normally 

distributed, TVθi
 is her/his population PK parameter value included as a fixed effect in the 

NLME model, and ηθi
 is her/his inter-individual random effect that is normally distributed. 

Regarding the residual error, let Wij and Ŵij denote the jth measured and model-predicted 

concentrations, respectively, for individual i. The combination proportional + additive error 

model is expressed as W i j = W i j 1 + ϵ1i j + ϵ2i j
, where ϵ1 and ϵ2 are the proportional and 

additive error terms, respectively.

The NLME modeling also accounts for covariates Z (e.g., body weight) that are predictive of 

the PK variability between individuals in the modeling of the fixed effect TVθi
 via, for 

example, an exponential or a power covariate model. The former model is expressed as 

TVθi
= βθ * exp βBW(θ) * BW i , and the latter model as TVθi

= βθ * BW i
βBW(θ)

, where βθ 

denotes the intercept term, BWi the mean-centered body weight of individual i, and βBW(θ) 

the regression coefficient for the association between body weight and the PK parameter θ. 

After all parameters characterizing the fixed and random effects of the NLME model are 

estimated, the fitted NLME model is then used to compute an estimate Ŝ(t) for each 

individual’s S(t) and the variance of Ŝ(t) for every t ∈ (0,τ], accounting for the individual’s 

infusion information, covariate information and the inter-individual variability of the PK 

parameters (See Supplement D).

4. Estimation and Testing Procedures

The parameters of interest condition on Y = 1 or Y = 0; by random censoring these 

conditioning events can be replaced by the observable events ΔdxYdx = 1 (observed case) or 

Yobs = 0 (eligible control). We describe the estimators for parameters conditioning on 

ΔdxYdx = 1 or Yobs = 0.

4.1. Times Method

The mean μTctrl = E T in f . int |Yobs = 0  is estimated using any preferred consistent estimator 

of a mean, based on all eligible controls (Yobs = 0). If the sample mean is used, then the 

variance of μTctrl may be estimated simply as the sample variance of the observations 

T i
in f . int |Y i

obs = 0. If a more efficient estimator is used that accounts for baseline covariates Z 

(e.g., see work by Rose and van der Laan11),then the average of squared influence curve 

contributions may be used.

For cases, in the idealized situation where true infection times T are observable (i.e., P(T = 

Tdx) = 1), then it is straightforward to estimate μTcase = E[Tdiff|ΔdxYdx = 1], equivalent to the 

problem of estimating μTctrl. In the real situation, where T and hence Tdiff is not observable, 

estimation of μTcase is harder than estimation of μTctrl. Suppose a model is used to predict T 
for each case based on all available observed data (Ω1, ϵΩ2); let T i* be the predicted value of 
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Ti for each case i. We then estimate μTcase by using the predicted values T i
* di f f  as the 

observations, where T i
* di f f = T i* − TN

in f . Again the simplest estimator is the sample mean of 

the values T i
* di f f | Δi

dxY i
dx = 1, and a more efficient estimator could be used that leverages 

information in (ΔdxYdx = 1,X,Z,Tinf(τ),Zpost,V). As for controls, the variance of μTcase may 

be estimated simply as the sample variance or as the average of squared influence curve 

contributions.

It is easy to construct a consistent estimator of E[T*diff|ΔdxYdx = 1], for example the sample 

mean of T i
* di f f  values from all Δi

dxY i
dx = 1 individuals, or the stratified sample mean defined 

as the sum of the two VRC01 dose-group specific sample means weighted by the fractions 

of Δi
dxY i

dx = 1 individuals in each dose-group (because of the AMP study design we use the 

latter estimator in the Simulations and Application). Under the two assumptions that the 

utilized estimator for T is (A1) unbiased and (A2) has homoscedastic errors, a consistent 

estimator of E[T*diff|ΔdxYdx = 1] is also a consistent estimator of E[Tdiff|ΔdxYdx = 1], and a 

consistent variance estimator of Ê[T*diff|ΔdxYdx = 1] is also a consistent variance estimator 

of Ê[Tdiff|ΔdxYdx = 1] (Section 15.1 in Carroll et al.12). Therefore, under (A1) and (A2), one 

can use “ordinary” statistical methods that treat the predicted values T i
* di f f ‘s as observed 

values, and is an important reason we tackled the problem by reversing the time ordering. 

However, the precision of the estimates T i
* di f f  affects how much precision is lost in 

estimation of E[Tdiff|ΔdxYdx = 1] compared to using true values T i
di f f  measured without 

error. This discussion highlights that our estimation approach handles the interval-censored 

outcomes in two modular steps– first develop the best possible estimator of the infection 

time and second use any consistent estimator of a mean; this modularity allows statisticians 

to use preferred methods for each step.

In the Simulations and Application we use simple sample average estimators (within VRC01 

dose group strata):

μTctrl = ∑
i = 1

n
Ti

in f . int 1 − Yi
obs / ∑

i = 1

n
1 − Yi

obs ,

μTcase = ∑
i = 1

n
Ti

* di f f Δi
dx/ ∑

i = 1

n
Δi

dx .

4.2. Marker Method

For any fixed t, let S(t) be the value Ŝ(t) in equation (1) using the estimates of the popPK 

parameters A,B,α,β. For estimation of μScase ≡ E [S(T)|ΔdxYdx = 1], note that even in the 

idealized situation with P(T = Tdx) = 1, the outcomes S(Ti) are not observable, because the 

process S(·) is measured on a discrete visit schedule that generally does not include the 

infection time Ti. Given an Ti, the popPK model (1) is used to estimate S(Ti). Then, using a 
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similar two-step modular process as for the Times Method, μScase ≡ E [S(T)|ΔdxYdx = 1] 

may be estimated by sample averages of the S T i | Δi
dxY i

dx = 1 values. To aid adherence to the 

homoscedastic variance assumption (A2), the analysis is done with values Ŝ(t) on the natural 

log transformed scale that minimizes heteroscedasticity of errors. If substantial variance 

variability remained, each observation could be weighted by its estimated inverse variance 

(Sections 15.2.2, A.7 in Carroll et al.12). This results in the weighted estimator 

μScase = ∑i = 1
n Δi

dxY i
dxwi

caseS T i  with wi
case = Var S T i

−1/∑ j = 1
n Δ j

dxY j
dx Var S T j

−1
. 

Here each Var  S T i , as well as co-variance terms for different participants with Ti and Ti′, 

can be calculated analytically by the propagation of error, following a first-order 

linearization of the nonlinear mixed effects model of the observed concentrations 

(Supplement D). The variance of μScase may then be estimated by 

Var μScase = ∑i = 1
n Δi

dxY i
dx wi

case 2
Var S T i + ∑i = 1

n ∑i′ = 1
n Δi

dxY i
dxΔi′

dxY i′
dxwi

casewi′
caseCov

S T i , S T i′

.

In a previous simulation study, we found that this weighted estimator performed worse (in 

bias and type I error rate control) than the unweighted approach, which uses a dose-group 

stratified sample-mean estimator of μScase and a dose-group stratified sample-variance 

estimator of μScase, not using the analytic variance estimates from the popPK model. We 

conjecture that those results are due to imprecision in the popPK model variance estimation. 

Thus, we used the unweighted estimator of μScase in this study. To help understand why the 

weighted estimator does not confer improvements, literature suggests that the weighted 

estimator may be recommended if two conditions hold: 1) severe heteroscedasticity still 

remains for the transformed Ŝ(t), e.g., the maximum variance is greater than 3 times the 

minimum variance as suggested by Deaton, Reynolds and Myers13 and 2) the variance of the 

transformed Ŝ(t) can be stably estimated. Otherwise, an unweighted analysis may be 

preferable [e.g., see work by Williams14].

In the real situation, where T is not observable, the estimation proceeds in the same way, 

except Ŝ(ti) is replaced with S T i* . However, the variance terms Var S T i*  and related 

covariance terms calculated analytically by the propagation of error do not account for 

uncertainty in T i*, which is another reason why our analysis in the Simulations and 

Application does not use these analytic variance-covariance estimates and instead simply 

uses the sample variance of the S T i* | Δi
dxY i

dx = 1 values. This choice is also supported by 

our evaluation in the simulation study of how the variance of S(T*) varied over 12 

subgroups defined by VRC01 dose group, the diagnostic pattern of first positive (FP) HIV-1 

test result, and whether the FP visit was at an infusion visit or a mid-infusion visit (Web 

Figure 1 in Supplement F – all subsequent Web Figures are in Supplement F). Because the 

sample variances are approximately uniform over the subgroups, we used the unweighted 

estimator.

For estimation of μSctrl, we first consider the idealized situation where all eligible control 

participants have markers measured. For a given control study participant with Yobs = 0, 
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based on his/her data (Xdx, Δdx, Z, Tinf (τ), W), the popPK model described above is used to 

estimate S(t) at every time point t between 0 and Xdx (e.g., computed on a daily grid), 

yielding {Ŝ(t) : t ∈ (0, Xdx]}, and then the average S(τ) is estimated numerically by 

S(τ) = 1
Xdx ∫

0

Xdx

S(t)dt. The concentrations Ŝ(t) are analyzed on the natural log scale so that the 

averaging is over an approximately symmetrical distribution. Here the assumption of 

homoscedastic errors for the Si(τ) variables is reasonable, given the averaging of Ŝ(t) over the 

same daily grid and span of times for all control participants. Next, we consider the real 

situation, where case-control or two-phase sampling is used that measures the longitudinal 

markers in a random sample of eligible controls. If Bernoulli simple random sampling is 

used, then μSctrl ≡ E S(τ) |Yobs = 0  may be estimated by a sample average of the Si(τ) values 

of participants i with ϵi 1 − Y i
obs = 1. However, if the probabilities of sampling control 

participants for marker measurement, πi = P ϵi = 1|Zi, T i
in f (τ), Y i

obs = 0 , are not all equal, 

then these estimators may be biased. In this situation an estimator is needed that adjusts for 

the biased sampling. A simple approach weights each participant i in the analysis (with 

ϵi 1 − Y i
obs = 1) by 1/πi, where πi is an unbiased estimate of πi. Alternatively, more efficient 

estimators of μSctrl could be used, such as augmented inverse probability weighting (IPW)15 

or IPW targeted minimum loss-based estimation (TMLE).11

In the Simulations and Application we use simple sample average or IPW-weighted sample 

average estimators:

μSctrl = ∑
i = 1

n
wiSi(τ) with wi = ϵi 1 − Yi

obs /πi / ∑
j = 1

n
ϵ j 1 − Y j

obs /π j ,

μScase = ∑
i = 1

n
S Ti* Δi

dx/ ∑
i = 1

n
Δi

dx .

The variance of μSctrl may be estimated by Var μSctrl = ∑i = 1
n wi

2Var  Si(τ) .

Supplement A consolidates all of the assumptions needed for consistent estimation of μTcase, 

μTctrl, μScase, and μSctrl.

5. Simulation Study of the AMP Studies for Comparing the Methods

5.1. Evaluated Methods

We study size and power of 1-sided 0.025-level Wald tests to reject H0
T and H0

S, as well as 

coverage of 95% Wald confidence intervals for μT ≡ μTctrl − 1
2 μTcase and μS ≡ μSctrl − μScase. 

Values μT = μS = 0 reflect the null hypotheses and μT < 0,μS > 0 reflect the alternative 

hypotheses of interest. We also study the Cox model with coefficient β for Ŝ(t), and include 
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a baseline behavioral risk score Zbr in an effort to adjust for the amount of HIV-1 exposure. 

Thus the Cox model fit to data sets is λ(t|Ŝ(t) = s,Zbr = l) = λ0(t)exp{βs + ηl}. We use Lin’s 

method7 because it applies for the two-phase sampling design used in AMP; this method is 

coded in the svycoxph function of the survey R package. A limitation of the existing sub-

sampling Cox model methods is that they do not accommodate interval censoring of the 

failure time; for that extensions of other methods such as Zeng, Mao and Lin’s16 would be 

needed; we do not pursue those here. Note that our Cox model analysis should be interpreted 

as studying the association of the estimated time-dependent covariate Ŝ(t) with outcome; to 

interpret it in terms of the “true marker” S(t), this approach is a regression calibration 

method, which is well known to suffer from bias, albeit in a limited fashion in rare event 

settings such as ours.

If the investigator seeks a Cox modeling analysis with regression parameter closer to a 

causal assocation parameter, then the analysis could control for an estimate of the baseline 

propensity score (PS); if Ŝ(t) is dichotomized the PS is the probability that Ŝ(t) = 1 

conditional on measured baseline variables and if Ŝ(t) is continuous then the PS may be 

taken to be the conditional expectation of Ŝ(t). Covariate-adjustment via propensity scores 

faces additional complications in case-cohort/case-control sampled studies compared to 

studies with full sampling. For example, as studied in Mänsson et al.,17 there can be 

artifactual effect modification of the causal association parameter by the estimated PS, and 

there can be residual confounding due to bias in the estimation of the PS. For our 

application, if an estimated PS were included in the Cox regression analysis of λ(t|Ŝ(t) = s), 

then the first issue should be considered if effect modification by the estimated PS is studied. 

The second issue is not expected to cause serious bias in our setting because the bias is small 

for rare event studies.

5.2. Simulation Design

We study the methods under a variety of data generation schemes fitting to AMP.

Throughout we use the combined AMP studies sample size of n = 1533 in each of the 10 

mg/Kg and 30 mg/kg dose groups. Our first step generates visit times. Following Figure 1, 

we consider centers of visit windows at Week 0, 4, 8, 8.5, 12, 16, 20, 24, 28, 32, 36, 40, 44, 

48, 52, 56, 60, 64, 68, 72, 76, 80, where the planned infusion visits are bolded. We study the 

perfect infusion adherence scenario where all participants attend every visit (except those 

who drop out as noted below), and we use the target date + random Uniform(−7, 7) draws to 

set actual visit dates of the scheduled 4-weekly visits with a 7-day upper and lower visit 

window, except for the Week 8.5 visit that is set to 5 days after the Week 8 infusion plus date 

+ random Uniform(−2, 2) draws. We also study two imperfect adherence scenarios (medium 

and high), with medium defined by 10% of infusion visits missed and 15% of non-infusion 

visits missed (determined by randomly deleting visits among participants not yet right-

censored), 15% permanent discontinuation of infusions per year, and 15% loss to follow-up 

per year (the latter two simulated by independent exponential failure times). The high 

adherence scenario is defined by 2%, 3%, 3%, and 5% for these numbers, respectively. Once 

the visit dates and the censoring time C (defined as the minimum of the Week 80 visit time, 
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the permanent infusion discontinuation time, and the loss to follow-up time) are simulated, 

the infusion times Tinf(τ) are determined.

Second, we simulate study participants’ body weight according to the estimated distributions 

for men and women in past efficacy trials,18,19 and hence the mAb dose amount, D = body 

weight (kg) multiplied by the mAb dose level (10 or 30 mg/kg), at each attended infusion 

visit. For each study participant, conditional on D, the visit dates and Tinf(τ) set in the first 

step, we then simulate the observed values W of Ŝ(t) at the M attended study visits according 

to the popPK model.

Third, conditional on the visit dates, the true infection time T is generated according to a 

Cox model with time-dependent covariate z(t): h(t|x, z(t)) = h0(t)exp(β0z(t)). Here h0(t) is 

the baseline hazard function, z(t) is the time since the latest infusion prior to t when t ≤ ts 

and equals ts when t > ts, where ts is the time since the prior infusion to reach a serum 

concentration of 5 mcg/mL. This value 5 is near the lower quantification limit of the assay 

and may be thought of as a “zero-protection threshold,” where we assume that at times when 

the serum concentration is below 5 mcg/mL, a VRC01 recipient has the same instantaneous 

risk of infection as a placebo recipient; this allows us to choose β0 and a constant baseline 

hazard h0(t) to yield for all simulation settings the AMP protocol assumption of average 

annual incidence in placebo recipients of 4.0% (although our analyses do not use any data 

from placebo recipients). See Huang et al.20 for details on this Cox model simulation 

technique, which was designed as a proxy model for how VRC01 concentration at time t 
links to the infection hazard based on the expectation that log-transformed drug 

concentration changes non-decreasingly and linearly with time after the first few days post 

infusion during the elimination phase. Once T is simulated, the participant’s last negative 

test visit and first positive test visit and corresponding first positive test results are also 

determined, based on the properties of the HIV diagnostic tests described in Supplement E.

The parameter β0 governs the association of z(t) with the hazard rate, equal to the log hazard 

ratio per 1-day increase in z(t). We study five different effect size 28-day hazard ratios 

exp(28 * β0) = 1.0, 1.32, 1.75, 2.32 and 3.06 per 28 days, which approximately translate to 

an overall dose-pooled prevention efficacy vs. placebo of 0%, 30%, 50%, 60% and 75% 

under perfect study adherence, assuming that Ŝ(t) is a perfect surrogate endpoint that fully 

explains all variabilities in an individual’s risk of HIV infection (Prentice’s “full mediation” 

condition for a valid surrogate endpoint). Setting β0 = 0 induces all three null hypotheses of 

interest μT = 0, μS = 0, β = 0, whereas setting β0 < 0 induces the three alternative hypotheses 

of interest μT < 0, μS > 0, and β < 0. The values of β,μT , and μS are not known analytically 

for alternatives set by β0 < 0.

Fourth, following the AMP trial design, we use a two-phase sampling design for determining 

the sampling indicator ϵ, where for observed cases (with ΔdxYdx = 1), we set ϵ = 1. For 

observed controls (with Yobs = 0), within each of four strata k = 1,2,3,4 defined by VRC01 

dose group cross-classified with AMP study, ϵ is generated as Bernoulli(γk) with success 

probability γk selected such that the expected number of controls Yobs = 0 with ϵ = 1 equals 

Nk
case, 2Nk

case, or 939547, where Nk
case is the number of observed cases in stratum k. Fifth, 

Tms(τ) is determined by the set of observed visits. Then, W is set to the values of Ŝ(t) at the 
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time points t = T1
ms, ⋯, TM

ms. Lastly, we generate Zbr as expit(YobsN(1,1) + (1 − Yobs)N(0,1)) 

where N(a,b) is a normal variate with mean a and variance b.

For each of 500 simulated data sets, μTcase,μTctrl,μScase,μSctrl, and β are estimated, together 

with their variances. For the Marker Method, the non-variance weighted implementation is 

used except where noted. For the Times and Marker Methods, to estimate each of the four 

mean parameters of interest (and hence the two mean differences μT and μS), we use sample 

mean estimators with stratification by dose group, where for estimation of μSctrl a constant 

IPW sampling weight 1/P ϵ = 1|Yobs = 0 , Lstr = k  is used within each of the 4 strata k = 

1,2,3,4, where the denominators are empirical fractions. Under the data generating 

distribution in our simulations, the stratified sample mean estimators are efficient, and thus it 

was not surprising that swapping these estimators for TMLEs did not improve efficiency 

(results not shown).

The methods are implemented using an estimator T* of the true infection event time T that is 

based on the three HIV-1 diagnostic assays that are performed on blood samples at all study 

visits in AMP. The fact that these tests register positive (+) or negative (−) during different 

time intervals post-infection constitutes the basis for timing estimation, where cases have FP 

test results of one of three patterns +−, ++−, +++. Supplement E describes the diagnostic 

assays and how they are used to define T* and lower and upper bounds for possible infection 

times. For the Times Method and case-only sign-test method, we excluded cases who missed 

the infusion prior to infection diagnosis because of the low precision of T*. We also apply 

the methods using the true infection times T– a gold-standard not fully achievable in 

practice. Power is computed as the proportion of the 500 Wald Z-statistics exceeding the 

0.025-level normal critical value, and coverage is computed as the proportion of the 500 

Wald 95% 2-sided confidence intervals that include the true parameter value. Coverage is 

only studied under the null hypothesis because in that case the exact values of μT , μS, and β 
are all known (to be zero). We also compare the three methods to a simple case-only sign 

test applied to observed cases, with positive sign if a participant has a negative HIV test 

result at an in-between infusion visit and is diagnosed at the subsequent infusion visit, and a 

negative sign if a participant has a negative test result at an infusion visit and is diagnosed at 

the subsequent in-between infusion visit. Participants with neither result are excluded from 

the analysis. A one-sample binomial proportion Wald test is used comparing the fraction of 

cases with positive sign to 0.5, with binomial variance estimated under the null hypothesis.

5.3. Simulation Results

We report results for the stratified sample mean procedures unless otherwise noted. We first 

found that all methods had elevated type I error rates if participants who permanently 

discontinued infusions prior to infection diagnosis were included, and therefore we report on 

the methods excluding these cases, which for the Cox model means right-censoring the 

failure time at the discontinuation date. For the perfect adherence scenario, Web Figures 2–6 

show the Monte Carlo distributions of μT, μTcase, 1
2 μTctrl, μS, μScase, μSctrland β for the 1:2 

case:control ratio setting across the five hazard ratio scenarios. The estimators with true 

infection times are known to be unbiased and thus their distributions depict the effect sizes 

Gilbert et al. Page 14

Stat Med. Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



being studied; moreover they provide a benchmark for the estimators with estimated 

infection times. The figures show uniform lack of bias of all estimators under the null 

hypothesis, but that μTcase and μScase are downward biased under alternative hypotheses, 

thus attenuating the difference estimates μT and μS toward the nulls. These biases are caused 

by the fact that the diagnostic-based infection timing estimator T* yields values T i
* di f f  that 

are sometimes too close to the middle of infusion intervals under alternative hypotheses. 

Similarly β in the Cox model has some bias toward the null under alternative hypotheses. 

Web Figure 7 and 8 repeat Web Figures 3 and 5 for cases stratifying cases by FP test pattern 

+−, ++−-, +++. They reveal that under alternative hypotheses the estimators μTcase and 

μScase are unbiased for the first two patterns and biased for the +++ FP pattern. This occurs 

because +++ FP participants have least precision in estimation of T*diff, with Web Figure 9 

demonstrating tight correlations of estimated and true infection times for the first two 

patterns and close to zero correlation for the +++ FP pattern. Moreover, for +++ FP cases 

there is major uncertainty as to whether the infection date occurred before or after the last 

negative visit, whereas for +− − and ++− FP cases the true infection date is known to occur 

after the last negative visit with high probability (Supplement E, especially the HIV-1 
Diagnostics Diagram). Therefore it is important to consider variants of the methods that 

exclude or downweight the +++ FP cases, and we report simulation results for such variant 

methods below.

Figure 3 shows size and power of the testing procedures. Under the null hypothesis β0 = 0, 

all approaches with true infection times accurately preserve the size of the tests at 2.5%, 

except a slight inflation 3.6% – 5.4% for the Marker Method; with estimated infection times, 

the Times Method and sign-test control the size but the Marker Method and Cox model have 

inflated size 6.6% – 7.4% and 4.0%–6.0%, respectively. As expected, power is always 

higher when the true infection event times are used, massively so for the Times Method and 

case-only sign test, a large difference also for the Cox model, and a lesser difference for the 

Marker Method. Overall, the Marker Method has the highest power, followed by the Cox 

model, the Times Method, and the case-only sign test. The higher power of the Marker 

Method and Cox model compared to the Times method and the sign test is partly due to the 

higher inter-individual variability in Ŝ(t) than in Ť*diff. We conjecture that the lower power 

of the Cox model compared to the Marker Method is due to the fact that the difference in 

covariate values (i.e. Ŝ(t)) between cases and controls at each event time t is rather small 

because the majority of variability in Ŝ(t) comes from intra-individual time-swings and not 

from inter-individual variability. In fact, if participants attended study visits with identical 

intervals between visits, then the Cox analysis would measure an association of Ŝ(t) with 

infection purely due to inter-individual variability in Ŝ(t), whereas variability in visit 

schedules allows intra-individual variability to also contribute to the association. We also see 

that the case-control ratio impacts power of the Cox model method and slightly for the 

Marker Method, which occurs because precision for estimation of S(t) increases with more 

data used to fit the popPK model.

Web Figure 10 shows 95% confidence interval coverage probabilities of the target 

parameters under the null hypothesis, which are close to the nominal level for the Cox model 
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and sign test, but are too low (about 87%) for the Times Method and Marker Method. Figure 

4 illustrates how study adherence affects power of the testing approaches for the 1:2 

case:control ratio scenario. As expected, overall prevention efficacy decreases as study 

adherence decreases, and so does the power for the Times Method and the case-only sign 

test due to higher variability in the estimated effects as a result of more missing infusions 

and study dropouts. In contrast, power of the Cox model increases as study adherence 

decreases due to the increased inter-individual variability in Ŝ(t) when there are more 

missing infusions. Power of the Marker Method is less impacted by study adherence because 

the gain in power due to larger effect sizes with more missing infusions is offset by the loss 

in power due to a decreased number of cases (and hence controls) to more accurately and 

precisely estimate S(t).

To better understand the Cox model method, for the same simulated data sets we also 

evaluated the Lin7 Cox model for the time-dependent covariate defined as the observed 

concentrations at study visits, not using the popPK model. Interestingly, the result is that this 

standard method has power < 0.05 for all effect sizes, demonstrating the necessity of 

employing the PK model to estimate S(t) on a frequent time grid such as daily, especially at 

estimated failure times.

5.4. Simulation Results Repeated Excluding the +++ First Positive Cases

When the simulations are repeated with no alterations to the methods except excluding +++ 

FP cases, the testing procedures have elevated type I error rates, because +− − and ++− FP 

cases have infection time estimates T* that tend to be closer to the FP visit than expected 

under the null hypothesis H0
T (Web Figure 7). To correct for this, for the Times Method we 

estimate the control mean μTctrl using modified infusion intervals 

f + − −K+ − − + 1 − f + + − K+ + − T j
in f − T j − 1

in f , where f+−− is the fraction of +− − and 

++− FP cases that are +− − FP and K+−− = 1.26 and K++− = 0.993 are two fixed constants 

chosen accounting for the operating characteristics of the diagnostic assays (Supplement E) 

to create an appropriate comparison to μTcase under the null hypothesis H0
T. Using a similar 

procedure, constants K+−− = 0.89 and K++− = 0.99 are used for the Marker Method. No 

adjustment was made for the sign test. For the Cox model we right-censor by a +++ FP visit 

and change the null hypothesis from H0 : β ≥ β* with β* = 0 to β* = −0.137 (Supplement 

E).

Web Figures 11–15 show the Monte Carlo distributions of μT, μTcase, 1
2 μTctrl, μS, μScase, 

μSctrl and β for the perfect study adherence and 1:2 case:control ratio setting across the five 

hazard ratio scenarios, using the versions of the methods that exclude +++ FP cases. The 

results verify unbiased estimation even under strong alternative hypotheses when +++ FP 

cases are excluded. The methods control the type I error and have approximately nominal 

coverage probabilities (Web Figures 16–18), except for slight type I error inflation and 

under-coverage for the Marker Method. In addition, these versions of the methods have 

decreased power compared to the methods that include all cases (Web Figures 17 and 19, in 
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comparison to Figures 3 and 4, respectively), which occurs due to the reduced number of 

cases.

6. Pseudo-Example (Planned Analysis of the AMP Studies)

To illustrate the planned real data analysis of AMP, all of the methods studied in the 

simulations (with stratified sample means for the Times and Marker Methods) were applied 

to a single simulated AMP data set, which had n = 4600 participants and was simulated 

under true overall prevention efficacy of 52% and 71% for the low and high dose VRC01 

groups. Web Figure 19 shows cumulative incidences of HIV infection over time for the two 

VRC01 dose groups and the placebo group, detecting this prevention efficacy. Figure 5 

shows boxplots of the outcomes T i
* di f f  and T i

in f . int of HIV infected cases and uninfected 

controls used for the Times Method, as well as the corresponding outcomes S T i*  and Si τ

used for the Marker Method. The vastly wider boxplots for cases than controls for the Times 

Method suggests that this method would perform similarly to a case-only one-sample 

method based on the T i
* di f f  values. Web Figure 20 shows the S T i*  values for all individual 

HIV infected cases, as well as the measured concentrations at HIV infection diagnosis dates 

at the two previous visit dates.

Table 1 shows the results. There is consistent evidence for a VRC01 concentration correlate 

of risk across the four methods (p-values 0.018–0.071 for the method versions including all 

cases and p-values 0.001–0.061 for the method versions excluding +++ FP cases). Whether 

+++ FP cases are excluded makes a substantial difference, with estimated effects μT of 4.2 

vs. 7.6 days; μS of 0.23 vs. 0.43 log10 concentration; and β = 0.81 vs. 0.61 when including 

vs. excluding +++ FP cases, respectively. Interestingly, the versions excluding +++ FP cases 

gave lower p-values despite the reduced number of cases included in the analysis.

7. Discussion

Motivated by planning the correlates of risk study in the ongoing AMP studies, we proposed 

two new approaches to testing the association of VRC01 serum concentration over time, 

modeled by a two-compartment population PK model, with the instantaneous incidence of 

HIV infection. In simulation studies of AMP we compared the performance of these 

approaches to a regression calibration implementation of the Lin7 Cox model with a time-

dependent covariate measured via two-phase sampling, as well as to a case-only sign test. 

While the Times Method and sign test have potential resource advantage of not needing 

marker measurements, they had lowest power in simulations. The Marker Method had 

greatest power, exceeding that of the Cox model for all scenarios studied, which may stem 

from the limited inter-individual variability in VRC01 concentration compared to its large 

intra-individual variability over time resulting from repeated infusions and VRC01’s short 

half-life. We also found that power of the Cox model improves with the number of sampled 

event-free controls compared to cases, whereas power of the other three methods does not.
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To assure consistent estimation of μTcase and μScase and valid hypothesis tests of H0
T and H0

S, 

both the Times and Marker Methods require a model of HIV infection event times T that 

yield an estimator T* that is (A1) unbiased and (A2) has homoscedastic errors. By studying 

the methods with true infection times as benchmarks, we found that the methods using a best 

available estimator T* based solely on the HIV-1 diagnostic testing data collected in AMP 

violates (A1) under alternative hypotheses, leading to biased-toward-the-null estimation of 

μTcase and μScase, and of β in the Cox model. This bias is caused by the HIV-1 infected cases 

with first positive HIV-1 test result +++, given their poor estimation of infection times. In 

contrast +− − and ++− first positive cases had much better infection time estimates, 

indicating that if diagnostic testing were frequent enough to always catch infections in these 

early periods then the methods would be expected to perform well. However, because the 

AMP testing schedule does not achieve frequent enough diagnostic testing to meet this goal, 

our conclusion for AMP is that a purely diagnostic-based timing estimator would be 

insufficient for meeting the correlates scientific objective. Hence, further research is needed 

to develop an improved timing estimator for +++ first positive cases. Fortunately, 

longitudinal HIV-1 sequence data are being collected from HIV-1 infected cases in the AMP 

trials, enabling insight into HIV-1 sequence diversification, and viral load data are also being 

collected. It is promising to develop an improved infection timing estimator based on these 

additional data, which, once available, could easily be incorporated into the proposed 

methods. Not only would the use of an optimized estimator improve unbiasedness, it would 

also majorly improve power, given our simulations showed that use of true vs. estimated 

infection times dramatically impacted power.

Moreover, for validity the Marker Method and the Cox model method require a population 

PK model of monoclonal antibody concentration over time that provides unbiased estimates 

of the concentration at any study time, where the use of a PK model was necessary for the 

Cox model to have any power even against large alternative hypotheses. Therefore, an 

optimal PK sampling design is needed that samples time points within a few days after at 

least one of the infusions to characterize the distribution phase of the monoclonal antibody, 

as well as time points in the elimination phase. The Marker Method based on modeled 

concentrations could also be applied including the entire placebo group in the analysis, with 

Si(t) set to zero for all participants i and all t ∈ (0,τ]. The increase in the number of events– 

and the widened inter-individual variability of Si(t)– would increase power.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
AMP study schedules of infusions, HIV diagnostics, and marker measurements.
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Figure 2: 
(A) Observed VRC01 concentrations W at 0, 3 days and 2, 4, 8 weeks after each of the three 

infusions, and at one hour and 10–16 weeks after the last infusion for the 10 mg/Kg (left) 

and 30 mg/Kg (right) VRC01 dose arms in HVTN 104. (B) Predicted and observed dose-

normalized VRC01 concentrations in HVTN 104 after a single (left) and multiple (right) 

intravenous infusion(s) based on the final popPK model described in Huang et al.10 (C) 

Simulated time-concentration data under perfect study adherence. Solid lines are medians; 

shaded areas are 2.5th and 97.5th percentiles over 500 simulated data sets. A body weight of 

74.5 Kg is used.

Gilbert et al. Page 21

Stat Med. Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Power to detect VRC01 concentration over time as a correlate of HIV infection for the 

perfect study adherence scenarios with case:control ratios 1:1, 1:2, 1:4. The effect sizes 

parametrized by β0 are shown as 28-day hazard ratios (exp(28*β0)). Solid lines are based on 

true (estimated) infection event times. Mean PE-10 (Mean PE-30) is average empirical 

prevention efficacy over the 500 simulated trials for the 10 (30) mg/Kg VRC01 dose group. 

Mean No. Cases is the total number of VRC01 recipient cases averaged over the 500 

simulated trials.
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Figure 4: 
Power to detect VRC01 concentration as a correlate of HIV infection for the medium, high, 

and perfect study adherence scenarios with a 1:2 case:control ratio.
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Figure 5. 
For the pseudo-AMP trial data set by VRC01 dose group and FP visit type, boxplots of 

T i
* di f f  and 1

2T i
in f . int of HIV infected cases and uninfected controls (Times Method, top 

panel), and of S T i*  and Si τ  (Marker Method, bottom panel). The outlier in the fifth 

boxplots from the left has FP visit at the Day 5 post second-infusion visit, with estimated 

infection time T* just before the second-infusion visit.
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Table 1:

Application of the Times Method, Marker Method, Lin (2000) Cox model, and Case-Only Sign Test to the 

Pseudo-AMP Trial Data Set
a
.

Approach (95% CI) No. Cases in Analysis (n = 64) Target Parameter Estimate of the Parameter (95% CI) Two-sided P-value

Times 58 (91%) 1
2 μTctrl 27.98 (27.96, 28.01)

Method μTcase 32.17 (28.69, 35.65)

μT 4.19 (0.70, 7.67) 0.018

Repeat 30 (47%) 1
2 μTctrl 32.27 (32.24, 32.30)

Excluding μTcase 39.83 (35.29, 44.37)

+++ FP μT 7.56 (3.03, 12.10) 0.001

Marker 60 (94%) μSctrl 3.40 (3.33, 3.47)

Method μScase 3.17 (2.96, 3.39)

μS 0.23 (0.003, 0.45) 0.047

Repeat 31 (48%) μSctrl 3.16 (3.10, 3.23)

Excluding μScase 2.73 (2.45, 3.02)

+++ FP μS 0.43 (0.14, 0.72) 0.004

Cox Model 60 (94%) Hazard Ratio 0.82 (0.66, 1.02) 0.071

Per Incr. Conc.

Repeat 31 (48%) Hazard Ratio 0.61 (0.48, 0.77) 0.002

Excluding Per Incr. Conc.

+++ FP

Case-Only 55 (86%) Prob. Infected 0.64 (0.496, 0.76) 0.058

Sign Test Second-Half

Repeat 29 (45%) Prob. Infected 0.69 (0.49, 0.85) 0.061

Excluding Second-Half

+++ FP

a
The four methods are implemented as described for the simulation study. Target parameters for controls are modified for the Times and Marker 

methods, and the null value for the Cox model was modified as described in Section 5.4.
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