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Abstract

For the pathogenesis of complex diseases, gene-environment (G-E) interactions have been shown 

to have important implications. G-E interaction analysis can be challenging with the need to 

jointly analyze a large number of main effects and interactions and to respect the “main effects, 

interactions” hierarchical constraint. Extensive methodological developments on G-E interaction 

analysis have been conducted in recent literature. Despite considerable successes, most of the 

existing studies are still limited as they cannot accommodate long-tailed distributions/data 

contamination, make the restricted assumption of linear effects, and cannot effectively 

accommodate missingness in E variables. To directly tackle these problems, a semiparametric 

model is assumed to accommodate nonlinear effects, and the Huber’s loss function and Qn 

estimator are adopted to accommodate long-tailed distributions/data contamination. A regression-

based multiple imputation approach is developed to accommodate missingness in E variables. For 

model estimation and selection of relevant variables, we adopt an effective sparse boosting 

approach. The proposed approach is practically well motivated, has intuitive formulations, and can 

be effectively realized. In extensive simulations, it significantly outperforms multiple direct 

competitors. The analysis of TCGA data on stomach adenocarcinoma and cutaneous melanoma 

shows that the proposed approach makes sensible discoveries with satisfactory prediction and 

stability.
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1 | INTRODUCTION

For understanding, modeling, and treating complex diseases, gene-environment (G-E) 

interactions have been shown to have a fundamental role beyond the main genetic (G) and 

environmental (E) effects. Extensive methodological developments have been conducted1,2. 
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The existing approaches can be largely classified into two families. The first family conducts 

the marginal analysis of one or a small number of genes at a time3,4, whereas the second 

family conducts the joint analysis of a large number of genes via a single model5,6. The 

etiology, prognosis, and response to treatment of complex diseases are attributable to the 

combined effects of multiple genetic effects and G-E interactions. As such, joint analysis can 

be more sensible. With the need to accommodate high data dimensionality and select main 

effects and interactions that are relevant to the response variable, joint analysis can be very 

challenging. Another challenge comes from the need to respect the “main effects, 

interactions” hierarchical constraint, which only allows an interaction into the model if the 

corresponding main effects are also identified7. Violating the constraint causes trouble in 

estimation and interpretation. For relevant discussions, we refer to the literature8.

Despite considerable successes, the existing approaches may still be limited in the following 

aspects. First, most of the existing studies conduct “standard” likelihood-based estimation 

and cannot accommodate long-tailed distributions/contamination in the response variable. In 

biomedical studies, responses with long-tailed distributions/contamination are not rare and 

can be caused by multiple factors, including the inherent variability of data, biased sample 

selection, errors in data collection/recording, and others9. Take the TCGA (The Cancer 

Genome Atlas) stomach adenocarcinoma (STAD) data, which is analyzed in this article, as 

an example. There are 157 deaths during follow-up, with survival times ranging from 0.10 to 

72.17 months (median 11.6 months). For these subjects, we present the scatter plot of 

survival times in Figure S1 (Supporting Information), as well as the mean and three times 

standard deviation. It is observed that there are five subjects with survival times 55.39, 

57.39, 59.49, 68.99 and 72.17 months, which are out of the three standard deviation range, 

suggesting that the data may be “contaminated” with outliers. Nonrobust approaches cannot 

effectively accommodate long-tailed distributions/contamination and may lead to biased 

estimation and marker identification. For “classic” low-dimensional biomedical studies, 

robust approaches have been extensively developed and shown to be powerful. For high-

dimensional genetic studies, there are some but still limited developments10,11,12. The 

existing high-dimensional robust studies are mostly limited to main effects, and there is still 

insufficient attention to genetic interactions13. The second limitation of the existing 

approaches is that they usually assume linear effects. In low-dimensional biomedical studies, 

it has been shown that in many occasions, nonlinear covariate effects are present14. In G-E 

interaction analysis, it may not be realistic to consider nonlinear effects for the G effects 

because of the high dimensionality. However, modeling E effects in a nonlinear way can be 

both feasible and necessary. The third limitation is that most of the existing approaches 

require complete measurements. With the fast development of profiling techniques, the 

problem of missingness in G measurements is diminishing. However, as consistently 

observed in biomedical studies, missingness in E measurements is almost inevitable. It is 

important to effectively accommodate missingness in E measurements in G-E interaction 

analysis.

In this article, we conduct G-E interaction analysis that respect the “main effects, 

interactions” hierarchy under the joint analysis paradigm. A novel approach is developed to 

directly address the aforementioned limitations of the existing approaches. Specifically, the 

robust Huber’s loss function is adopted to accommodate long-tailed distributions/
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contamination in response. Compared to alternative robust approaches including the popular 

quantile approach, the Huber’s approach is computationally more affordable, which is 

especially important for high-dimensional analysis. A partially linear model is assumed to 

accommodate nonlinear E effects. A regression-based multiple imputation approach is 

developed to accommodate missingness in E measurements. Compared to alternatives for 

example the inverse probability weighting15, the proposed imputation approach has a more 

intuitive formulation. For estimation and variable selection in G-E interaction modeling as 

well as imputation analysis, we adopt a sparse boosting approach, which has competitive 

performance in high-dimensional data analysis but has not been well employed in genetic 

interaction analysis. Overall, this study is warranted by providing a practically useful new 

venue for studying G-E interactions and directly overcoming multiple limitations of the 

existing literature.

2 | METHODS

2.1 | Partially linear modeling

Let y be the response variable, which can be a continuous marker, categorical disease status, 

or survival time. x = x0 x1 ⋯ xp  denotes the (p + 1)-dimensional vector of genes (SNPs, 

or other genetic functional units) with x0 = 1 for intercept. z = z1 ⋯ zq  is the q-dimensional 

vector of E factors. Determining which covariate effects to model nonlinearly is a “classic” 

problem and has been addressed thoroughly in the literature16. Here, with the dimension of 

E factors usually low, we simply model all continuous E effects in a nonlinear way. For the 

simplicity of notation, rearrange z so that the first q1 factors are continuous, and the 

remaining are discrete. Consider the partially linear model:

y ϕ ∑
j = 0

p
β jx j + ∑

k = 1

q1
∑
j = 0

p
gk j zk x j + ∑

k = q1 + 1

q
∑
j = 0

p
αk jzkx j , (1)

where β0 is the intercept, gkj(·)’s are unknown functions, and ϕ(·) is the known model 

function, for example, the linear regression model with ϕ(t) = t for a continuous response, 

and logistic model ϕ(t) = 1
1 + e−t  for a binary response.

In this model, for j = 1, ⋯, p, βj’s, αk0’s and gk0( ⋅ )‘s denote the main effects of G factors, 

discrete and continuous E factors, respectively, and αkj’s and gkj(·)’s represent interactions.

For estimating the nonlinear functions, we conduct basis expansion

gk j zk ≈ ∑
l = 1

L
γk jlbk jl zk , (2)
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where L is the number of basis functions, bk j zk = bk j1 zk ⋯ bk jL zk  is the vector of 

known basis functions, and γk j = γk j1 ⋯ γk jL  is the vector of unknown coefficients. For 

identifiability, the basis functions are constrained to have means zero. In numerical study, we 

adopt the normalized B spline basis, which have been the choice of many published 

studies17, and note that other basis functions may also be applicable. Model (1) can now be 

rewritten as

y ϕ β0 + w1⋯wp + q + pq θ1⋯θp + q + pq ′ = ϕ β0 + wθ′ , (3)

where w j = x j and θ j = β j for j = 1, ⋯, p, wp + k = bk01 zk ⋯ bk0L zk  and 

θp + k = γk01 ⋯ γk0L  for k = 1, ⋯, q1, wp + k = zk and θp + k = αk0 for 

k = q1 + 1, ⋯, q, wp + q + ( j − 1)q + k = bk j1 zk x j ⋯ bk jL zk x j  and 

θp + q + ( j − 1)q + k = γk j1 ⋯ γk jL  for j = 1, ⋯, p and k = 1, ⋯, q1 and 

wp + q + ( j − 1)q + k = zkx j and θp + q + ( j − 1)q + k = αk j for j = 1, ⋯, p and k = q1 + 1, ⋯, q.

2.2 | Robust estimation and selection via sparse boosting

For the simplicity of notation, first consider the most popular linear regression model

y = ∑
j = 0

p
β jx j + ∑

k = 1

q1
∑
j = 0

p
gk j zk x j + ∑

k = q1 + 1

q
∑
j = 0

p
αk jzkx j + ε, (4)

where ε is the random error. Accommodating survival data will be studied in detail below. 

Extension to categorical and count data under generalized linear models will also be 

discussed.

To accommodate long-tailed distributions/contamination in the response, we adopt the 

Huber’s approach. A novel modification is made, which significantly reduces computational 

cost. To accommodate the high data dimensionality in estimation and to select important 

interactions (and main effects), we adopt the sparse boosting technique. Directly applying 

sparse boosting may generate results that violate the “main effects, interactions” hierarchy. 

To solve this problem, a modified boosting algorithm is developed. Assume n independent 

observations yi, xi, zi , i = 1, ⋯, n . The proposed approach is summarized in Algorithm 1.

The most prominent consideration of our analysis is on robustness, for which multiple steps 

have been taken. First, as opposed to the nonrobust least squared loss, a robust loss function 

is taken in (5). The standard Huber’s loss
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Algorithm 1 :

G-E interaction analysis via sparse boosting

Step 1: Initialization. Set m = 0, and F m = F1
m ⋯ Fn

m ′ = 0, where Fi
(m)

 is the estimated effect for subject i 

at iteration m. With the variable arrangement in (3), set 𝒯(m) = 1, ⋯, p + q  to include all main effects, where 

𝒯(m) ⊂ 1, ⋯, p + q + pq  is the set of variables which can potentially enter the regression model (5) at iteration 

m + 1. Set 𝒮(m) = ∅, where 𝒮(m) ⊂ 1, ⋯, p + q + pq  is the set of variables with nonzero effects at iteration 

m and may include both main and interaction effects.

Step 2: Fit and update. m = m + 1.

Compute

β j0, θ j = argmin ∑
i = 1

n
wi

(m) ri
(m) − β j0 − wi jθ j′

2, j ∈ 𝒯(m − 1), (5)

where ri
(m) = yi − Fi

(m − 1)
 and wi

(m) = ψc ri
(m) ⋅ ψc( ⋅ ) is Huber’s ψ-function (details below).

For variable selection, compute

Sm = argmin
j ∈ 𝒯(m − 1)

log Rm( j) + d f m( j)log(n)/n , (6)

where Rm(j) is the robust measure of lack-of-fit (details below), and dfm(j) is the degree of freedom defined as the 
number of variables that have been selected by iteration m.

Update F(m) = F(m − 1) + νr (m)
, where ν is the step size, and 

r (m) = βSm, 0 + w1, Sm
θSm

′ ⋯βSm, 0 + wn, Sm
θSm

′ ′.

Update 𝒮(m) = 𝒮(m − 1) ∪ Sm.

Update 𝒯(m)
 by the following rule. If Sm ∉ 𝒮(m − 1)

 and Sm ∈ 1, ⋯, p , that is, the selected variable Sm is a 

new main G effect, add the corresponding interactions into 𝒯(m)
 for all main E factors that are already included in 

𝒮(m)
. If Sm ∉ 𝒮(m − 1)

 and Sm ∈ p + 1, ⋯, p + q , that is, the selected variable Sm is a new main E effect, add 

the corresponding interactions into 𝒯(m)
 for all main G factors that are already included in 𝒮(m)

.

Step 3: Iteration and stopping. Repeat Step 2 for M iterations. Estimate the stopping iteration by

mstop = argmin
m = 1, …, M

log ∑
i = 1

n
ρc yi − Fi

(m) + d f mlog(n)/n , (7)

where ρc( ⋅ ) is the Huber’s loss function (details below).

Variables selected and their estimates at iteration mstop are the final results.

function takes the form
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ρc(t) = t2 if |t | ≤ c

2c | t | − c2 if |t | > c,

where c > 0 is a tuning constant18. Following published literature19, we set 

c = 1.345MAD yi − Fi
(m − 1), i = 1, ⋯, n , where MAD(·) is the median absolute deviation 

adjusted by a factor of 1.4826. Our preliminary investigation suggests that directly applying 

this loss function (which demands an iteratively reweighted least squared algorithm and has 

been referred to as the M-estimation) is computationally very expensive. To solve this 

problem, what we propose, in a sense, is the first iteration of the M-estimation with the 

Huber’s ψ-function

ψc(t) = t ⋅ min 1, c
|t| .

In (5), the weight wi
(m)‘s downweigh the influence of observations with large residuals, 

leading to robustness to long-tailed distributions/contamination. This modification can 

significantly reduce computational cost, and our numerical investigation suggests that it can 

lead to results similar to the M-estimation (details omitted) and has also been suggested in 

the literature20. The second step we take to achieve robustness is in Rm(j). In published 

studies22, the sum of squared residuals is adopted as the selection criterion. With the least 

squared estimator β j0 = r(m) − w jθ j′, we have

∑
i = 1

n
ri

(m) − β j0 − wi jθ j′
2 = n 1

n ∑
i = 1

n
ri

(m) − r(m) 2 − θ j
1
n ∑

i = 1

n
wi j − w j ′ wi j − w j θ j′ , (8)

where r(m) = 1
n ∑i = 1

n ri
(m) and w j = 1

n ∑i = 1
n wi j. We see that the first term is not robust to 

long-tailed distributions/contamination. To solve this problem, we adopt Qn
20, a robust scale 

estimator, which is defined as

Qn r1, ⋯, rn = 2.2219 |ri − r j|; i < j (k),

with k = n/2 + 1
2 , and t1, ⋯, tn (k) denoting the kth order statistic of ti’s. Overall, the 

proposed robust lack-of-fit measure is

Rm( j) = Qn r1
(m), ⋯, rn

(m) − θ j
1
n ∑

i = 1

n
wi j − w j ′ wi j − w j θ j′ . (9)
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Here, we develop (9) for Rm(j) instead of using ∑i = 1
n wi

(m) ri
(m) − β j0 − wi jθ j′

2
 in (5) directly. 

This is because the weights for the same observation are different in different iterations, 

which may result in an inaccurate measure of the balance between the lack-of-fit and 

complexity term. The third step we take to achieve robustness is in the selection of mstop, 

where we adopt the Huber’s prediction error – which tends to fit “normal samples” better 

than “outliers” – as the stopping criterion.

The proposed estimation/selection algorithm fits in the sparse boosting paradigm. It 

assembles multiple weak learners to achieve a strong learner. When determining in each 

iteration which variable to be included in the model, both model fitting and model 

complexity are considered. As pointed out in the literature, sparse boosting tends to generate 

smaller models than ordinary boosting, which is especially desirable with high-dimensional 

data. When implementing sparse boosting, we set the step size ν = 0.1 and use BIC for 

measuring model complexity following published studies21, where the choice of ν is 

suggested to be not critical as long as it is small22. Beyond robustness, the most significant 

difference/advancement of the proposed sparse boosting algorithm is that it only searches 

over those interactions with corresponding main effects already selected in the model. This 

strategy ensures that the strong hierarchy7 is respected. There are also other strategies to 

accommodate hierarchy, such as first searching in the whole space with all main and 

interaction effects directly, and then adding back the corresponding main effects if specific 

interactions are present in the final model. The proposed strategy may be advantageous to 

those in some of the existing studies as its search space is dramatically smaller, which 

significantly reduces computational cost. This strategy has been partly motivated by the 

progressive penalization approach23, which has been developed for genetic interaction 

analysis using the penalization technique and shown to generate results comparable to 

searching the whole space (which is much more expensive). Extension of the proposed 

approach to respect the weak hierarchy is simple and omitted here.

Accommodating other types of response variables—The method described above 

can be modified to accommodate other types of responses. Consider for example a survival 

response T under the accelerated failure time (AFT) model:

log(T) = ∑
j = 0

p
β jx j + ∑

k = 1

q1
∑
j = 0

p
gk j zk x j + ∑

k = q1 + 1

q
∑
j = 0

p
αk jzkx j + ε . (10)

Under right censoring, denote C as the censoring time,y = log(min(T , C)), and δ = I(T ≤ C). 
To accommodate censoring, we consider a weighted approach24, which has computational 

cost considerably lower than the alternatives. Assume that data xi, zi, yi, δi , i = 1, …, n  have 

been sorted according to yi’s from the smallest to the largest. The Kaplan-Meier (KM) 

weights wi
(KM)

i = 1
n

 can be computed as 

w1
(KM) =

δ1
n , wi

(KM) =
δi

n − i + 1 ∏ j = 1
i − 1 n − j

n − j + 1

δ j
, i = 2, ⋯, n. Subject i needs to be 
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reweighted by wi
(KM), otherwise, Algorithm 1 mostly remains unchanged. For example, in 

(5), the weight wi
(m) needs to be replaced by wi

(m) = ψc ri
(m) wi

(KM). In numerical study, we 

examine survival data under the AFT model along with continuous data under the linear 

regression model.

For categorical and count data under generalized linear models, extensions of the Huber’s 

loss have been developed in the literature25. It is expected that such losses can be used in the 

proposed analysis.

2.3 | Accommodating missingness in E variables

Consider the more practical setting with missingness in E variables. To simplify notation, 

first consider the scenario where z1 is continuous and has missingness, and z2, ⋯, zq have 

complete measurements for all subjects. We adopt the multiple imputation technique, which 

is one of the most popular missing data techniques and has demonstrated competitive 

performance in many published studies 26. The proposed multiple imputation approach 

differs significantly from the existing ones and proceeds as follows.

Modeling covariate relationships—An “informative” imputation demands that the 

missing values in z1 depend on the observed values in other variables. Note that the 

proposed analysis includes independence between z1 and other E variables as a special case. 

In the first step, we model z1 as a function of z2, ⋯, zq Specifically, consider the model

z1 = η0 + ∑
k = 2

q1
gk zk + ∑

k = q1 + 1

q
ηkzk + ξ ≈ η0 + u2 ⋯ uq η2 ⋯ ηq ′ + ξ, (11)

where η0 is the intercept, gk’s are unknown functions (with zero means for identifiability), 

ηk’s are unknown regression coefficients, ξ is the random error with density function f(ξ). 

Following the rationale and strategy described in the last section, we adopt a basis function 

expansion approach. For k = 2, …, q1, uk = bk1 zk ⋯ bkL zk  is a vector composed of 

normalized B spline basis functions, L is the number of basis functions, and 

ηk = γk1 ⋯ γkL  is the vector of unknown coefficients. For k = q1 + 1, ⋯, q, uk = zk, and 

ηk = ηk.

Assume that data have been rearranged so that the first nc subjects have complete 

measurements, and the remaining n − nc subjects have z1 values missing. For estimating the 

unknown regression coefficients (functions), we propose a sparse boosting approach, which 

is summarized in Algorithm 2. The notations have similar implications as in Algorithm 1.
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Algorithm 2

Estimation of covariate relationships via sparse boosting

Step 1: Initialization. Set m = 0 and F(0) = F1
(0) ⋯ Fnc

(0) ′ = 0.

Step 2: Fit and update. m = m + 1.

Compute

ηk0, ηk = argmin ∑
i = 1

nc
ri

(m) − ηk0 − uikηk′
2, k = 2, ⋯, q, (12)

where ri
(m) = zi1 − Fi

(m − 1)
.

For variable selection, compute

Sm = argmin
2 ≤ k ≤ q

log ∑
i = 1

nc
ri

(m) − ηk0 − uikηk′
2 + d f m(k)log nc /nc . (13)

Update F(m) = F(m − 1) + νr (m)
, where ν = 0.1, and 

r (m) = ηSm, 0 + u1, Sm
ηSm

′ ⋯ηSm, 0 + unc, Sm
ηSm

′ ′.

Step 3: Iteration and stopping. Repeat Step 2 for M iterations. Estimate the stopping iteration by

mstop = argmin
1 ≤ m ≤ M

log ∑
i = 1

nc
zi1 − Fi

(m) 2 + d f mlog nc /nc . (14)

Variables selected and their estimates at iteration mstop are the final results.

We note that for most imputation approaches, explicitly modeling the covariate relationships 

is not needed. The proposed approach with modeling may have multiple advantages: it more 

lucidly describes the associations among covariates, which may have independent scientific 

implications. More importantly, modeling combined with the sparse boosting estimation 

make it possible to screen out variables not related to z1 and conduct imputation using only 

relevant variables. Most of the existing imputation approaches do not have this much desired 

feature, conduct imputation using all variables (which likely include noises), and hence are 

less effective. It is noted that some imputation approaches, for example those based on 

parametric joint distributions, can be viewed as inexplicitly assuming regression models. 

There are also imputation approaches that have been claimed to be flexible by not assuming 

specific distributions/models. We note that the proposed model is semiparametric and 

flexible enough to capture complex relationships among variables. When z1 has a 

distribution other than continuous, alternative models (for example, generalized linear 
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models) can be assumed, and the proposed approach proceeds with minor modifications. 

Different from the previous section, we adopt nonrobust loss/criteria in sparse boosting, as 

long-tailed distributions/contamination are not observed in E variables in our data analysis. 

If needed, robust loss/criteria can be adopted as in the previous section.

Estimating the random error distribution—In some imputation studies, the random 

error distribution f(ξ) is assumed to be known. In this study, to be more flexible, we propose 

the following estimation approach, which has been partly motivated by the cross-fitted 

method for variance estimation27: (a) Randomly partition subjects with complete 

measurements into two subsets D1 and D2 with an equal sample size; (b) Apply the 

estimation method described in Algorithm 2 to D1; (c) Use the D1 estimate, make prediction 

for subjects in D2, and compute predicted errors; (d) Repeat (a)-(c) 10 times. Conduct a 

nonparametric estimation of f(ξ) using the predicted errors and denote it as.

Overall strategy—Overall, consider G-E interaction analysis with missing values in z1. 

The proposed analysis consists of the following steps:

(a) Estimate the relationship between z1 and z2,…,zq using the method described in 

Algorithm 2. Estimate f(ξ) using the method described above.

(b) Generate complete datasets based on model (11) and random errors generated 

from f (ξ). For complete dataset m(= 1,...,M), apply the method described in 

Algorithm 1. Denote β0
(m), θ1

(m), ⋯, θp + q + pq
(m)  as the estimate and 𝒮(m) as the set 

of selected variables.

(c) Combine and generate the final results. In our analysis, selection is at least as 

important as estimation. Simply taking average across the M results may 

generate unsatisfactory selection. We apply the following, which has been 

motivated by the stability selection 28:

The final intercept estimate: β0 = 1
M

∑m = 1
M β0

(m);

The final set of selected variables: 𝒮τ = j: 1
M

∑m = 1
M I j ∈ 𝒮(m) ≥ τ , where 

τ ∈ (0, 1) is selected using the same approach as in stability selection.

The final estimates of regression coefficients: θ j =
1
M

∑m = 1
M θ j

(m) if j ∈ 𝒮τ,

0 else.

Accommodating missingness in multiple E variables—When multiple E variables 

have missing measurements, we propose adopting an incremental imputation approach. This 

approach differs from the multiple imputation by chained equations29 and can effectively 

avoid problems caused by random initialization. Variables with missingness are first re-

ordered based on their missing rates, from the smallest to the largest. Imputation is then 

conducted one variable at a time, staring from the first. In each step, variables that have been 

imputed in the previous steps are regarded as non-missing and added to model (11), along 
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with variables without missingness. This approach uses more information than the one that 

uses only subjects with complete measurements.

3 | SIMULATION

3.1 | Settings

Performance of the proposed analysis is evaluated using extensive simulations. Summary of 

the sixteen simulation scenarios is presented in Table S1 (Supporting Information). Under all 

scenarios, we set q = 10 and p = 1,000. There are thus a total of 1,010 main effects and 

10,000 interactions. The following simulation settings are considered, comprehensively 

covering a wide spectrum of data/model conditions. (a) We consider both continuous and 

categorical G factors, mimicking gene expression and SNP data, respectively. The 

continuous G variables are generated from a multivariate normal distribution with marginal 

means 0 and an auto-regressive correlation structure where the correlation between the jth 

and kth variables is 0.3| j − k|. To generate the categorical G variables, we dichotomize the 

above continuous variables at the 1st and 3rd quartiles and generate 3-level measurements. 

(b) There are six continuous and four discrete E factors. z2, …, z6 are simulated from 

U(0, 1) . z7, …, z10 are simulated from a binomial distribution with a success probability of 

0.6. To test performance of the imputation approach, z1 is computed from model (11) with 

g2 z2 = 2sin 2πz2 , g3 z3 = 2exp 2z3 − 1 − 2.35, g4 z4 = − 12z4 1 + z4 + 10, and 

η7 = η8 = 0.5. Other variables are irrelevant for z1. Then, z1 is re-scaled to the range of 0 to 1. 

The random error ξ follows a standard normal distribution. (c) We consider two types of 

response variables and models. The first is a continuous response under model (4). In 

addition, we also consider censored survival data under the AFT model (10). Here the 

censoring times are generated from an exponential distribution, where the parameter is 

adjusted to make the censoring rate around 20%. (d) There are three main E effects (one 

linear and two nonlinear), eight main G effects, and eleven G-E interactions (three linear and 

eight nonlinear). The strong hierarchy is satisfied. Specifically, β1, β2,…,β7, β8, α7,0, α7,5, 

α7,6 and α7,7 are generated from U(1,1.5), and g1, 0 z1 = 6sin 2πz1 − 0.06, 

g2, 0 z2 = 6exp 2z2 − 1 − 7.05, g1, 1 z1 = g1, 2 z1 = g1, 3 z1 = g1, 4 z1 = − 2z1 1 + z1 + 2, and 

g2, 1 z2 = g2, 2 z2 = g2, 3 z2 = g2, 4 z2 = − 4z2
3 + 1. The rest effects are zero. In total, there 

are twelve linear and ten nonlinear effects. (e) Consider four error distributions: N(0,1) 

(Error 1), 90%N(0,1) + 10%Cauchy(0, 5) (Error 2), 90%N(0,1) + 10%LogNormal(0, 3) 

(Error 3), and 90%N(0,1) + 10%Slash (i.e. N(0,1)/U(0,1) Error 4). (f) For the continuous 

and survival responses, set the sample size equal to 150 and 250, respectively. (g) Consider 

four missingness settings. Under M1 and M2, one E variable (z1) has missing 

measurements, whereas under M3 and M4, two E variables (z1 and z2) have missing 

measurements. The missingness mechanism is MAR (missing at random). The missingness 

probabilities satisfy logistic regression models, whose parameters are adjusted so that the 

overall missing rates are about 20% for M1 and M3 and 40% for M2 and M4.

To better gauge performance of the proposed analysis, we also conduct extensive 

comparisons. For the analysis of data without missingness, besides the approach proposed in 
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Section 2.2 (referred to as “A1”), the following alternatives are considered: (A2) This 

approach is the same as the proposed, except that all E effects are assumed to be linear; (A3) 

This approach has the same modeling framework as the proposed. However, it adopts 

nonrobust loss in estimation, selection procedure, and stopping criterion; (A4) This approach 

is the same as the proposed, except that the hierarchical structure is not reinforced; (A5) This 

approach conducts joint analysis assuming linear E effects, adopts nonrobust loss, and uses 

the MCP penalization for selection30. It does not account for the hierarchical structure.

For data with missingness, we consider the proposed approach (referred to as “SBS-A1”, 

where SBS indicates that this approach uses sparse boosting under semiparametric modeling 

to accommodate missingness) as well as the following alternatives: (CC-A1) This approach 

conducts complete-case analysis and uses the proposed approach (A1) for estimation and 

selection; (ML-A2) and (SBP-A2) Both approaches adopt A2 described above for 

interaction analysis. ML-A2 accommodates missingness using multiple imputation based on 

linear regression realized by R package mice. SBP-A2 accommodates missingness using a 

sparse boosting approach similar to the proposed with linear weak learners; (MRF-A1) This 

approach adopts A1 for interaction analysis. It accommodates missingness using multiple 

imputation based on nonparametric random forests realized by R package mice; (SBS-A3) 

and (SBS-A4) Both approaches adopt the proposed sparse boosting approach (SBS) for 

multiple imputation, and A3 and A4 for interaction analysis, respectively. For these 

approaches, the assumed linear or nonlinear effects for E factors are consistent in both 

imputation and interaction analyses. We set M = 10 in multiple imputation and use the same 

stability selection approach to generate the final estimates. For the semiparametric models, 

there are two tuning parameters: the degree of B spline basis and number of interior knots. 

They can be selected data-dependently, which can be computationally expensive. In 

simulation, we fix degree=2 and number of knots=2, which generate satisfactory results.

We note that there are other G-E interaction analysis approaches and missing-data 

approaches that are potentially applicable to the simulated data. The above alternatives are 

chosen as they have similar frameworks as the proposed and competitive performance 

among the existing approaches. Specifically, comparing with A2 and A3 can directly 

establish the merits of the semiparametric modeling and robustness of the proposed 

approach, respectively. The effectiveness of accommodating hierarchy and adopting the 

sparse boosting framework are studied by comparing with A4 and A5, respectively. The 

importance of accommodating missing values using semiparametric modeling with sparse 

boosting is explored by comparing with CC, ML, MRF, and SBP.

3.2 | Computational cost

Simulation suggests that the proposed approach is computationally affordable. For the 

analysis of one dataset without missingness, the analysis can be accomplished within five 

minutes using a laptop with standard configurations. For a dataset with one variable having 

missingness, the average computational time of the proposed imputation step is 6.33 

seconds, compared to 0.41 seconds (ML), 0.91 seconds (MRF), and 2.89 seconds (SBP). If 

there are two variables with missingness, the proposed imputation step takes about 1.15 

minutes, compared to 0.68 seconds (ML), 1.65 seconds (MRF), and 47.55 seconds (SBP). 
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The proposed approach takes slightly more time, as it involves nonlinear effects, variable 

selection, as well as the incremental technique, but is still computationally affordable. For 

the analysis of multiple imputed datasets, the proposed procedure can be realized in a highly 

parallel manner to reduce computer time. We have developed R code implementing the 

proposed approach and made it publicly available at www.github.com/shuanggema. To 

facilitate usage, we have also provided demo for two example datasets with and without 

missingness, respectively.

3.3 | Results for scenarios without missingness

For each approach, we evaluate identification performance using TP.L (number of true 

positives for linear effects), TP.NL (number of true positives for nonlinear effects), and FP 

(number of false positives). Estimation performance is evaluated using mean squared error 

(EMSE) and mean integrated squared error (EMISE) for all the linear and nonlinear effects, 

respectively. In addition, an independent testing set with 100 samples is generated for each 

simulated dataset. Prediction performance is quantified using the prediction mean squared 

error (PMSE) for the continuous outcome and C-statistic (Cstat) for the survival outcome. 

The C-statistic is the time-integrated AUC (area under curve) under the time-dependent 

ROC framework and measures the overall adequacy of risk prediction for censored survival 

data. The adopted C-statistic estimator31 is based on the inverse probability of censoring 

weights and does not assume a specific prediction model. It takes values between 0.5 and 1, 

with a larger value indicating better prediction. In this study, it is realized using the R 

function UnoC in the package survAUC. For each scenario, 200 replicates are simulated, and 

summary statistics are computed.

Summary results for Scenarios 1–4 and 5–8 are shown in Tables 1 and 2, respectively. The 

rest of the results are shown in Supporting Information. It is observed that across all 

simulation scenarios, the proposed approach has competitive performance. For data with a 

continuous outcome, when there is no contamination (Scenario 1 in Table 1), approach A3, 

which has a nonrobust loss function, is superior. This result is as expected since the 

nonrobust alternative can be more efficient for data without contamination. The proposed A1 

can more accurately identify both linear and nonlinear effects while having a small number 

of false positives. More specifically, the proposed approach has TP.NL=8.9, compared to 2.1 

(A2), 9.1 (A3), 4.5 (A4), and 4.6 (A5). When data have contamination (Scenarios 2–4 in 

Table 1), the proposed approach has significant advantages over the alternatives. For 

example under Scenario 2, the proposed approach has TP.NL=7.7, compared to 2.2 (A2), 4.5 

(A3), 3.1 (A4), and 2.0 (A5). In addition, it is observed that without contamination, the 

proposed approach has prediction performance comparable to A3 and outperforms the 

robust alternatives. With contamination, the proposed approach has significantly smaller 

prediction errors. For example under Scenario 3 in Table 1, the proposed approach has 

PMSE=5.79, compared to 15.51 (A2), 181.86 (A3), 19.40 (A4), and 58.93 (A5). It also 

behaves better in terms of estimation measured by EMSE and EMISE. For example under 

Scenario 3 in Table 1, the proposed approach has EMISE=1.25, compared to 37.58 (A2), 

71.65 (A3), 3.45 (A4), and 15.34 (A5). To provide a more lucid demonstration, in Figure S2 

(Supporting Information), we show the estimation of the nonlinear effects under Scenario 3. 

It is obvious that the proposed approach provides a more accurate estimation. For data with a 
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survival outcome (Table 2), the overall observed patterns are similar, with the proposed 

approach having comparable or superior performance. The observed patterns for data with 

discrete G variables are also similar.

3.4 | Results for scenarios with missingness

In the analysis of data with missingness, we first examine the effectiveness of the proposed 

imputation approach by comparing four multiple imputation approaches: ML, MRF, SBP, 

and the proposed SBS. ML and MRF are based on linear regression and nonlinear random 

forest, respectively, without conducting variable selection. SBP conducts the selection of 

relevant variables but assumes linear effects. In Figure S3 (Supporting Information), we 

show the distributions of imputed z1 for M1 and M2 using different approaches. P-values are 

computed from the Kolmogorov-Smirnov tests to examine the differences between imputed 

distributions and the “true” distribution (without missingness). It is observed that under both 

settings, the distribution of z1 estimated using the proposed imputation approach and true 

distribution are not significantly different. For example, under M1, the proposed approach 

has p-value=0.5971, compared to 0.000 (ML), 0.0224 (MRF), and 0.0000 (SBP).

Similar to in the previous section, we examine the identification, prediction, and estimation 

performance of the proposed approach and alternatives. The results are summarized in 

Tables S4-S19 (Supporting Information). The proposed approach (SBS-A1) is observed to 

have competitive performance: it identifies the majority of the true positives, while having a 

small number of false positives, and has higher prediction and estimation accuracy. 

Comparing the proposed approach with CC-A1 and MRF-A1 suggests the superiority of the 

proposed imputation approach. The advantage of the proposed approach gets more 

prominent with an increase in missing rate. For example under M2 with missing rate 40% in 

Table S5, the proposed approach selects 7.4 true nonzero nonlinear effects, compared to 4.2 

(CC-A1), 2.2 (ML-A2), 2.3 (SBP-A2), 4.8 (MRF-A1), 4.7 (SBS-A3), and 2.8 (SBS-A4). It 

is interesting to observe that, under M1, M2, and M3, the results of SBS-A1 are close to 

those of A1 with complete measurements, suggesting a very high level of efficiency of the 

proposed imputation approach.

4 | DATA ANALYSIS

TCGA is a collaborative effort organized by NIH. It conducts comprehensive profiling for 

multiple cancer types. TCGA data have a high quality. With public availability, they can 

serve as an ideal testbed for new methodological development. In this section, we analyze 

TCGA data on stomach (gastric) adenocarcinoma (STAD) and cutaneous melanoma 

(SKCM). We analyze the processed level 3 data, which are downloaded from TCGA 

Provisional using the R package cgdsr. For G variables, we consider mRNA gene 

expressions, which are collected using the IlluminaHiseq RNAseq V2 platform.

4.1 | Stomach adenocarcinoma (STAD) data

The response variable of interest is overall survival, which is right censored. The E factors 

analyzed include age, AJCC metastasis pathologic stage (PM), AJCC nodes pathologic stage 

(PN), AJCC tumor pathologic stage (PT), gender, ICD O3 histology, ICD O3 site, and 
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History of other malignancy, all of which have been examined in published studies. The age 

variable is continuous, and the other seven are discrete. Age is re-scaled to the range of 0 to 

1. Re-coding of the discrete variables is described in Supporting Information. To better 

motivate the nonlinear modeling of age, we first conduct marginal analysis using R package 

npregfast32. The regression curve and first order derivative with wild bootstrap-based 95% 

confidence intervals (shaded area) are presented in Figure S4. The confidence intervals 

suggest that the first order derivative significantly deviates from constant, and a nonlinear 

effect is clearly observed. A total of 20,189 gene expression measurements are available on 

386 samples. Among them, 381 samples have completely observed survival time, E, and G 

factors. In this analysis, we simply remove subjects with missing measurements as the 

missing rates are very low. This analysis can test the approach proposed in Section 2.2. As 

the number of cancer-related genes is not expected to be large, to improve stability, we 

conduct a simple prescreening via marginal AFT models. The top 2,000 genes with the 

smallest p-values are selected for downstream analysis.

As shown in Table 3, the proposed approach identifies 3 main E effects (age, PM, and 

gender), 45 main G effects, and 23 G-E interactions. The main effects of PM and gender 

have negative coefficients, and this finding is consistent with that in the literature. The 19 

nonlinear age effects are shown in Figure S5. It is observed that most of the estimated effects 

may not have simple linear approximations, again suggesting the need of nonlinear 

modeling. Literature search suggests that the identified genes and interactions may have 

important implications. For example, gene CHRDL2 bounds to bone morphogenetic proteins 

which may inhibit the proliferation of both normal and malignant gastric epithelial cells33, 

suggesting that CHRDL2 can serve as a biomarker of poor prognosis in gastric cancer. Gene 

LDHB has been found to be down-regulated in gastric cancer samples, resulting in the 

dysregulation of pyruvic acid efflux in the development of gastric cancer 34. The copy-

number loss of gene LYRM7 has been observed in at least approximately 20% of stomach 

adenocarcinomas, indicating its important role in stomach adenocarcinomas35. The retention 

of the hyper-phosphorylated state of gene MARCKS has been shown to be responsible for 

certain mechanisms of protein kinase C (PKC)36. Gastric carcinoma and adenocarcinoma 

cells often show dysregulated PKC-dependent cell signal transduction compared to normal 

gastric cells, supporting MARCKS as a potential biomarker in gastric cancer37. It has been 

reported that gene PARN is up-regulated in gastric tumor tissues, and PARN-depletion 

significantly inhibits the proliferation of gastric cancer cell lines MKN28 and AGS and 

promotes cell death38. TOMM20 expression has been detected to be specifically localized to 

gastric cancer cells and strongly associated with reduced survival, and it has been suggested 

as a promising biomarker for predicting the prognosis of patients with gastric cancer 39. 

Published analysis has also found that gene VAPA is over-expressed in gastric cancer tissues 

compared to adjacent normal tissues 40.

Beyond the proposed approach, we also analyze data using the alternatives. The summary 

comparison results are provided in Table S20, including the numbers of overlapping in 

identified main effects and interactions and corresponding RV-coefficients41. The RV-

coefficient measures the common information of two data matrices, with a larger value 

indicating a higher degree of similarity, and provides a more objective measure of 

overlapping information. Detailed identification results using the alternatives are available 
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from the authors. It is observed that different approaches identify significantly different sets 

of interactions and main effects, and the level of overlapping information as measured by the 

RV-coefficients is moderate. Approach A2, which assumes linear E effects, and approach 

A4, which does not reinforce the hierarchical structure, identify a small number of 

interactions. Approach A5, which does not reinforce the hierarchical structure, identifies a 

few interactions but a very small number of main effects. Both A1 and A3 identify a 

moderate number of main effects and interactions.

In practical data analysis, it is hard to objectively evaluate the accuracy of identification. To 

provide partial support to the identification analysis, we evaluate prediction performance 

using a resampling-based approach. As the response is prognosis, the C-statistic is adopted 

as the evaluation statistic. With 100 resamplings (5/6 training samples and 1/6 testing 

samples), we compute the mean C-statistics as 0.65 (proposed), 0.60 (A2), 0.62 (A3), 0.60 

(A4), and 0.55 (A5), respectively. The proposed approach has a moderately improved 

prediction. We also examine stability and compute the observed occurrence index (OOI)42. 

With the same resampling approach as above, the OOI quantifies the probability of a specific 

effect (interaction or main) identified in random samples, with a larger value indicating 

higher stability. The mean OOI values across the interactions and main effects identified by 

the proposed approach is 0.50, compared to 0.43 (A2), 0.46 (A3), 0.11 (A4) and 0.13 (A5). 

The improved prediction and stability provide support to the validity of the proposed 

analysis.

4.2 | Cutaneous melanoma (SKCM) data

The response of interest is the (log-transformed) Breslow’s depth, which has a continuous 

distribution and has been suggested as a prognostic marker in melanoma, with deeper tumors 

correlated with shorter survival. The raw values of the Breslow’s depth are nonnegative, and 

the direct application of the proposed approach may result in unreasonable negative 

predicted values. Thus, the log-transformation is conducted. Nine E variables are analyzed, 

including weight, height, clark level, age, PM, PN, PT, gender, and sample type (type). 

Among them, weight, height, and age are continuous, and the others are discrete. The 

regression curves and first order derivatives of weight, height, and age are also studied in 

Figure S4, together with the 95% confidence intervals. Significant nonlinear effects are 

observed. The continuous E variables are rescaled to the range of 0 to 1. Re-coding of the 

discrete variables is described in Supporting Information. mRNA gene expressions are 

analyzed. From the 20,189 measurements, we conduct a prescreening and select 2,000 for 

downstream analysis. Data are available on 340 subjects, among which 56% have missing 

measurements in weight, height, and/or clark level.

We assume model (4) and apply the approach developed in Section 2.3. The analysis results 

using the proposed approach are presented in Table 4. It identifies 7 main E effects (weight, 

height, clark level, age, PN, PT, and sample type), 35 main G effects, and 43 G-E 

interactions. The four identified discrete E variables have positive coefficients, indicating 

positive correlations with the response, which is consistent with published literature. The 

nonlinear effects of weight, height, and age are shown in Figures S5-S8. Again, we observe 

considerable curvatures with no simple linear approximations. For the identified genes, we 
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search the literature for independent evidences of their associations with cutaneous 

melanoma and find strong support. For example, gene MCAM is a cell surface adhesion that 

has been detected to be strongly expressed in metastatic melanoma and involves in 

tumorigenicity and metastasis. Gene ACSL5 has been observed to be critical to the 

expression of tumor-related factor MCAM, indicating its potential effect on melanoma43. 

Gene EZH2 has been shown to contribute to the transcriptional silencing of tumor 

suppressor and differentiation genes and be involved in melanoma progression and 

metastasis 44. The expression of gene ATP5A1 has been detected prevalently in the 

cytoplasm of melanoma cells45. MSH6 expression has been observed to be absent or 

extremely low in benign nevi and increased in a subset of primary melanoma samples and 

also suggested as a valuable marker to improve prognosis assessment in primary 

melanoma46. Gene NLRC4 is an important regulator of key inflammatory signaling 

pathways in macrophages, and published studies have demonstrated that it plays a critical 

role in suppressing tumor growth in cutaneous melanoma47. Gene TPSO has been found to 

be involved in the appearance of skin melanoma due to modified functional activities caused 

by mutagenic activation of MAPK signaling cascade, and has different expression levels 

between skin melanoma cells and normal melanocytes48.

Analysis is also conducted using the alternatives. The summary comparison results are 

shown in Table S21, and detailed estimation results using the alternatives are available from 

the authors. It is observed that different approaches identify similar main E effects (except 

for SBS-A4) but different main G effects and interactions. Measured using the RV-

coefficients, different sets of identified main E effects have high similarity. ML-A2 and SBP-

A2 identify a very small number of interactions. Different from the STAD analysis, SBS-A4 

identifies some interactions but no main G effect. Prediction and stability are evaluated as 

described above. With a continuous outcome, we compute the prediction MSEs, which are 

0.15 (proposed), 0.27 (CC-A1), 0.18 (ML-A2), 0.17 (SBP-A2), 0.18 (MRF-A1), 0.20 (SBS-

A3), and 0.22 (SBS-A4), respectively. In addition, for the proposed approach, the average 

OOI is 0.56, compared to 0.14 (CC-A1), 0.50 (ML-A2), 0.49 (SBP-A2), 0.52 (MRF-A1), 

0.44 (SBS-A3), and 0.28 (SBS-A4). The proposed approach is again observed to have better 

prediction performance and stability.

5 | DISCUSSION

G-E interaction analysis has important implications. In this study, we have conducted the 

challenging joint analysis that respects the “main effects, interactions” hierarchy. We have 

developed a novel analysis approach, which advances from the existing literature in multiple 

aspects. To achieve the much desired robustness property, we adopt the Huber’s approach 

and make important modifications to reduce computational cost. To describe the effects of E 

variables in a more flexible manner, we adopt semiparametric modeling. In this study, E 

factors are modeled separately. There are also studies that model multiple E factors together, 

such as the partial linear varying multi-index coefficient model49. These two strategies have 

been developed with different considerations. Specifically, the proposed one assumes that 

each E factor has a nonlinear effect, and the latter one assumes that the linear combination of 

all E factors has a nonlinear effect. Neither of them can be viewed as a special case of the 

other and is consistently better than the other under all scenarios. In data analysis, it is 
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difficult to objectively determine the underlying model, and how to construct the most 

suitable semiparametric model is still an open question. We adopt the former one, as it has 

satisfactory performance and a simple optimization procedure, and is also a popular choice 

in recent publications. For estimation and selection, we adopt sparse boosting, which has 

competitive performance in statistical learning but has not been well adopted in G-E 

interaction analysis. Significantly advancing from the existing sparse boosting studies, a 

robust loss and robust criteria are adopted. More importantly, the boosting algorithm is 

modified to respect the “main effects, interactions” hierarchy. This hierarchy has been 

extensively studied in the published G-E interaction analysis, especially under the 

penalization framework. The hierarchical Lasso is perhaps the most representative one7. 

Despite considerable successes, the hierarchical Lasso has a complex optimization problem 

and high computational cost, and is less desirable for high dimensional interaction analysis. 

Although the proposed hierarchy strategy may be not as straightforward as under 

penalization, it is still warranted by having a much simpler optimization and satisfactory 

numerical performance. Another important problem addressed in this study is the 

missingness in E variables, which is commonly encountered but has been largely neglected 

in published studies. For this problem, we have developed a novel imputation approach 

based on a flexible semiparametric regression model, which explicitly describes the 

covariate relationships and has lucid interpretations. We adopt sparse boosting for estimation 

to be “consistent” with the G-E interaction analysis. More importantly, the proposed 

approach can effectively remove irrelevant variables, conduct imputation based on only the 

relevant ones, and hence is more effective. Extensive simulations show that the proposed 

approach significantly outperforms multiple state-of-the-art direct competitors. In the 

analysis of two TCGA datasets, interactions and main effects different from those using the 

alternatives are identified. The identified genes have important implications. Satisfactory 

prediction and stability provide partial support to the validity of the proposed analysis.

This study can be potentially extended in multiple directions. For G-E interaction analysis, 

robust approaches are still limited. It can be of interest to extend the Huber’s approach to 

other data/model settings and develop other robust measures. Semiparametric modeling, 

which has been shown to be very powerful in low-dimensional biomedical studies, also has 

limited applications in genetic interaction analysis. Sparse boosting is a generically 

applicable learning technique and can be potentially coupled with other loss functions and 

data/model settings. Multiple robust methods have been developed in both low-dimensional 

and high-dimensional main effect analysis, among which the least absolute deviation (LAD) 

is one of the most representative. It has been demonstrated that LAD is suitable for heavy-

tail distributions, especially double-exponential distributions, and Huber’s loss has good 

performance for contaminated normal distributions50,12. However, no method can perform 

universally better than the other13. The boosting technique with Huber’s loss and LAD for 

low-dimensional main effect analysis has been studied in the literature19. Huber’s loss is 

observed to perform well with both normal and slash errors, whereas LAD has limitations 

with normal errors. Sparse boosting with LAD for interaction analysis has not been well 

examined and will be deferred to future study. Missing data has been studied in genetic 

studies, but most of the existing attention has been on the G variables. This study is one of 

the few with a special emphasis on missingness in E variables. For examining the nonlinear 
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effects of continuous E factors, confidence intervals are constructed under marginal analysis. 

Studies on the inference of regression curves under high dimensional interaction models are 

still limited and expected to be very challenging. In this study, we have focused on 

estimation and will postpone inference investigation to future research. In data analysis, 

findings different from the alternatives are made and have important biological implications. 

The prediction and stability evaluation provide partial support. More definitive confirmation 

will need to come from functional validations.
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Refer to Web version on PubMed Central for supplementary material.
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TABLE 1

Simulation Scenarios 1–4 without missingness. In each cell, mean (sd) based on 200 replicates.

TP.L TP.NL FP EMSE EMISE PMSE

Scenario 1

A1 8.8(1.7) 8.9(1.5) 9.7(3.6) 0.69(0.24) 1.03(0.60) 4.18(1.83)

A2 7.0(1.0) 2.1(0.4) 14.1(3.4) 1.63(0.35) 38.22(7.32) 14.40(4.63)

A3 9.3(1.8) 9.1(1.4) 22.5(5.8) 0.65(0.23) 1.08(0.59) 4.42(2.08)

A4 4.8(1.5) 4.5(1.5) 34.1(3.6) 1.23(0.35) 2.16(0.58) 12.13(4.73)

A5 2.9(1.2) 4.6(1.1) 24.5(8.6) 1.53(0.25) 42.43(7.83) 9.27(3.16)

Scenario 2

A1 7.6(1.5) 7.7(2.0) 12.1(4.7) 0.92(0.29) 1.39(0.65) 8.03(3.94)

A2 6.2(1.2) 2.2(0.4) 13.7(3.9) 1.92(0.41) 37.37(7.44) 18.54(5.28)

A3 4.8(2.7) 4.5(2.6) 35.6(6.9) 39.16(204.26) 64.57(269.66) 179.77(713.88)

A4 3.6(1.7) 3.1(1.0) 36.5(4.6) 1.36(0.33) 3.00(0.53) 19.49(6.41)

A5 1.4(1.3) 2.0(1.6) 17.4(12.8) 1.77(0.43) 22.78(16.59) 39.98(60.82)

Scenario 3

A1 8.2(1.5) 8.3(1.7) 10.5(4.2) 0.79(0.26) 1.25(0.77) 5.79(2.64)

A2 6.5(1.1) 2.1(0.3) 12.8(3.9) 1.76(0.38) 37.58(6.92) 15.51(4.15)

A3 3.8(2.6) 3.3(2.5) 37.4(6.6) 42.00(131.25) 71.65(281.32) 181.86(395.73)

A4 3.4(2.0) 2.7(0.7) 31.0(9.3) 1.30(0.34) 3.45(1.01) 19.40(9.23)

A5 0.8(1.2) 1.2(1.5) 13.2(13.5) 1.81(0.40) 15.34(15.00) 58.93(80.15)

Scenario 4

A1 8.6(1.6) 8.5(1.5) 10.3(4.5) 0.74(0.25) 1.10(0.63) 5.51(2.55)

A2 6.7(1.2) 2.1(0.4) 13.8(3.8) 1.75(0.37) 38.60(6.96) 16.66(5.04)

A3 7.9(2.5) 7.5(2.5) 28.1(7.0) 1.13(0.95) 2.60(2.88) 11.74(13.22)

A4 4.1(1.7) 3.4(1.1) 36.8(2.9) 1.27(0.23) 2.47(0.67) 18.49(11.75)

A5 2.5(1.3) 3.7(1.6) 26.0(12.0) 1.67(0.39) 39.12(14.23) 15.91(11.57)
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TABLE 2

Simulation Scenarios 5–8 without missingness. In each cell, mean (sd) based on 200 replicates.

TP.L TP.NL FP EMSE EMISE PMSE

Scenario 5

A1 8.6(1.4) 8.9(1.2) 9.8(3.2) 0.72(0.20) 1.54(0.81) 0.87(0.04)

A2 7.1(1.2) 2.3(0.5) 13.5(3.2) 1.25(0.28) 27.70(4.77) 0.79(0.03)

A3 9.0(1.7) 9.4(0.8) 19.0(5.7) 0.67(0.21) 1.48(0.82) 0.88(0.04)

A4 3.7(1.3) 3.2(1.1) 34.3(2.5) 1.30(0.24) 2.96(1.13) 0.77(0.06)

A5 2.7(0.9) 5.0(0.9) 34.9(12.9) 1.48(0.22) 35.27(5.09) 0.85(0.03)

Scenario 6

A1 8.2(1.3) 8.1(1.6) 10.6(4.3) 0.79(0.20) 1.75(0.89) 0.83(0.05)

A2 6.5(1.2) 2.3(0.5) 13.3(3.5) 1.40(0.29) 27.60(5.26) 0.76(0.05)

A3 5.5(2.6) 4.9(2.6) 31.8(6.0) 3.76(9.49) 20.15(90.37) 0.70(0.10)

A4 3.1(1.1) 3.4(0.8) 35.5(3.4) 1.52(0.33) 3.12(0.50) 0.71(0.05)

A5 1.4(1.3) 2.8(2.0) 28.5(19.8) 1.68(0.29) 20.90(14.65) 0.69(0.14)

Scenario 7

A1 8.8(1.6) 8.7(1.3) 9.6(4.2) 0.70(0.21) 1.56(0.80) 0.86(0.04)

A2 6.9(1.1) 2.3(0.5) 13.9(3.9) 1.32(0.26) 28.60(5.25) 0.78(0.04)

A3 8.8(1.5) 9.2(1.1) 20.1(5.6) 0.71(0.22) 1.49(0.75) 0.85(0.04)

A4 4.3(1.3) 3.6(1.1) 34.7(2.3) 1.26(0.25) 2.73(0.91) 0.76(0.05)

A5 3.0(1.0) 5.1(0.9) 33.3(9.9) 1.43(0.25) 34.19(5.24) 0.83(0.04)

Scenario 8

A1 8.3(1.2) 8.6(1.3) 10.4(3.8) 0.72(0.19) 1.65(0.69) 0.86(0.05)

A2 7.0(1.3) 2.2(0.6) 13.7(3.6) 1.29(0.32) 28.21(6.00) 0.79(0.04)

A3 7.8(2.2) 7.7(2.3) 25.4(8.3) 8.17(55.15) 22.12(146.44) 0.80(0.11)

A4 3.9(1.5) 3.6(0.8) 33.5(3.0) 1.30(0.34) 2.76(0.63) 0.76(0.06)

A5 2.2(1.4) 4.1(1.6) 34.8(15.4) 1.58(0.32) 30.91(9.78) 0.79(0.12)
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TABLE 3

Analysis of STAD data using the proposed approach: identified main effects and interactions.

Main G Age PM Gender

Main E Nonlinear −0.086 −0.017

ADCY10P1 0.103

ARHGEF39 −0.014 −0.091

C12ORF56 −0.059 −0.140

C4ORF32 −0.189

C5ORF58 −0.108

C9ORF40 −0.069

CHRDL2 −0.052 Nonlinear −0.093

CISH −0.151

DCST2 −0.047 Nonlinear

DCTN5 −0.062 Nonlinear

DDX59 −0.048

DRD4 −0.101

EMG1 −0.037

FAHD1 −0.070

GCNT1 −0.104 Nonlinear

GP9 −0.004 Nonlinear

GTF3C6 −0.050

HAAO −0.058 Nonlinear 0.046

HPDL −0.028

HS6ST2 −0.016 Nonlinear 0.054

KLHL30 −0.061

LDHB 0.030

LECT1 −0.152 Nonlinear

LETM2 −0.088

LINC00998 −0.046

LINC01003 −0.112

LYRM7 −0.011 Nonlinear −0.181

MAK16 0.076

MAN2A2 0.056

MARCKS −0.059

MB21D2 −0.055 Nonlinear

NXF3 −0.077 Nonlinear

OR10A5 −0.045 Nonlinear

OXCT2 0.170

PAGE2 −0.041

PARN −0.087

PITX2 −0.091 Nonlinear

PLA2G2F −0.170 Nonlinear
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Main G Age PM Gender

RAB41 −0.060

SS18L2 0.030

TAF4B −0.035 Nonlinear

TEX36.AS1 −0.662

TOMM20 −0.070 Nonlinear

TRMT61B 0.010 Nonlinear

VAPA 0.015 Nonlinear
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TABLE 4

Analysis of SKCM data using the proposed approach: identified main effects and interactions.

Main G Weight Height Clark level Age PN PT Type

Main E Nonlinear Nonlinear 0.258 Nonlinear 1.142 0.108 0.575

ACSL5 −0.001 Nonlinear

AKR1C6P −0.006 Nonlinear Nonlinear

ANKRD26P3 0.101 Nonlinear

ARMCX2 −0.043 Nonlinear Nonlinear

ARSH 0.083 Nonlinear Nonlinear Nonlinear

ATP13A2 0.021

ATP5A1 0.029 Nonlinear Nonlinear

ATRIP 0.009 Nonlinear

DLL4 0.010

ELFN1 0.005 Nonlinear Nonlinear Nonlinear

EZH2 0.018

FOLH1B −0.008

GAS2 −0.006 −0.037

GOLGA7B 0.006

HEPHL1 0.013

HEXA 0.014 Nonlinear Nonlinear

LCN2 0.012 Nonlinear Nonlinear

MCAM 0.097

MSH6 −0.008 Nonlinear

NLRC4 0.023

NPB −0.047 Nonlinear Nonlinear

OR10C1 −0.134 −0.112

PAPOLG 0.013

PLK5 0.029 Nonlinear Nonlinear

PSMD7 −0.016 Nonlinear Nonlinear Nonlinear −0.052

SCARNA9 −0.007

SDF2 0.016

SDF4 0.028

SDPR −0.039 Nonlinear Nonlinear −0.469

SLC4A10 −0.003

SLC9A8 0.031 Nonlinear Nonlinear

SNX3 −0.048 Nonlinear Nonlinear Nonlinear −0.035

SPRYD7 0.008 Nonlinear 0.047

TMEM97 0.032 Nonlinear

TSPO −0.028 Nonlinear
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