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SUMMARY

Metformin is the first-line therapy for treating type 2
diabetes and a promising anti-aging drug. We set
out to address the fundamental question of how gut
microbes and nutrition, key regulators of host physi-
ology, affect the effects of metformin. Combining
two tractable genetic models, the bacterium E. coli
and the nematode C. elegans, we developed a high-
throughput four-way screen to define the underlying
host-microbe-drug-nutrient interactions. We show
that microbes integrate cues from metformin and
the diet through the phosphotransferase signaling
pathway that converges on the transcriptional regu-
lator Crp. A detailed experimental characterization of
metformin effects downstream of Crp in combination
with metabolic modeling of the microbiota in metfor-
min-treated type 2 diabetic patients predicts the
production of microbial agmatine, a regulator of met-
formin effects on host lipid metabolism and lifespan.
Our high-throughput screening platform paves the
way for identifying exploitable drug-nutrient-micro-
biome interactions to improve host health and
longevity through targeted microbiome therapies.

INTRODUCTION

The microbiota is widely acknowledged as a central regulator of

host health (Kundu et al., 2017; Schmidt et al., 2018). Environ-

mental cues, including drugs and diet, drive changes in microbial
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ecology and function (Maier et al., 2018; Rothschild et al., 2018)

with important consequences for host health. However, the

causal dynamics controlling these interactions are largely un-

known. The biguanide metformin, a putative dietary restriction

mimetic (Pryor andCabreiro, 2015), is themostwidely prescribed

drug for type 2 diabetes. Unexpectedly, metformin treatment in-

creases the survival of type 2 diabetic patients compared with

matchedhealthy controls (Barzilai et al., 2016). Theeffects ofmet-

formin on host physiology are regulated by its interaction with the

microbiota inanevolutionarilyconservedmanner, fromC.elegans

tohumans (Bauer et al., 2018;Cabreiro et al., 2013; Forslundet al.,

2015;Wuetal., 2017). For example,metformin treatmentdoesnot

extend C. elegans lifespan in the absence of bacteria, when bac-

teria are metabolically impaired, or when bacteria develop resis-

tance to the growth-inhibitory effects of metformin (Cabreiro

et al., 2013). Nutrition also plays a key role in regulating both

host andmicrobial physiology (David et al., 2014) aswell as the ef-

ficacy of drugs in treating disease (Gonzalez et al., 2018). Indeed,

the effects of metformin on host physiology are dependent on di-

etary intake (Bauer et al., 2018; Shin et al., 2014). However, the

precise mechanisms by which microbes regulate these effects

in a nutrient-dependent manner remain elusive.

Given the complexity of microbial metabolism and the myriad

of metabolites of prokaryotic origin regulating host-related pro-

cesses, understanding and harnessing their potential is a chal-

lenging task. Like humans, C. elegans hosts a community of

gut microbes that acts as a central regulator of host physiology

(Zhang et al., 2017). Recently, microbial metabolites of interest

have been identified using animal models that allow direct

high-throughput measurements of quantifiable and conserved

host phenotypes that are directly regulated by microbes

(Qi and Han, 2018). Moreover, similar to the human microbiota,
mber 5, 2019 ª 2019 The Authors. Published by Elsevier Inc. 1299
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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C. elegans is dominantly colonized by enterobacteria (Lloyd-

Price et al., 2017; Zhang et al., 2017), making it an ideal model

for studying the effect of human gut microbes such as E. coli

on host physiology and their function in mediating the response

to host-targeted drugs (Cabreiro et al., 2013; Garcia-Gonzalez

et al., 2017; Scott et al., 2017). Although many efforts have

beenmade to develop techniques that further our understanding

of the role of microbial genetics in host regulation, none exist to

dissect the intricate relationships between nutrition, pharma-

cology, microbes, and host physiology.

Here we devise a high-throughput four-way screening

approach to facilitate the evaluation of nutritional modulation of

drug action in the context of the host-microbe meta-organism.

Using this strategy, we identify a bacterial signaling pathway

that integrates metformin and nutrient signals to alter metabolite

production by the microbiota. Changes in metabolite production

can, in turn, affect fatty acid metabolism in the host, altering the

lifespan. Importantly, using a computational modeling approach,

we show that these changes in metabolite production are

also recapitulated in the microbiota of metformin-treated type

2 diabetic patients, providing a potential explanation for the

pro-longevity effects of metformin in humans.

RESULTS

Four-Way Host-Microbe-Drug-Nutrient Screens Identify
a Signaling Hub for the Integration of Drug and Nutrient
Signals
We hypothesized that changing the nutritional context might

alter the effects of metformin on bacterial growth and, in turn,

modulate the metabolic and longevity response of C. elegans

to metformin. Because metformin induces a dietary restriction-

like state inC. elegans to regulate the organismal lifespan (Onken

and Driscoll, 2010), we used the transgenic reporter C. elegans

strain Pacs-2::GFP (Burkewitz et al., 2015), whose expression

is an indicator of the transcriptional response under conditions

of dietary restriction, to test this hypothesis. Acs-2 is an

acyl-coenzyme A (CoA) synthase ortholog that mediates the

activation of fatty acids for b-oxidation in response to dietary re-

striction. As predicted, the ability of metformin to impair bacterial

growth (Figures 1A, S1A, and S1B), enhance host longevity (Fig-

ure 1B; Table S1), and increase the expression of Pacs-2::GFP

(Figures 1C and S1C) varied dramatically according tometformin

concentration. Critically, the magnitude of these effects differs

depending on the growth medium, suggesting a nutritional input

into this response (Figures 1B and 1C).

To investigate howspecificnutrients affectmetforminactionon

the host in a bacterium-dependent way, we developed a high-

throughput four-way host-microbe-drug-nutrient screen that al-

lowed us to map these interactions at an extensive scale (Fig-

ure 1D; see STAR Methods for details). Briefly, we determined

the propensity of 337 specific nutrients to modify the effect of

metformin on bacterial growth. This provides a simple readout

of nutrient-metformin interactions at the bacterial level. Similarly,

measuring the expression levels of the Pacs-2::GFP C. elegans

reporter line, we determined the propensity of these 337 nutrients

tomodify the dietary restriction-like transcriptional andmetabolic

response in thehost inducedbymetformin in thepresenceofbac-
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teria. This allowed us to identify nutrients that act in the host in the

context of metformin in a bacterium-dependent and -indepen-

dent manner (Figures 1D, 1E, and S1D; Table S2). Fold change

values in the metformin-dependent Pacs-2::GFP fluorescence

response of worms in the presence of specific nutrients (y axis)

were plotted relative to the bacterial growth fold change values

(x axis) for the same condition (Figure 1E). Although E. coli growth

and C. elegans phenotype rescue by nutrients were not fully pre-

dictive of each other (r2 = 0.08, p = 1.1 3 10�7; Figures 1E and

S1E–S1G), a large subset of the nutrient-bacterium interactions

strongly predicted the effects of metformin on host physiology

(Figure 1E, red circles). We observed that 37 of 79 nutrients that

significantly rescued metformin-induced impairment of bacterial

growth also suppressed Pacs-2::GFP activation by metformin in

worms, and 25 nutrients that suppressed Pacs-2::GFP activation

by metformin had either a neutral or synergistic interaction with

the effects of metformin on bacterial growth (Figure S1H). Taken

together, these data suggest specific nutritional tuning of metfor-

min effects on host metabolism through the bacteria.

Next we performed a nutrient EcoCycmetabolite class enrich-

ment analysis on both the bacterial growth and Pacs-2::GFP

host data (Figure 1F; Table S2) with the aim to identify nutrients

that specifically rescue metformin effects on host physiology

through the bacteria. From our metabolite enrichment analysis,

nutrients belonging to the classes of amino sugars, peptides,

amino acids (e.g., L-serine), and nucleotides (e.g., adenosine)

significantly rescued the effects ofmetformin on bacterial growth

without affecting the effects of metformin on host metabolism

and lifespan (Figures 1E, 1F, S1I, S1J, S2A, and S2B).

Conversely, carbohydrates, aldehydes, or carboxylates (e.g.,

D-glucose, D-ribose, and glycerol) rescued E. coli growth and

abolished both the upregulation of Pacs-2::GFP and lifespan

extension in worms in a bacterium-dependent manner, as

demonstrated by the specific deletion of bacterial genes respon-

sible for nutrient catabolism (Figures 1E, 1F, S1I, S1J, and S2C–

S2L). This suggests the presence of specific processes in bacte-

ria integrating the effects of nutrients and metformin to regulate

host physiology. To identify these processes, we performed

Kyoto Encyclopedia of Genes and Genomes (KEGG) ontology

pathway analysis for both E. coli and C. elegans (Figure 1G; Ta-

ble S2). This analysis revealed enrichment for the galactose and

the phosphotransferase system (PTS) as key metabolic and

signaling bacterial pathways, respectively, mediating the effects

of metformin on the host. Altogether, our findings suggest a

mechanism whereby the presence of specific metabolic and

signaling pathways in bacteria function to integrate signals

from both nutrition and drugs to regulate host metabolism.

Bacterial Proteomics Identify Crp and ArgR as
Transcriptional Regulators of Metformin Effects
To better understand the mechanistic links between the meta-

bolic and signaling pathways identified in our four-way screen

and the regulation of host physiology, we performed proteomics

analyses of E. coli with and without metformin treatment (Fig-

ure 2A). Metformin treatment was significantly associated with

specific KEGG pathways, such as upregulation of the tricarbox-

ylic acid (TCA) cycle (false discovery rate [FDR] = 0.0002) and

downregulation of both glycolysis (FDR = 0.001) and arginine
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Figure 1. Four-Way Host-Microbe-Drug-Nutrient Screens Identify a Signaling Hub for the Integration of Drug and Nutrient Signals

(A–C) The effects ofmetformin onbacterial growth (A), wild-typeN2worm lifespan (B), andmetabolism (C) are dependent ondrugdose, nutrients, andbacteria.OP50-

MR is anE. coliOP50 strain that developedmetformin resistance. As observed previously (Cabreiro et al., 2013), metformin does not extend the lifespanwhenworms

are grown on OP50-MR. In (B), each data point corresponds to the mean lifespan of 80–154 worms. See also Table S1. In (C), each panel shows 8 individual worms.

(D) Diagram of the four-way host-microbe-drug-nutrient interaction screen.

(E) Nutrient effects on bacterial phenotype (growth, x axis) and on wild-type N2 worm phenotype rescue (Pacs-2::GFP expression, y axis) in response to met-

formin. The red fit line shows the correlation between metformin and nutrient effects in bacteria and worms. Antagonistic or synergistic refers to the type of

interaction determined by linearmodeling observed betweenmetformin and nutrient effects, leading to an overall effect that is significantly greater than the sumof

the effects of the two components alone either inC. elegans Pacs-2::GFP levels or E. coli growth. Positive fold changes indicate nutrient suppression of the effect

of metformin in bacterial growth or C. elegans Pacs-2::GFP expression. Error bars represent SE. FDR < 0.05 for significance. All colored circles are statistically

significant. Gray circles are non-significant. Effects of highlighted nutrients are provided in detail in Figures S1 and S2.

(F and G) EcoCyc metabolite class (F) and KEGG pathway (G) enrichment for the effects of nutrients on E. coliOP50 growth and worm Pacs-2::GFP expression in

the context of metformin treatment.

Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

See also Table S1 for lifespan statistics and Table S2 for screen statistics.
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Figure 2. Bacterial Proteomics Identify Transcriptional Networks Underlying Metformin Effects in E. coli

(A) Volcano plot showing E. coli proteins that are differentially regulated in response to metformin. Highlighted proteins belong to significantly enriched KEGG

pathways.

(B) Diagram displaying connectivity between KEGG pathway enrichment and RegulonDB transcription factor (TF) enrichment from proteomics data of E. coli

OP50 treated with metformin.

(C) Bacterial growth summary of E. coliOP50 TF mutants with metformin. Significance stars represent comparison with OP50 for each metformin concentration.

(D) Metformin regulates worm Pacs-2::GFP expression in a bacterial TF-dependent manner. Significance stars represent comparison with OP50 at 0 mM (red) or

50 mM (purple) and metformin-genotype interaction (green).

(E and F) Metformin extends worm lifespan in a bacterial TF-dependent manner.

Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

See also Table S1 for lifespan statistics and Table S3 for proteomics statistics.
degradation via the arginine N-succinyltransferase (AST)

pathway (FDR = 0.0006) (Figure 2B; Table S3). We also per-

formed a functional analysis of these proteome changes using

the E. coli gene-transcription factor links from the RegulonDB

database to identify signaling regulators underlying these func-

tional changes in the context of metformin. Eleven transcription

factors (TFs) were found to be significantly associated with the

bacterial response to metformin (STAR Methods; Table S3).

Only four remained statistically significant following multiple

comparisons adjustment: Crp (FDR = 0.025), Cra (FDR =

0.006), ArgR (FDR = 0.016), and NtrC (FDR = 0.025) (Figure 2B).

We investigated the role of these 11 bacterial TFs in regulating

the effects of metformin on bacterial growth, host metabolism,

and lifespan. Deletion of the bacterial TFs did not confer resis-

tance to metformin (Figures 2C; S3A, and S3B). Analysis of the

effect of these bacterial TFs on host metabolism (Figures 2D;

S3C, and S3D) and lifespan (Figures 2E, 2F, and S3E–S3N) re-

vealed that deletion of bacterial Crp and ArgR significantly

reduced the upregulation of worm Pacs-2::GFP (Figures 2D). In

addition, bacterial Crp and ArgR are fully and partially required,

respectively, for the increased host longevity induced by metfor-

min (Figures 2E and 2F). Together, these data suggest that a
1302 Cell 178, 1299–1312, September 5, 2019
bacterial signalingmechanismmediates the effects of metformin

on host metabolism and lifespan.

Therefore, we identified transcriptional regulators of metfor-

min-E. coli effects on host physiology—a master regulator of

carbon metabolism, Crp, and a master regulator of nitrogen

metabolism, ArgR (Chubukov et al., 2014)—through a mecha-

nism that is independent of bacterial resistance to the effects

of metformin on growth.

E. coli PTS-Crp Signaling Integrates Metformin and
Nutrient Effects on Host Lifespan
Our four-way screen combined with our proteomics approach

identified the bacterial PTS-Crp axis as a central regulator of

metformin effects on the host. The PTS is a major active trans-

port system in bacteria that coordinates the uptake of multiple

carbohydrate molecules with the downstream regulation of Crp

via a cascade of phosphorylation events. Consequently, Crp,

together with its binding partner cyclic AMP (cAMP), directly

controls the transcription of hundreds of genes in response to

the nutritional environment and adjusts metabolic processes

accordingly (Chubukov et al., 2014; Figure 3A). We therefore

conducted interventions designed to interrupt this signaling
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Figure 3. Bacterial PTS-Crp Signaling Regulates Metformin Effects on Host Metabolism and Lifespan

(A) Diagram of the PTS-Crp signaling pathway in E. coli.

(B–D) Glucose supplementation (B); deletion of E. coli OP50 pts H, I, and crr (C); and cyaA (D) abolishes worm lifespan extension by metformin.

(E) Metformin upregulates Crp expression in control E. coli OP50 but not in OP50 Dcrp or DcyaA mutants or with glucose supplementation. Significance stars

represent metformin effect (purple) and metformin-genotype or nutrient interaction (green).

(F) Dose-dependent upregulation of Crp in E. coli OP50 extends the worm lifespan.

(G) Overexpression of Crp in E. coli OP50 upregulates Pacs-2::GFP expression in worms. Each panel shows 5 individual worms.

(H) Effect of overexpression of E. coli Crp on the worm lifespan is dependent on bacterial cyaA.

(I and J) Metformin extends the lifespan in flies grown on chemically defined medium with E. coli OP50 (I) but not with an OP50 Dcrp mutant (J).

(K) E. coli OP50 overexpressing Crp extends the fly lifespan on chemically defined medium.

Data are represented as mean ± SEM. n.s., non-significant; *p < 0.05; **p < 0.01; ***p < 0.001.

See also Table S1 for lifespan statistics.
pathway at various steps. As expected, supplementation with

glucose, a known inhibitor of bacterial cAMP-CRP signaling,

reduced the effects of metformin on both the activation of

Pacs-2::GFP in the host (Figures S4A and S4B) and lifespan

extension (Figure 3B). Similarly, the use of bacterial mutants

with deletions of multiple (DptsHDptsIDcrr) or single (Dcrr) PTS
proteins or adenylate cyclase (DcyaA) also abolished the effects

of metformin on longevity (Figures 3C, 3D, and S4C). All mutant

bacterial strains tested were equally or more sensitive to metfor-

min (Figures S4D and S4E). This further supports that this bacte-

rial signaling pathway regulates the host lifespan in response to

metformin via its downstream effects on metabolism rather than
Cell 178, 1299–1312, September 5, 2019 1303
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Figure 4. Bacterial Agmatine Regulates Host Metabolism and Lifespan

(A) Volcano plots of metabolomics data showing effect of metformin in control E. coliOP50 or anOP50Dcrpmutant and the effect of Crp overexpression in OP50.

(B) Subset of differentially and significantly expressed metabolites that are unique to Crp regulation and metformin treatment.

(C) Bacterial arginine-related metabolic pathways with an overlay of metformin-induced changes in the E. coli proteome and metabolome. Ast, arginine

N-succinyltransferase pathway.

(D and E) Deletion of genes from E. coli arginine catabolism alters worm Pacs-2::GFP expression (D) and lifespan (E).

(F and G) Agmatine supplementation upregulates worm Pacs-2::GFP expression (F) and extends the lifespan (G) in a bacterium-dependent manner.

(H) Agmatine supplementation extends the fly lifespan in sugar-yeast-agar (SYA) medium.

(I) Metformin does not extend the lifespan in the agmatine-deficient OP50 mutant DadiADspeA.

(legend continued on next page)
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by conferring direct resistance to the drug, as shown previously

for OP50-MR (Cabreiro et al., 2013).

Next we tested whether metformin altered the expression

levels of Crp. Metformin increased Crp expression in control

bacteria but not inDcrp orDcyaAmutant bacteria, nor in bacteria

supplemented with glucose (Figure 3E) or the non-PTS sugar

glycerol (Figure S4F). Altogether, this suggests cAMP-depen-

dent upregulation of Crp linked to altered central carbon meta-

bolism flux (Chubukov et al., 2014; You et al., 2013). Consistent

with this, the ratio of the flux sensor phosphoenolpyruvate (PEP)/

pyruvate, whose levels are known to regulate Crp activation

through a PTS-CyaA signaling mechanism (You et al., 2013),

were increased by 533% under the metformin condition (p =

0.0002) and abolished by glucose supplementation (p = 0.338;

Figure S4G; Table S4). Therefore, we asked whether we could

mimic the metformin effects on host metabolism by genetically

activating Crp signaling in E. coli. This was achieved through

control of Crp levels under an isopropyl-b-D-thiogalactoside

(IPTG)-inducible promoter (Figure S4H). Crp overexpression in

E. coli extended the lifespan in a dose-dependent manner (Fig-

ures 3F, S4I, and S4J) and upregulated host Pacs-2::GFP (Fig-

ures 3G and S4K). In addition, consistent with the role of cAMP

in Crp activation, Crp overexpression required CyaA and cAMP

to increase the worm lifespan (Figures 3H and S4L), an effect in-

dependent of loss of bacterial fitness because of overexpression

(Figures S4M and S4N). Similarly, deletion of the cAMP-degrad-

ing enzyme cpdA increased the worm lifespan in a cyaA- and

crp-dependent manner (Figures S4O–S4Q). Our data suggest

that activation of the functional signaling unit requires both the

TF and its cofactor to promote effects on host health.

To determine whether this phenomenon is also present in

other species, we investigated the effects of metformin on

Drosophila lifespan. Although metformin extends the lifespan in

multiple organisms, it has been shown previously that it failed

to extend the lifespan ofDrosophila (Slack et al., 2012). However,

using a fully chemically definedmediumwhose composition was

based on nutritional findings from our four-way screen (STAR

Methods), we showed that metformin does extend the

Drosophila lifespan in a dose-dependent manner when colo-

nized with control OP50 E. coli (Figure 3I) but not in germ-free

flies (Figure S4R) or those colonized with a Dcrp mutant (Fig-

ure 3J). Overexpressing Crp in E. coli was sufficient to increase

theDrosophila lifespan (Figure 3K), further highlighting the evolu-

tionary conservation of this bacterial pathway in regulating the

host lifespan. Overall, these findings demonstrate that the over-

expression of bacterial Crp elicits similar effects as metformin on

the host, implying a common overlapping mechanism.

Bacterium-Derived Agmatine Underlies Metformin
Effects on Host Metabolism and Lifespan
Crp regulates a myriad of metabolic processes in bacteria (Chu-

bukov et al., 2014). To understand the Crp-dependent metabolic
(J) Comparison of in silico predicted agmatine production capacity and measured

metformin. The p values indicate the significance of association between pre

model fit). See Figure S5J for predicted agmatine production capacity and meas

Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

See also Table S1 for lifespan statistics, Table S3 for proteomics statistics, and
changes inE. coli relevant to host lifespan, we used anE. colime-

tabolomics approach to identify metabolite level changes that

were common to both metformin-treated OP50 and Crp overex-

pression but absent in themetformin-treatedDcrp strain (Figures

4A, 4B, and S5A; Table S4). Volcano plots showed dramatic dif-

ferences between the metabolic profiles of OP50 and Dcrp

treated with metformin, suggesting that Crp strongly influences

the metabolic response of E. coli to metformin (Figure 4A).

To test the importance of accumulated bacterial metabolites in

regulating host physiology, we created E. colimutants with dele-

tions of genes known to utilize thesemetabolic substrates and to

be under the regulation of Crp (Figure S5B). Of these gene dele-

tion strains, only a strain with a mutation in the speB gene, which

catabolizes agmatine (Figure 4C), conferred a significant in-

crease in host Pacs-2::GFP expression. We therefore focused

on arginine catabolism because (1) deletion of speB (agmati-

nase) or its repression by Crp in the absence of sugars impairs

arginine catabolism via the agmatinase pathway, leading to an

accumulation of agmatine (Satishchandran and Boyle, 1986;

Figure 4C); (2) arginine degradation via an alternative route

known as the AST pathway was strongly downregulated by

metformin treatment (Figures 2A and 2B; Table S3); and (3)

several metabolites from arginine metabolism were significantly

altered in E. coli treated with metformin (Figure 4C; Table S4).

As expected, single- or double-deletion mutants in both argi-

nine catabolism pathways (DastA, DspeB, and DastADspeB),

which are predicted to accumulate agmatine, induced host

Pacs-2::GFP expression. A quadruple mutant, DadiADastAD

speADspeB, which was not expected to accumulate agmatine,

did not upregulate Pacs-2::GFP, implying that bacterial agma-

tine rather than arginine regulates host metabolism (Figure 4D).

The host lifespan was similarly affected by these mutant strains

(Figure 4E). Given that we observed no significant loss of growth

fitness in these bacterial mutants (Figure S5C), ruling out con-

founding effects, our data suggest a direct link between bacterial

agmatine production and host metabolism and longevity.

We further investigated the role of agmatine by exogenous sup-

plementation. Agmatine delayed worm development and repro-

ductive output (Figure S5D), upregulated Pacs-2::GFP expression

(Figure 4F), and increased the lifespan (Figures 4G and S5E). As

expected, the effect on worm physiology was more significant

when grown on bacterial mutants that cannot metabolize agma-

tine (i.e., DspeB and DadiADastADspeADspeB) (Figures 4G and

S5E). Likewise, agmatine reduced Drosophila fecundity (Fig-

ure S5F) and weight (Figure S5G) and increased the lifespan

(Figures 4H and S5H) in a dose-dependent manner, suggesting

evolutionary conservation of agmatine effects on host physiology.

Next we tested the effects of metformin when worms were grown

on DadiADspeA mutants, which cannot produce agmatine, and

found that metformin no longer extended the worm lifespan (Fig-

ure 4I). We did not observe any differences in macromolecular

nutrient content between OP50 and the DadiADspeA mutant
worm Pacs-2::GFP expression with nutrient supplementation in the context of

dicted agmatine production capacity and Pacs-2::GFP fluorescence (linear

ured growth-rescue of metformin-treated E. coli OP50.

Table S4 for metabolomics statistics.
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Figure 5. Metabolic Modeling of Human Gut Microbiota Reveals Signatures of Agmatine Overproduction in Metformin-Treated Type 2

Diabetic Patients

(A) Predicted agmatine production by the gutmicrobiota in the 3 independent cohorts. Shown are FDR-corrected p values fromWilcoxon rank-sum tests between

the indicated groups.

(B) Longitudinal changes in predicted agmatine production following initiation of metformin treatment in newly diagnosed type 2 diabetic patients. The p values

indicate the significance of the treatment effect (i.e., time) on agmatine production (linear model fit).

(C) Predicted top 5 microbial producers of agmatine within the gut microbiome of metformin-treated patients across cohorts.

(D) Side products of predicted agmatine production in the Kiel cohort. Values correspond to moles of side product produced per mole of agmatine produced.

Data are represented as absolute values.

For details regarding statistical tests, see STARMethods and Table S5. mmol/gM/day, predicted production fluxes in millimoles per gram of gut microbiota per day.
(Figure S5I), suggesting that it is agmatine, rather than other nutri-

tional changes induced by metformin, that drives the lifespan ef-

fects on the host. Finally, when worms were grown on a bacterial

DastADspeBmutant strain thatmaximally accumulated agmatine,

metformin did not further extend their lifespan (Figure S5J). Taken

together, these data strongly support a model in which agmatine,

rather than other nutritional changes induced by metformin in

bacteria, drives the lifespan effects on the host.

Next we used ametabolic model of E. coliOP50 (Zimmermann

et al., 2019) to determine the effect of nutrient supplementation

on agmatine production capacity (Figures S5K and S5L; Tables

S5C and S5D). The metabolic model predicts that sugars do not

increase bacterial agmatine production capacity, whereas nu-

cleotides, amino acids, and peptides do (Figures S5K and S5L;

Table S5B). This is consistent with data obtained from the
1306 Cell 178, 1299–1312, September 5, 2019
four-way screen, as exemplified by a significant association of

predicted changes in agmatine production upon nutrient supple-

mentation with Pacs-2::GFP induction in C. elegans (Figure 4J;

linear model p = 5.23 10�4; Table S5C). The predicted increase

in agmatine production capacity showed a discrete stepwise

clustering (Figures S5K and S5L) that could be explained by

the number of nitrogen residues gained by E. coli OP50 during

degradation of the correspondent nutrient (Table S5), which is

reflected in the high nitrogen content of agmatine. Thus, the in

silico model predicts that many metabolites identified in our

four-way screen mediate their effect through increased agma-

tine production by E. coli in a metformin-dependent manner.

Overall, these data provide a causal link betweenmetformin sup-

plementation and agmatine production by bacteria to increase

the host lifespan.
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Figure 6. Metformin and Bacterium-Dependent Transcriptional and Metabolic Signatures in C. elegans

(A)Multi-dimensional scaling plot of wormRNA-seq data showing distinct and bacterium-dependent transcriptional signatures associatedwithmetformin treatment.

(B) KEGG pathway enrichment for worm RNA-seq data.

(C) Metformin increases expression of worm lipid-related genes in a bacterium-dependent manner as effects are suppressed in OP50 Dcrp. Similar effects were

observed for worms grown on OP50-MR (Figures S6B and S6C).

(D and E) Confocal visualization of worm lipid droplets (D) and peroxisomes (E), showing effects of metformin in worms in a bacterial Crp-dependent manner.

Similar effects were observed for worms grown on OP50-MR (Figures S6E and S6F). Scale bars, 10 mm. No changes in gene expression for dhs-3 or vha-6 were

observed (Table S6).

(legend continued on next page)
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The Microbiota of Metformin-Treated Patients Has
Increased Agmatine Production Capacity
To establish whether there is a link between bacterial agmatine

production and metformin treatment in humans, we investigated

whether metformin treatment is associated with increased

agmatine production capacity in the microbiota of metformin-

treated type 2 diabetic patients (Kiel cohort; STAR Methods),

using microbial community modeling (Graspeuntner et al., 2019;

Magnúsdóttir et al., 2017) specifically accounting for the dietary

intake of each patient (STAR Methods). In this modeling

approach, 16S rRNA sequencing data are mapped to a

repository of metabolic models of bacteria of the gut microbiome

(Magnúsdóttir et al., 2017). Subsequently, these metabolic

models are joined together into a metabolic microbial community

model that accounts for the abundance of individual bacterial

species and is constrained by the dietary uptake of each partici-

pant. By using linear optimization on these models, the agmatine

productioncapacity of eachparticipant’smicrobiomecanbepre-

dicted (STAR Methods). Within the Kiel cohort, comprising 1,258

human participants (Table S5E), the predicted agmatine produc-

tion capacity was significantly higher in metformin-treated type 2

diabetic patients (n = 76; Figure 5A) than in untreated type 2 dia-

betic patients (n = 57, FDR = 0.04), healthy obese controls (n =

492, FDR = 1.5 3 10�5), and healthy lean controls (n = 633,

FDR=3.8310�10; TableS5G).Untreated type2diabeticpatients

showedno difference in agmatine production capacity compared

with healthyobesecontrols (FDR=0.26) andonly a small increase

compared with healthy lean controls (FDR = 9.7 3 10�3). Similar

results were observed for a Swedish and a Danish cohort (Fig-

ure 5A; Tables S5I and S5J). Consistent with our in silico nutrient

supplementation screen in E. coli OP50, we also observed the

strongest increases in predicted agmatine production capacity

of human gut microbial communities following supplementation

of nitrogen-rich compounds in the Kiel cohort (Figure S5N; Table

S5B). Moreover, we tested the influence of different phenotypic

variables on the predicted agmatine production capacity in the

Kiel cohort. Even when controlling for body mass index and

age, agmatine production remained most strongly associated

with metformin-treatment status (STAR Methods; Table S5H).

To fully exclude phenotypic differences as a confounder

causing differences in agmatine production capacity between

groups, we next assessed agmatine production capacity in a lon-

gitudinal cohort (Wu et al., 2017; see STAR Methods for cohort

setup). Metformin treatment was associated with a significant in-

crease in agmatine production capacity both after initiation of

metformin treatment and after switching a placebo group tomet-

formin (p = 6.33 10�3 and p = 3.33 10�3, respectively), with no

significant effect with placebo alone (p = 0.19) (Figure 5B; Table

S5K). Modeling results revealed that the strongest producers of

agmatine were bacteria from the genera Escherichia, Bacter-

oides, Enterobacter, and Citrobacter (Figure 5C), which are

consistentlymore abundant inmetformin-treatedpatients across

cohorts (Forslund et al., 2015; Wu et al., 2017; Table S5L). Addi-
(F) Metabolomics in worms show an interaction between metformin and bacteria

Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001. In (E)

bacterium interaction (green or blue).

See also Table S6 for RNA-seq statistics and Table S7 for fatty acid metabolom
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tionally, we determined fermentation products such as the short-

chain fatty acids acetate and propionate as well as CO2 and H2S

(Figure 5D) as major side products of agmatine synthesis.

Overall, the modeling data informed by our four-way screen

support the conclusion that metformin interactions with the

microbiota promote the production of agmatine (in a nutrient-

dependent manner) and, as a direct consequence, other metab-

olites that may contribute to metformin’s beneficial action

(e.g., short-chain fatty acids) as well as its negative side effects

such as bloating and other gastrointestinal complications (e.g.,

through production of CO2 and H2S) (Forslund et al., 2015; Pryor

and Cabreiro, 2015; Wu et al., 2017).

Bacterium-Mediated Increases in Host Fatty Acid
Oxidation Extend the Host Lifespan
To identify the molecular processes and genes that mediate the

Crp and agmatine-dependent effects ofmetformin on organismal

longevity, we performed a multi-omic analysis on the C. elegans

host. RNA sequencing (RNA-seq) analyses (Figures 6A, 6B, and

S6A), validated using transcriptional reporter lines (Figures S6B

and S6C), showed that metformin treatment induced distinct

worm transcriptional profiles in a bacterial strain-dependent

manner. Among the most significantly enriched KEGG terms

associated with the genes responsible for themetformin-induced

longevity phenotype were processes involving peroxisomal

(FDR = 2.7 3 10�4) and fatty acid metabolism (FDR = 1.5 3

10�8) (Figure 6B; Table S6). To assess transcriptional and cellular

changes in vivo induced by metformin and bacteria, we used

worm transgenic reporter lines for genes associated with lipid

metabolism thatmark lipid droplets and peroxisomes in the intes-

tine (Figure S6D). Metformin upregulated genes involved in lipid

metabolism (Figures 6C, S6B, and S6C) and specifically

decreased lipid droplet size and abundance (Figures 6D and

S6E) while increasing peroxisomal abundance (Figures 6E, S6F,

and S6G) in worms grown on OP50. Significantly, this effect

was not seen in worms grown on Dcrp bacteria. We also per-

formed a metabolomic analysis of free and bound fatty acids

and found that metformin significantly altered 16 of the 24 fatty

acidsmeasured (Figure 6F; Table S7). Changes inC. elegans lipid

profiles induced bymetforminwere abolished inworms grown on

Dcrpbacteria (Figures 7A, S7A, andS7B). These observations are

consistent with a key role of bacterial Crp in mediating the effects

of metformin on host lipid metabolism.

We hypothesized that bacterium-dependent changes in host

fatty acid oxidation (FAO) metabolism are causally linked to

metformin-induced longevity. Therefore, we investigated the

role of the global fatty acid oxidation transcriptional regulator,

the host nuclear hormone receptor NHR-49/PPARa ortholog

(Figures 7C–7F), as well as genes directly involved in mitochon-

drial and peroxisomal fatty acid oxidation metabolism (Figures

7G and 7H) and in processes such as mitochondrial respiration

and homeostasis (Figures S7C–S7I) that also regulatefatty acid

oxidation (Figure S6C; Weir et al., 2017). In support of our
on host fatty acid profiles.

and (F), significance stars represent metformin effect (black) and metformin-

ics statistics.
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Figure 7. Metformin Increases Fatty Acid Oxidation to Regulate Host Metabolism and Lifespan

(A) PCA plot of fatty acid metabolomics data, showing distinct signatures of metformin in worms in a bacterium- and worm nhr-49-dependent manner.

(B) Fatty acid metabolomics in worms, showing an interaction between metformin and worm nhr-49.

(C–F) Host nhr-49 regulates metformin effects on worm Pacs-2::GFP expression (C) and the effects of metformin (D), agmatine supplementation (E), and E. coli

OP50 Crp overexpression (F) on the worm lifespan.

(G and H) Worm lifespan extension by metformin is abolished by RNAi knockdown of the mitochondrial FAO gene acs-1 (G) and in acox-1.1 and acox-1.5

peroxisomal FAO mutants (H).

(I) Proposed model of host-microbe-drug-nutrient interactions that regulate metformin effects on host metabolism and lifespan.

Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001. In (B) and (C), significance stars represent metformin effect (black) and metformin-

genotype interaction (green).

See also Table S1 for lifespan statistics and Table S7 for fatty acid metabolomics statistics.
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hypothesis, a mutation in the worm gene nhr-49 suppressed the

fatty acid metabolic signature induced bymetformin (Figures 7A,

7B, S7A, and S7B; Table S7) and upregulation of the fatty acid

oxidation gene acs-2 by metformin (Figure 7C). The nhr-49 mu-

tation also abolished the lifespan extension induced by metfor-

min (Figure 7D), agmatine supplementation (Figure 7E), and bac-

terial CRP overexpression (Figure 7F). The lifespan-extending

effects of metformin on worms were also abolished by RNAi

knockdown of the mitochondrial fatty acid oxidation enzyme

acs-1/ACSF2 (Figure 7G), pharmacological inhibition of mito-

chondrial fatty acid oxidation by perhexiline (Figure S7J; Kim

et al., 2016), genetic deletion of the peroxisomal fatty acid oxida-

tion enzymes acox-1.1 /ACOX1 or acox-1.5/ACOX1 (Figure 7H),

genetic deletion of the peroxisomal biogenesis gene prx-5 (Fig-

ure S7K), and supplementation with the fatty acid oxidation

product acetoacetate (Puchalska and Crawford, 2017; Figures

1E, S1I, S1J, and S7L–S7P).

Altogether, our data highlight a new role for bacterial signaling

via Crp and bacterium-derived metabolites, including agmatine,

in mediating links between metformin treatment and host lipid

metabolism to regulate longevity (Figure 7I).

DISCUSSION

Moving away from correlative descriptions to in-depth mecha-

nistic studies that establish a causative role for microbiota

and their metabolites on host physiology is a highly desirable

aim of both fundamental and applied research with wider impli-

cations for personalized medicine (Fischbach, 2018; Schmidt

et al., 2018). We used a high-throughput four-way host-

microbe-drug-nutrient screen and an in silico human microbiota

metabolic modeling approach to identify bacterial effectors of

metformin response in the host. We find that bacteria integrate

nutrient and drug cues via a metabolic signaling axis involving

the PTS, required for sugar uptake, and the downstream tran-

scription factor Crp. A detailed mechanistic investigation points

to agmatine as a bacterially producedmetabolite required for the

effects of metformin on host lipid metabolism and lifespan in

both C. elegans and D. melanogaster (Figure 7I). Thus, our study

dissects the evolutionarily conserved links between microbe-

derived metabolites and the host and their modulation by envi-

ronmental cues such as drugs and nutrition.

The host, itsmicrobes, and the environment forma single phys-

iological unit of study, with all of its parts being either targets of

drugs or potential regulators of drug action. Therefore, under-

standing the complex interactions between host genetics, micro-

bial genetics, and the environment (e.g., drugs and nutrition) re-

quires a holistic approach to pharmacology and a paradigm

shift toward holobiont-focused research (Kundu et al., 2017).

Within this framework, our four-way screening approach investi-

gating host-microbe-drug-nutrient interactions on an extensive

scale provides an experimental tool for achieving such a holistic

understanding. It revealedanunexpectedmechanismofbacterial

metabolic adaptation to metformin involving the signaling axis

PTS-Crp,which indirectly regulates thehost lifespanand ismodu-

lated by the nutritional landscape (Figure 7I). Analogous to the ef-

fects of metformin on eukaryotic cells, where activation of the

metabolic rheostat AMP-activatedprotein kinase (AMPK) bymet-
1310 Cell 178, 1299–1312, September 5, 2019
formin shifts cellular metabolism to a catabolic state (Pryor and

Cabreiro, 2015), metformin-mediated enhancement of PTS-Crp

signaling in prokaryotic cells (Chubukov et al., 2014) increased

bacterial catabolism and indirectly increased the lifespan in both

C. elegans and Drosophila. Furthermore, the powerful combina-

tion of our experimental systemswith in silicometabolicmodeling

approaches allowedpredictionofmicrobiomespecies involved in

the production of metabolites that regulate host physiology (e.g.,

E. coli production of the polyamine precursor agmatine in a

nutrient-dependent manner). In support of this functional role of

the microbiota in the context of metformin, our cohort-based mi-

crobial community modeling study, including patient-specific di-

etary information, showed that metformin treatment was

significantly associated with a predicted increase in agmatine

production capacity byE. coli and other Enterobacteriales across

cohorts as well as longitudinally. Our findings are consistent with

previous studies showing that metformin partly exerts its thera-

peutic effects by selectively altering the profile of the human gut

microbiota to improve dysbiosis associated with type 2 diabetes,

in particular by increasing theabundanceofEscherichia (Forslund

et al., 2015;Wu et al., 2017). The current results point to a key role

of agmatine in mediating the effects of metformin. However,

because it is currently not possible to measure agmatine produc-

tion by microbes in either model organisms or humans, future

work is need to directly link agmatine production with increased

longevity of metformin-treated type 2 diabetic humans compared

with matched non-diabetic controls (Barzilai et al., 2016).

Altogether, our four-way screen approach combinedwith in sil-

icomicrobial communitymodeling captures functional features in

microbes induced by metformin that are conserved from worms

to humans andprovides an experimental strategy for future inves-

tigations into complex host-microbe-drug-nutrient interactions.

Because the microbiota is an attractive target for therapeutic

intervention (Ho et al., 2018), understanding how the nutritional

environment regulates drug action through the microbiota and

elucidating the underlyingmetabolic pathways throughmetabolic

modeling may help inform dietary guidelines that promote

maximum drug efficacy and reduce gastrointestinal side effects.

Given themyriadof untappeddrug-nutrient-microbe interactions,

orchestrating bacterial metabolic responses through drug-

signaling interactions may yield a promising avenue for personal-

ized medicine aimed at improving host health and longevity.
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(UTB GmbH).

Fischbach, M.A. (2018). Microbiome: Focus on Causation and Mechanism.

Cell 174, 785–790.

Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa,

S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Pedersen, H.K., et al.; MetaHIT

consortium (2015). Disentangling type 2diabetesandmetformin treatment signa-

tures in the human gut microbiota. Nature 528, 262–266.

Gao, A.W., Chatzispyrou, I.A., Kamble, R., Liu, Y.J., Herzog, K., Smith, R.L.,

van Lenthe, H., Vervaart, M.A.T., van Cruchten, A., Luyf, A.C., et al. (2017). A

sensitive mass spectrometry platform identifies metabolic changes of life

history traits in C. elegans. Sci. Rep. 7, 2408.

Garcia-Gonzalez, A.P., Ritter, A.D., Shrestha, S., Andersen, E.C., Yilmaz, L.S.,

and Walhout, A.J.M. (2017). Bacterial Metabolism Affects the C. elegans

Response to Cancer Chemotherapeutics. Cell 169, 431–441.e8.

Gelius-Dietrich, G., Desouki, A.A., Fritzemeier, C.J., and Lercher, M.J. (2013).

Sybil–efficient constraint-based modelling in R. BMC Syst. Biol. 7, 125.

Gonzalez, P.S., O’Prey, J., Cardaci, S., Barthet, V.J.A., Sakamaki, J.I., Beauma-

tin, F., Roseweir, A., Gay, D.M., Mackay, G., Malviya, G., et al. (2018). Mannose

impairs tumour growth and enhances chemotherapy. Nature 563, 719–723.

Graspeuntner, S., Waschina, S., Kunzel, S., Twisselmann, N., Rausch, T.K.,

Cloppenborg-Schmidt, K., Zimmermann, J., Viemann, D., Herting, E., Gopel,
Cell 178, 1299–1312, September 5, 2019 1311

https://doi.org/10.1016/j.cell.2019.08.003
https://doi.org/10.1016/j.cell.2019.08.003
https://doi.org/10.1016/j.cell.2019.08.003#mmc9
https://doi.org/10.1016/j.cell.2019.08.003#mmc9
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref1
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref1
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref1
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref2
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref2
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref3
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref3
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref3
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref3
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref4
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref4
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref4
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref4
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref5
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref5
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref5
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref5
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref6
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref6
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref6
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref6
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref7
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref7
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref8
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref8
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref9
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref9
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref9
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref10
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref10
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref10
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref11
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref11
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref11
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref11
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref56
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref56
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref56
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref56
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref12
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref12
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref13
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref13
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref14
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref14
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref14
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref14
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref15
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref15
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref15
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref15
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref16
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref16
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref16
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref17
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref17
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref18
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref18
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref18
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref19
http://refhub.elsevier.com/S0092-8674(19)30891-8/sref19


W., et al. (2019). Gut dysbiosis with Bacilli dominance and accumulation of

fermentation products precedes late-onset sepsis in preterm infants. Clin.

Infect. Dis. 69, 268–277.

Hilbert, Z.A., and Kim, D.H. (2018). PDF-1 neuropeptide signaling regulates

sexually dimorphic gene expression in shared sensory neurons of

C. elegans. eLife 7, e36547.

Ho, C.L., Tan, H.Q., Chua, K.J., Kang, A., Lim, K.H., Ling, K.L., Yew, W.S., Lee,

Y.S., Thiery, J.P., and Chang,M.W. (2018). Engineered commensal microbes for

diet-mediated colorectal-cancer chemoprevention. Nat. Biomed. Eng. 2, 27–37.

Hussey, R., Stieglitz, J., Mesgarzadeh, J., Locke, T.T., Zhang, Y.K., Schroeder,

F.C., and Srinivasan, S. (2017). Pheromone-sensing neurons regulate periph-

eral lipid metabolism in Caenorhabditis elegans. PLoS Genet. 13, e1006806.

Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C.J., Fager-
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Purified anti-E. coli Crp BioLegend Cat# 664304; RRID: AB_2565553

Purified anti-E. coli RNA Sigma 70 BioLegend Cat# 663202; RRID: AB_2564410

Goat anti-mouse IgG Sigma-Aldrich Cat# A0168; RRID: AB_257867

Bacterial and Virus Strains

E. coli: OP50 CGC RRID:WB-STRAIN:OP50

E. coli: OP50-MR (metformin resistant) Cabreiro et al., 2013 N/A

E. coli: OP50(xu363) CGC RRID:WB-STRAIN: OP50(xu363)

E. coli: OP50 DptsHDptsIDCrr::kan Cynthia Kenyon (Lee

et al., 2009)

N/A

Keio collection: Single-gene knockout mutants in

E. coli BW25113 background

NBRP https://shigen.nig.ac.jp/ecoli/strain/resource/

keioCollection/list/

E. coli: OP50 DadiA::kan This study N/A

E. coli: OP50 DarcA::kan This study N/A

E. coli: OP50 DargG::kan This study N/A

E. coli: OP50 DargR::kan This study N/A

E. coli: OP50 DastA::kan This study N/A

E. coli: OP50 DcpdA::kan This study N/A

E. coli: OP50 Dcra::kan This study N/A

E. coli: OP50 Dcrp::kan This study N/A

E. coli: OP50 Dcrr::kan This study N/A

E. coli: OP50 DcsiR::kan This study N/A

E. coli: OP50 DcyaA::kan This study N/A

E. coli: OP50 Dfur::kan This study N/A

E. coli: OP50 DgcvA::kan This study N/A

E. coli: OP50 DgcvH::kan This study N/A

E. coli: OP50 DgcvP::kan This study N/A

E. coli: OP50 DgcvT::kan This study N/A

E. coli: OP50 DglpK::kan This study N/A

E. coli: OP50 Dhpt::kan This study N/A

E. coli: OP50 DmarA::kan This study N/A

E. coli: OP50 Dmlc::kan This study N/A

E. coli: OP50 Dnac::kan This study N/A

E. coli: OP50 DntrC::kan This study N/A

E. coli: OP50 DrbsK::kan This study N/A

E. coli: OP50 DspeA::kan This study N/A

E. coli: OP50 DspeB::kan This study N/A

E. coli: OP50 DspeF::kan This study N/A

E. coli: OP50 DtdcB::kan This study N/A

E. coli: OP50 DtdcC::kan This study N/A

E. coli: OP50 DcpdADcrp::kan This study N/A

E. coli: OP50 DcpdADcyaA::kan This study N/A

E. coli: OP50 DspeADadiA::kan This study N/A

E. coli: OP50 DspeADspeB::kan This study N/A

E. coli: OP50 DspeBDastA::kan This study N/A

E. coli: OP50 DadiADastADspeA::kan This study N/A

(Continued on next page)
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E. coli: OP50 DadiADastADspeADspeB::kan This study N/A

E. coli: OP50 pCrp This study N/A

E. coli: OP50 pAstC This study N/A

E. coli: OP50 pFepA This study N/A

E. coli: OP50 pFucI This study N/A

E. coli: OP50 pGalF This study N/A

E. coli: OP50 pGapA This study N/A

E. coli: OP50 pMdh This study N/A

E. coli: OP50 pMntR This study N/A

E. coli: OP50 pOmpA This study N/A

E. coli: OP50 pSodA This study N/A

E. coli: OP50 pUbiF This study N/A

E. coli: OP50 pYdcS This study N/A

E. coli: OP50 pYbjJ This study N/A

E. coli: OP50 Dcrp::kan pCrp This study N/A

E. coli: OP50 DcyaA::kan pCrp This study N/A

Chemicals, Peptides, and Recombinant Proteins

5-Fluoro-20-deoxyuridine 98+% Alfa Aesar Cat# L16497

Adenosine R 99% Sigma-Aldrich Cat# A9251

Adenosine 30,50-cyclic monophosphate (cAMP) Acros Organics Cat# 225800010

Agmatine sulfate 97% Alfa Aesar Cat# H55363

Agar Sigma-Aldrich Cat# A7002

Bacto peptone BD Biosciences Cat# 211677

CHAPS GE Healthcare Cat# 17-1314-01

cOmplete protease inhibitor cocktail Roche Cat# 11697498001

D-(+)-Glucose R 99.5% Sigma-Aldrich Cat# G8270

D-(�)-Ribose R 99% Sigma-Aldrich Cat# R7500

Dithiothreitol (DTT) GE Healthcare Cat# 17-1318-01

Glycerol R 99.5% Thermo Fisher Scientific Cat# BP229-1

Iodoacetamide (IAA) Fluka Cat# 57670

Isopropyl-b-D-thiogalactopyranoside

(IPTG) R 99%

Thermo Fisher Scientific Cat# BP1755

L-Serine Sigma-Aldrich Cat# S4500

LB Broth Miller Fisher BioReagents Cat# BP1426

Lithium acetoacetate R 90% Sigma-Aldrich Cat# A8509

Metformin (1,1-Dimethylbiguanide

hydrochloride) R 98%

LKT Laboratories Cat# M2076

MRS broth BD Difco Cat# 288130

Perhexiline maleate salt R 98% Sigma-Aldrich Cat# SML0120

Sequencing grade modified trypsin Promega Cat# V5111

Soy peptone Sigma-Aldrich Cat# P6713

Thiourea Sigma-Aldrich Cat# T8656

Tryptone BD Biosciences Cat# 211705

Urea GE Healthcare Cat# 17-1319-01

Yeast extract BD Biosciences Cat# 288620

Critical Commercial Assays

Biolog Phenotype Microarrays PM1,

PM2A, PM3B, PM4A

Biolog Cat# 12191

Biolog Dye mix A Biolog Cat# 74221

(Continued on next page)
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Clarity Western ECL Substrate Bio-Rad Cat# 1705060

CyDye DIGE Fluor Minimal Labeling Kit GE Healthcare Cat# 25-8010-65

Direct-zol RNase Miniprep Kit Zymo Research Cat# R2060

GenElute Plasmid Miniprep Kit Sigma-Aldrich Cat# PLN70

PlusOne Mini Dialysis Kit, 1kDa GE Healthcare Cat# 80648394

Qubit Protein Assay Kit Thermo Fisher Scientific Cat# Q33211

Qubit RNA HS Assay Kit Thermo Fisher Scientific Cat# Q32852

Quick Start Bradford Protein Assay Kit Bio-Rad Cat# 5000201

Deposited Data

C. elegans RNA-Seq reads and read counts. This study ArrayExpress: E-MTAB-7272

E. coli western blot images This study Mendeley Data https://data.mendeley.com/datasets/

crmtpmd622/draft?a=ef347ccd-7532-44b0-8925-

d2c04a71b419

C. elegans confocal microscopy images This study Mendeley Data https://data.mendeley.com/datasets/

crmtpmd622/draft?a=ef347ccd-7532-44b0-8925-

d2c04a71b419

C. elegans and D. melanogaster lifespan data This study Table S1

4-way screen data This study Table S2

E. coli proteomics data This study Table S3

E. coli metabolomics data This study Table S4

E. coli and human microbiota metabolic data This study Table S5

C. elegans RNA-seq data This study Table S6

C. elegans fatty acid metabolomics data This study Table S7

Kiel cohort data (16S rRNA gene sequencing) This study Available upon application from the PopGen biobank

(https://www.uksh.de/p2n/Information+for+

Researchers.html)

Spanish cohort data (metagenomics sequencing) Wu et al., 2017 PRJNA361402

Swedish cohort data (metagenomics sequencing) Forslund et al., 2015;

Karlsson et al., 2013

PRJEB1786

Danish cohort data (metagenomics sequencing) Le Chatelier et al., 2013 PRJEB5224 PRJEB1220 PRJEB4336 PRJEB2054

Mapped microbial abundances for

metagenome-based cohort data

This study Mendeley Data; https://data.mendeley.com/datasets/

crmtpmd622/draft?a=ef347ccd-7532-44b0-8925-

d2c04a71b419

Refined AGORA models with agmatine transporters

and extracellular agmatine production

This study Mendeley Data; https://data.mendeley.com/datasets/

crmtpmd622/draft?a=ef347ccd-7532-44b0-8925-

d2c04a71b419

E. coli OP50 metabolic model Zimmermann et al., 2019 N/A

Experimental Models: Organisms/Strains

C. elegans: N2 Bristol CGC CGC: 10570

C. elegans: STE68: nhr-49(nr2041) I CGC RRID:WB-STRAIN:STE68

C. elegans: BC11281: dpy-5(e907) I sEx11281[rCes

R07H5.2::GFP + pCeh361]

CGC RRID:WB-STRAIN:BC11281

C. elegans: BX113: lin-15B&lin-15A(n765) X,

waEx15[Pfat-7::GFP + lin15(+)]

CGC RRID:WB-STRAIN:BX113

C. elegans: BC12124: sEx12124[R08H2.1::GFP] CGC RRID:WB-STRAIN:BC12124

C. elegans: VS10: hjIs37[Pvha-6::mRFP-PTS1 +

Cbr- unc-119(+)]

CGC RRID:WB-STRAIN:VS10

C. elegans: LIU1: ldrIs1[Pdhs-3::dhs-3::GFP +

unc-76(+)]

CGC RRID:WB-STRAIN:LIU1

C. elegans: CW152: gas-1(fc21) X CGC RRID:WB-STRAIN: CW152

(Continued on next page)
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C. elegans: CU5991: fzo-1(tm1133) II CGC RRID:WB-STRAIN: CU5991

C. elegans: VC1785: F08A8.1(ok2257) I CGC RRID:WB-STRAIN: VC1785

C. elegans: RB1985: C48B4.1(ok2619) III CGC RRID:WB-STRAIN: RB1985

C. elegans: MH5239: prx-5(ku517) II CGC RRID:WB-STRAIN: MH5239

C. elegans: CU6372: drp-1(tm1108) IV CGC RRID:WB-STRAIN: CU6372

C. elegans: CU5991: fzo-1(tm1133) II, CGC RRID:WB-STRAIN: CU5991

C. elegans: DA631: eat-3(ad426) II; him-8(e1489) IV CGC RRID:WB-STRAIN: DA631

C. elegans: MQ887: isp-1(qm150) IV CGC RRID:WB-STRAIN: MQ887

C. elegans: MAH547: sqEx82[Pargk-1::

GFP+rol-6(su1006)]

CGC RRID:WB-STRAIN:MAH547

C. elegans: LB54: nuo-1(ua-1) II, unc-119(ed3) III,

uaEx25[p016bA352V], uaEx32[pDP#SU006, pTG96,

pPD118.25NEO]

Bernard Lemire

(DeCorby et al., 2007)

N/A

C. elegans: WBM392: wbmIs33[Pacs-2::

GFP+rol-6(su1006)]

William Mair N/A

C. elegans: SSR896: ssrIs496[Patgl1::

GFP+rol-6(su1006)]

Supriya Srinivasan

(Hussey et al., 2017)

N/A

C. elegans: MGH249: alxIs19[PCeACAD10::

CeACAD10::mRFP3-HA

Pmyo-2::GFP] 8X

Alexander Soukas

(Wu et al., 2016)

N/A

C. elegans: GA641: wuIs177[Pftn-1::GFP+lin-15(+)] David Gems (Ackerman

and Gems, 2012)

N/A

C. elegans: FGC59: nhr-49(nr2041) I,

wbmEx57[Pacs-2::GFP+rol-6(su1006)]

This study (Burkewitz

et al., 2015)

N/A

C. elegans: FGC54: fgcIs1[Pcpt-5::

GFP+rol-6(su1006)]

This study N/A

C. elegans: FGC45: ijIs10[unc-76(+)+Pcpr-5::GFP::lacZ] This study and CGC RRID:WB-STRAIN: IA123

C. elegans: FGC42: nIs470(Pcysl-2::GFP+

Pmyo-2::mCherry]

This study and Robert

Horvitz (Ma et al., 2012)

N/A

Drosophila melanogaster: white Dahomey (wDah) WT Linda Partridge N/A

Oligonucleotides

For information regarding oligonucleotide sequences

used in this study please refer to Table S8.

This Study Table S8

Recombinant DNA

Ahringer C. elegans RNAi library: RNAi control

plasmid: pL4440

Source BioScience http://www.sourcebioscience.com/products/

life-science-research/clones/rnai-resources/

c-elegans-rnai-collection-ahringer/

Ahringer C. elegans RNAi library: RNAi acs-1

knockdown: pL4440-acs-1

Source BioScience http://www.sourcebioscience.com/products/life-

science-research/clones/rnai-resources/c-elegans-

rnai-collection-ahringer/

Ahringer C. elegans RNAi library: RNAi cco-1

knockdown: pL4440-cco-1

Source BioScience http://www.sourcebioscience.com/products/life-

science-research/clones/rnai-resources/c-elegans-

rnai-collection-ahringer/

Vidal C. elegans RNAi library: RNAi OXCT-1/C05C10.3

knockdown: pL4440- OXCT-1/C05C10.3

Source BioScience http://www.sourcebioscience.com/products/life-

science-research/clones/rnai-resources/c-elegans-

orf-rnai-resource-vidal/

ASKA collection E. coli ORF clones (GFP -):

Crp overexpression: pCrp

NBRP https://shigen.nig.ac.jp/ecoli/strain/resource/

askaClone/list/ASKA_CLONE_MINUS

pCP20 CGSC CGSC: 7629

pKD4 Datsenko and Wanner,

2000

Addgene Cat# 45605

(Continued on next page)
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pKD46 CGSC CGSC: 7739

pPD95.75 Hilbert and Kim, 2018 Addgene Cat# 1494

Software and Algorithms

HISAT2 (v2.05) Kim et al., 2015 https://ccb.jhu.edu/software/hisat2/index.shtml

R (v3.5.0) R Core Team https://www.r-project.org

edgeR (v3.22.0) Robinson et al., 2010 https://bioconductor.org/packages/release/

bioc/html/edgeR.html

DeCyder 7.0 GE Healthcare Cat# 11505804

DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

lme4 (v1.1-19) https://cran.r-project.org/

web/packages/lme4/

index.html

https://cran.r-project.org/web/packages/lme4/

index.html

Sybil (v2.0.4), Gelius-Dietrich et al., 2013 https://cran.r-project.org/web/packages/sybil/

index.html

cutadapt (v1.12) 10.14806/ej.17.1.200 https://cutadapt.readthedocs.io/en/stable/

prinseq lite (v0.20.4) Schmieder and Edwards,

2011

http://prinseq.sourceforge.net/

Samtools (v1.4) Li et al., 2009 http://www.htslib.org/

Peaks 7.5 Bioinformatics Solutions http://www.bioinfor.com/peaks-studio-7-5-release/

Python (v2.7.13) Python Core Team https://www.python.org

GraphPad Prism 6 GraphPad Software https://www.graphpad.com/scientific-software/

prism/

JMP 12 SAS Institute https://www.jmp.com/en_be/software/data-

analysis-software.html
LEAD CONTACT AND MATERIALS AVAILABILITY

All E. coli strains generated in this study will be made available upon request to the Lead Contact. The C. elegans strains FGC42,

FGC45, FGC54 and FGC59 generated in this study will be made available upon request to the Lead Contact. Further information

and requests for resources may be directed to, and will be fulfilled by the Lead Contact, Filipe Cabreiro (f.cabreiro@lms.mrc.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nematode, Bacterial and Fly Strains
The following C. elegans strains were obtained from the CGC: N2 Bristol (wild-type), STE68 nhr-49(nr2041) I, BC11281 dpy-5(e907) I

sEx11281[rCes R07H5.2::GFP + pCeh361], BX113 lin-15B&lin-15A(n765) X, waEx15[Pfat-7::GFP + lin15(+)], BC12124 sEx12124

[R08H2.1::GFP], VS10 hjIs37[Pvha-6::mRFP-PTS1 + Cbr- unc-119(+)], LIU1 ldrIs1[Pdhs-3::dhs-3::GFP + unc-76(+)], CW152 gas-

1(fc21) X, CU5991 fzo-1(tm1133) II, VC1785 F08A8.1(ok2257) I, RB1985 C48B4.1(ok2619) III, MH5239 prx-5(ku517) II, CU6372

drp-1(tm1108) IV, CU5991 fzo-1(tm1133) II, DA631 eat-3(ad426) II; him-8(e1489) IV, MQ887 isp-1(qm150) IV and MAH547

sqEx82[Pargk-1::GFP+rol-6(su1006)]. The LB54 nuo-1(ua1) II, unc-119(ed3) III, uaEx25[p016bA352V], uaEx32[pDP#SU006,

pTG96, pPD118.25NEO] strain, which was a gift from Bernard Lemire, is homozygous for the lethal nuo-1(ua1) allele and carries

an extrachromosomal array with a Ala352Val substituted nuo-1 gene. This point mutation has been shown to reduce complex I ac-

tivity to approximately 30% of WT (DeCorby et al., 2007). The WBM392 wbmIs33[Pacs-2::GFP+rol-6(su1006)] strain was a gift from

William Mair. The SSR896 ssrIs496[Patgl-1::GFP+rol-6(su1006)] strain was a gift from Supriya Srinivasan. The MGH249 alxIs19

[PCeACAD10::CeACAD10::mRFP3-HA +Pmyo-2::GFP] 8X strain was a gift from Alexander Soukas. The GA641 wuIs177[Pftn-

1::GFP+lin-15(+)] strain was a gift from David Gems. The following strains were generated in this study: FGC59 nhr-49(nr2041) I,

wbmEx57[Pacs-2::GFP+rol-6(su1006)], FGC54 fgcEx1[Pcpt-5::GFP+rol-6(su1006)], FGC45 ijIs10[unc-76(+)+Pcpr-5::GFP::lacZ]

and FGC42 nIs470(Pcysl-2::GFP+Pmyo-2::mCherry] from outcrossing the strain MT20664, a gift from Robert Horvitz.

E. coli strains used in this study include OP50, obtained from the CGC, and OP50-MR (Cabreiro et al., 2013). The OP50 DptsHIcrr

strain was a gift fromCynthia Kenyon. OP50 deletionmutants were created using the E. coliKeio Knockout Collection (odd numbered

strains), obtained from the National BioResource Project. OP50 overexpressor strains were created using the E. coli ORF ASKA

collection, also obtained from the National BioResource Project. RNAi knockdown was performed using OP50(xu363) transformed
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with the acs-1 and cco-1 RNAi plasmids obtained from the Ahringer library, the OXCT-1/C05C10.3 RNAi plasmid obtained

from the Vidal library and the L4440 empty vector control. Details of all E. coli strains generated in this study can be found in the

Key Resources Table.

The Drosophila melanogaster white Dahomey (wDah) wild-type strain used in this study was collected in 1970 in Dahomey (now

Benin) and has since been maintained in large population cages with overlapping generations.

Nematode Culture Conditions
Wormsweremaintained at 20�C, unless otherwise stated, on nematode growthmedium (NGM) seededwith E. coli. Where indicated,

molten agar was supplemented with the following compounds: metformin (6.25, 12.5, 25, 50, 100 mM), acetoacetate (1, 5, 10,

20 mM), D-ribose (0.2%), glycerol (0.2%), L-serine (50 mM), adenosine (2 mM), glucose (0.2%), IPTG (10, 25, 50 mM), cAMP

(1 mM) and agmatine (10, 25, 50 mM). Where indicated, the composition of NGM was modified so that Bacto peptone was replaced

with the equivalent mass of either soy peptone, LB (2:1 tryptone and yeast extract) or MRS medium. For perhexiline treatment, a

100 mM stock solution was made in 100% DMSO and then diluted to 2.5 mM in water. 100 mL of 2.5 mM perhexiline was added

topically to bacterial lawns (final concentration 25 ml) 1 hour before transferring worms. Similarly, 100 mL of 2.5% DMSO was added

to control plates. Formaintenance of the LB54 nuo-1(0)mutant strain, wormswere grown on plates supplementedwith 1mg/ml G418

(Geneticin) antibiotic to select for the retention of the extrachromosomal array. The antibiotic was not added to experimental plates

used for lifespan analysis. For RNAi knockdown, RNAi bacterial strains were cultured overnight in LB supplemented with 100 mg/ml

ampicillin and were seeded onto NGM plates supplemented with 1 mM IPTG to induce dsRNA expression.

Bacterial Culture Conditions
Bacterial strains were cultured by inoculating a single colony grown on LB agar in LB broth and incubated at 37�C overnight (approx-

imately 16 hours). Where appropriate, LBwas supplemented with 50 mg/ml kanamycin, 30 mg/ml chloramphenicol or 100 mg/ml ampi-

cillin. Kanamycin and chloramphenicol were not added to liquid cultures if the bacteria was cultured for use with C. elegans to avoid

possible detrimental effects associated with antibiotic exposure.

Nematode Strain Construction
The Pcpt-5::GFP reporter strain was generated using a construct made by PCR fusion. The promoter region of cpt-5 was amplified

from worm lysate using F: 50- GTCTCGGAATTGATGCATAG-30 and R: 50- AGTCGACCTGCAGGCATGCAAGCTTTTTCACTGCAA

ATTTCAATCTAT-30 primers. GFP was amplified from the pPD95.75 GFP expression vector using F: 50- AGCTTGCATGCCTGCAG

GTC-30 and R: 50-AGGGCCCGTACGGCCGACTA-30 primers. The products from these two reactions were fused using F: 50-CAGAA

TTGGAAGTCTTACAGC-30 and R: 50-GGAAACAGTTATGTTTGGTATATTG-30 nested primers. The resulting Pcpt-5::GFP construct

was microinjected into the gonad of adult N2 worms at 1 mg/ml with 100 mg/ml of a rol-6 co-injection marker to obtain strain FGC54.

Bacterial Strain Construction
Bacterial strains generated in this study are listed in the Key Resource Table. E. coliOP50 single gene deletion mutants were created

using P1 vir phage-mediated transduction to transfer kanamycin resistant-taggedmutations from E. coliK12mutant strains obtained

from the Keio collection into OP50. To introduce additional mutations, it was necessary to remove the kanamycin resistant marker by

transformation with pCP20 before performing the transduction. Due to the close proximity of the speA and speB genes, it was neces-

sary to create the DspeADspeB double mutant using targeted gene disruption by homologous recombination. The kanamycin resis-

tance gene was amplified from the pKD4 plasmid using F: 50- ACGACATGTCTATGGGTTTGCCTTCGTCAGCGGGCGAATGTGT

AGGCTGGAGCTG-30 and R: 50- TCGCCCTTTTTCGCCGCCTGAATATACAGCATTTCCAGCGCCATATGAATATCCTCCTTAGT-30

primers. OP50 carrying the pKD46 plasmid expressing l Red recombinase was transformed with the resulting DNA fragment. All

bacterial gene deletion mutants were confirmed by colony PCR using the primers detailed in table S8. Primers were designed to

bind upstream (-cseq-F) or downstream (-cseq-R) of the mutation site. Reactions were carried out using the –cseq-F primer in

conjunction with the K1 reverse primer which binds to the kanamycin resistance gene. Alternatively, the – cseq-R primer could be

used in conjunction with the K2 forward primer which also bind to the kanamycin resistance gene. Kanamycin-sensitive deletion

mutants were confirmed by using the appropriate forward and reverse primers for the gene of interest and comparing the size of

the fragment with that obtained for the wild-type control strain.

E. coli OP50 strains overexpressing Crp were created by transformation with a pCA24N plasmid that expresses Crp under the

control of an IPTG-inducible promoter. This plasmidwas extracted from an ASKA collection clone using aGenElute PlasmidMiniPrep

Kit (Sigma-Aldrich). Successful transformation was confirmed by colony PCR. The -cseq-R primer was designed to bind internally to

the crp gene and was used in conjunction with the ASKA-cseq-F primer that binds to the pCA24N plasmid.

E. coli strains used for RNAi knockdown were created by transforming OP50(xu363) with RNAi plasmids extracted from either the

Ahringer or Vidal libraries using a GenElute Plasmid MiniPrep Kit (Sigma-Aldrich). The identity of RNAi plasmids was confirmed by

sequencing using primers detailed in Table S8.

Human cohorts
Phenotypic details for human cohorts are provided in Table S5E.
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Kiel cohort

We used samples from the Kiel-based cohorts PopGen (Krawczak et al., 2006) and FoCus (Müller et al., 2015). Information on medi-

cation and food supplement usage was recorded. Data and specimens from both cohorts were handled by the same biobank using a

single study protocol. Access to the cohort data along with phenotypic information was granted by the PopGen biobank (Krawczak

et al., 2006). For analysis, samples were grouped into four phenotypic groups: a) lean (BMI% 25) without diabetes, IBD, or IBS, with

fasting glucose level below 125 mg/dl (‘‘Lean Healthy,’’ LH); b) obese (BMI > 30) with same criteria as LH except for BMI (‘‘Obese

Healthy,’’ ObH); c) obese (BMI > 30) with diagnosed T2D or fasting glucose level above 125 mg/dl without antidiabetic treatment,

and without IBD and IBS, respectively (T2D Met-) and d) obese (BMI > 30) with diagnosed T2D or fasting glucose level above

125 mg/dl taking metformin, and without IBD and IBS, respectively (T2D Met+). Since type 2 diabetic patients not treated with

metformin were significantly older than participants of the other groups, we iteratively removed the oldest sample from the untreated

type 2 diabetic group until the median age of the remaining cohort matched the median age of the metformin-treated cohort

(8 individuals removed). Samples and data for the Kiel cohort were provided by the PopGen Biobank (Schleswig-Holstein, Germany)

and can be accessed via a structured application procedure (https://www.uksh.de/p2n/Information+for+Researchers.html).

Longitudinal Spanish cohort

Type 2 diabetes (T2D) patients were recruited at the Hospital Universitari Dr. Josep Trueta (Girona, Spain) and fecal genomic DNA

sampled. The study was performed in a longitudinal design, where participants received either a placebo or metformin treatment.

Sampling time points were at study entry and at month 2 and month 4. A subset of the participants within the placebo group

were switched to metformin treatment after the end of the first study phase. Those participants were additionally followed up

6 months post starting metformin intake. The metagenomic data was originally published in Wu et al. (2017) and can be accessed

via PRJNA361402.

Swedish cohort

The data was originally published in Karlsson et al. (2013) and reevaluated in Forslund et al. (2015). The data is available via the

accession PRJEB1786. The Swedish study is a female-only cohort. The original study included normal and impaired glucose tolerant

participants as part of the non-diabetic group. We only considered normal glucose tolerant participants for the healthy group.

Danish cohort

The Danish cohort consists of four independently published metagenomic datasets of the MetaHIT-project (Le Chatelier et al., 2013)

also referred to as MHD-cohort in Forslund et al. (2015). In the first study 277 nondiabetic danish individuals were sampled for their

gut microbiome followed by 75 T2D and 31 type 1 diabetic patients. All samples were sequenced using identical protocols. The data

can be accessed from the European Nucleotide Archive with the project-IDs PRJEB5224 for type 1 and type 2 diabetic patients and

PRJEB1220, PRJEB4336, PRJEB2054 for all non-disease controls. Data from type 1 diabetic patients was not considered.

METHOD DETAILS

Bacterial Growth Assay
Bacterial growth assays were performed in transparent, flat-bottomed 96-well plates. Unless otherwise stated, plates were prepared

by loading each well with 200 mL of LB solution containing an overnight bacterial culture diluted 1000-fold and metformin/supple-

ments at the desired concentration as required. If metformin or other supplements were added, an equivalent volume of water

was added to negative control wells. To investigate the effect of different types of media on bacterial growth, LB was replaced

with either standard liquid NGM made with Bacto peptone or modified liquid NGM containing either a soy peptone, LB or MRS

base. To investigate the effect of glycerol and D-ribose supplementation on bacterial growth, cells harvested from overnight cultures

were washed with liquid NGM prior to dilution and the assay was performed with standard liquid NGM. To investigate the effect of

increasing IPTG concentrations on the growth of bacterial strains overexpressing Crp, the assay was performed with standard liquid

NGM. The absorbance of each well was measured at OD 595 nm using a Tecan Infinite M2000 microplate reader operated via

Magellan V6.5 software (Tecan). Measurements were taken every 5 minutes over an 18-hour period. Throughout this time, the plate

was maintained at 37�C with constant shaking. At least 3 independent trials were carried out per experiment. Data was analyzed

using R (R Core Team). The total bacterial growth was estimated as the OD area under the curve (AUC) integral. AUC values were

log2 transformed to enable relative comparisons in logFC scale to be made. Statistical significance was assessed by either one-

way or two-way ANOVA depending on the experimental design.

Western Blotting
Experimental NGM plates were seeded with 150 mL of overnight bacterial culture and lawns were left to grow at 20�C for 4 days for all

experiments with the exception of those involving Crp overexpressor strainswhere lawnswere left for 4 hours. Bacteria was collected

into 2 mL microcentrifuge tubes using a cell scraper and was frozen in liquid nitrogen, then stored at �80�C. Cells were thawed and

resuspended in 150 mL of buffer composed of B-PER reagent (Thermo Fisher Scientific) containing 40 mM dithiothreitol and 1X pro-

tease inhibitor cocktail (Roche). Cells were lysed using a Q700 sonicator waterbath (Qsonica) kept at 4�Cwith 5x15 s pulses at 100%

amplitude. Lysates were centrifuged at maximum speed for 30 minutes at 4�C to pellet cellular debris and the resulting supernatant

was transferred to fresh tubes. The protein concentration of each sample was determined using the Bradford assay. 40 mg of protein

diluted in 10 mL of sample buffer was added to 10 mL of 2X laemmli buffer (Bio-Rad). Samples were heated at 95�C for 5 minutes and
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were loaded into a 4%–20% Criterion TGX precast gel (Bio-Rad) for SDS-PAGE. Separated proteins were transferred onto a nitro-

cellulosemembrane. Themembranewas probedwith a purified anti-E. coliCrp primary antibody (BioLegend) at a 1:2000 dilution and

an HRP conjugated goat anti-mouse IgG secondary antibody (Sigma-Aldrich) at a 1:5000 dilution. The membrane was exposed on

film using ClarityWestern ECL Substrate (Bio-Rad). Themembranewas stripped by immersing in PLUSWestern Blot Stripping Buffer

(Thermo Fisher Scientific) for 15 minutes and was reprobed with an anti-E. coli RNA Sigma 70 Antibody (BioLegend) at a 1:2500 dilu-

tion to provide a loading control. Probing with secondary antibody and exposure of the membrane was carried out as before. Films

were scanned and densitometry was performed using ImageJ software (NIH). Bands were detected manually and the background

was subtracted from each peak generated. The intensity of eachCrp bandwas normalized by the intensity of its corresponding sigma

70 band. 3-6 independent biological replicates were included per condition. Statistical analysis was performed by two-way ANOVA

using GraphPad Prism 6 software.

Bacterial Proteomics
Control and 50mMmetformin-supplemented NGMplates were seeded with 150 mL of overnight bacterial culture and lawns were left

to grow at 20�C for 4 days. 5-6 independent biological replicates were included per condition. Bacteria was collected from plates in

S-basal medium using a sterile glass scraper. Samples were centrifuged at 12,000 g for 4 minutes at 4�C. The supernatant was

removed and pellets were transferred to protein LoBind tubes (Eppendorf). 900 mL of chilled protein lysis buffer (7 M urea, 2 M thio-

urea, 4%CHAPS, 40mMTris supplemented with Roche cOmplete Protease Inhibitor) was added to the pellet. Samples were kept on

ice from this point onward. Pellets were lysed via sonication for 2 3 10 s and proteins were separated from the cellular debris by

centrifuging at 15,000 g for 12 minutes at 4�C. Supernatant containing the extracted protein was transferred to clean LoBind tubes

and samples were desalted overnight using the PlusOne Mini Dialysis Kit (GE Healthcare). The protein concentration in each sample

was determined using the Qubit Protein Assay (Invitrogen), and samples were aliquoted and stored at �80�C until further use.

Proteins were separated by two-dimensional difference gel electrophoresis (2D-DIGE) as described previously (De Haes et al.,

2014). Samples were differentially labeled with either Cy3 or Cy5 fluorescent dyes (GE Healthcare). A possible dye bias was taken

into account by integrating a dye swap into the experimental design. Two differentially labeled samples were pooled, an internal stan-

dard labeled with Cy2was added, and the pooled samples were separated first based on pI and then based onMW. Between the two

stages of separation, the proteins in the gel were reduced using dithiothreitol to break disulfide bonds and the formation of new

disulfide bonds was blocked using iodoacetamide. Gels were scanned using an Ettan DIGE Imager (GE Healthcare), and DeCyder

7.0 (GE Healthcare) was used to detect significantly differential spots. To select the spots to excise, ANOVAs with false positive

rate correction were used to determine differences between groups and potential interaction effects between bacterial strain and

metformin.

Differential spots were excised from preparative gels (2 mg of protein frommixed samples per gel) using an automated spotpicker

(GE Healthcare). excised gel plugs were washed with ultrapure water and subsequently dehydrated by treating them with an aceto-

nitrile solution. These stepswere repeated again, and the plugswere allowed to completely air dry, allowing them to efficiently take up

the subsequently added trypsin digestion buffer (25 mM ammonium carbonate, 5% (vol/vol) acetonitrile, 100 ng of sequencing grade

modified trypsin (Promega)). After incubation at 37�C overnight, the trypsinised peptides were collected, lyophilized and desalted.

The resulting purified tryptic peptides were loaded on a Q-Exactive orbitrap (Thermo) and fragmented via high energy collision

induced dissociation. To finally identify the proteins, the mass spectra from the orbitrap runs were analyzed using Peaks 7.5 (Bioin-

formatics Solutions Inc.). A parent mass error tolerance of 10 ppm was used and the fragment mass error tolerance was set at

0.02 Da. Additionally, one missed trypsin cleavage between peptides was tolerated and carbamidomethylation (C) and oxidation

(M) were respectively selected as fixed and variable modifications. Using these settings, Peaks searched the curated Uniprot data-

base for E. coli proteins.

Protein abundance estimates were log2 transformed and a linear model was fitted to the data to perform multiple univariate

analysis. Significant differences in protein levels were determined using post hoc Tukey’s multiple comparison statistical test.

Benjamini–Hochberg multiple comparison adjustment was applied with a FDR threshold of < 0.05. Transcription factor (TF) enrich-

ment analysis was estimated using TF-gene association data from RegulonDB and by applying a hyper-geometric test. KEGG

pathway and GO term enrichment was acquired using online DAVID enrichment analysis service. Enrichment was considered

significant following Benjamini–Hochberg multiple comparison adjustment with a FDR threshold of < 0.05.

Bacterial Metabolomics
Bacterial cultures were prepared by using 500 mL of overnight bacterial culture to inoculate 50 mL of control liquid NGM and liquid

NGM supplemented with metformin (50 mM) or IPTG (50, 100 ml). 3-4 independent biological replicates were prepared for each con-

dition. Bacteria was grown at 25�C for 24 hours with constant shaking at 180 rpm. Cultures were then chilled on ice for 5 minutes

before being centrifuged for 10 minutes at 6400 g, 4�C. Supernatant was removed except for 500 mL that was used to resuspend

the bacterial pellet. Samples were then transferred to 5 mL tubes and were centrifuged as before. The supernatant was completely

removed and tubes were flash frozen in liquid nitrogen. Samples were then stored at �80�C until metabolite extraction.

Metabolites were extracted by adding 1.6 mL of ice cold 100% HPLC grade methanol to each sample. Samples were kept on ice

and were sonicated for 30 s at an amplitude of 5 microns. 1.1 mL of ice-cold internal standard solution (provided by HMT, diluted

2500-fold) was added to each sample and samples were vortexed for 30 s to mix thoroughly. 2 mL of extraction solution was
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transferred into 2ml tubes and centrifuged at 16,100 g for 20minutes at 4�C. 1.6 mL of the resulting supernatant was divided into four

filter units (provided by HMT and previously washed with double distilled water) and was spun down in a microcentrifuge at 9200 g

until all sample had been filtered through (usually taking approximately 3 hours). All resulting filtrates from one sample were mixed

and transferred into a new 2 mL tube. Samples were shipped to Human Metabolome Technologies (HMT), Inc. on dry ice for further

processing and metabolomic analysis (Yamagata, Japan).

At HMT, samples were centrifuged and resuspended in 50 mL of ultrapure water immediately prior to measurement. Cationic

metabolites were measured by CE- TOFMS in the positive ESI mode and anionic metabolites were measured by CE-QqQMS in

the positive and negative ESI mode. Samples were diluted to improve the quality of analysis. Peaks detected in CE-TOFMS analysis

were extracted using MasterHands ver.2.17.1.11 automatic integration software (Keio University) and those in CE-QqQMS analysis

were extracted using MassHunter B.06.00 automatic integration software (Agilent Technologies) in order to obtain peak information

including m/z, migration time (MT), and peak area. The peak area was then converted to relative peak area. The peaks were anno-

tated based on the migration times in CE and m/z values determined by TOFMS. In addition, absolute quantification was performed

for 116 metabolites including glycolytic and TCA cycle intermediates, amino acids, and nucleic acids. Metabolite concentrations

were calculated by normalizing the peak area of each metabolite with respect to the area of the internal standard and by using stan-

dard curves, whichwere obtained by three-point calibrations. Metabolite concentrations for each sample were normalized by sample

volume and OD600 of the original bacterial culture from which the sample was derived. Concentrations were log2 transformed and a

linear model was fitted to the data for multiple univariate analysis. Significant differences in metabolite levels were estimated using

post hoc Tukey’smultiple comparison statistical test. Benjamini-Hochbergmultiple comparison adjustment was applied with an FDR

threshold of < 0.05.

Bacterial Macromolecular Composition Analysis
Overnight bacterial cultures were centrifuged at 4,300 g for 15 minutes and cells were washed twice with PBS before being

resuspended in a final volume of 1 mL PBS. OD600 measurements were taken for each sample. Samples were then sub-divided

into 3 aliquots of equal volume (to be used for each type of macromolecular assay) and were centrifuged at 15,000 g for 5 minutes.

The supernatant was removed and the bacterial pellet was flash frozen in liquid nitrogen and stored at �80�C until required.

To measure the total protein concentration, samples were kept on ice and pellets were resuspended in 150 ml B-PER reagent

(Thermo Fisher Scientific). Samples were incubated at room temperature for 15 minutes with constant shaking at 700 rpm to lyse

cells. Cellular debris was removed by centrifuging the resulting lysate at 15,000 g for 5 minutes at 4�C and transferring the superna-

tant to clean tubes. Protein concentrations were then determined via the Bradford assay. Total carbohydrate concentration was

assayed by the anthrone method. Bacterial pellets were dissolved into anthrone solution in 70% H2SO4. Samples were heated for

20 minutes at 90�C. Once cooled, the lysate absorbance was measured at 620 nm, relative to a D-glucose standard curve. To mea-

sure total lipid concentration, lipids were extracted into organic solvent consisting of 7:11:0.1 chloroform:isopropanol:NP-40.

Samples were homogenized in a bead beater (�500 mm glass beads), and sonicated. Lysates were centrifuged at 16,000 x g,

then the supernatants were dried by vacuum (Savant SpeedVac), and the final pellet was resuspended in 20 mL PBS, 0.05%

Tween-20. Clarified samples were analyzed using Infinity Triglycerides Reagent (Thermo Scientific, #TR-22421) measuring the

absorbance at 540 nm. The total concentration of each type of macromolecule was then normalized by the OD of the original sample.

6 independent biological replicates were included per condition. Statistical analysis was performed by two-way ANOVA using

GraphPad Prism 6 software.

Nematode Metabolomics
Wormswere grown on plates seededwith OP50 or test bacterial strains from the L1 stage at 20�C.Wormswere transferred to control

plates or plates supplemented with 50mMmetformin at the L4 stage using sterile PBS. On day 2 of adulthood, worms were collected

and washed 3 times using sterile PBS in 2 mL microcentrifuge tubes. Supernatant was removed and the tube with the worm pellet

was flash frozen in liquid nitrogen and stored at �80�C until metabolite extraction and analysis. Approximately 2000 worms were

collected per sample for 3-4 independent biological replicates per condition.

Methods utilized here have been previously described and validated in C. elegans (Gao et al., 2017). To extract fatty acids (FA),

samples were freeze-dried overnight and subsequently re-suspended in 500 mL of ice-cold 0.9% NaCl solution. A 5 mm steel

beadwas added to each tube and samples were lysed twice using a TissueLyser II (QIAGEN) (2.5min, 30 beats/sec frequency). Sam-

ples were then tip sonicated twice (energy level: 40 Joule; output: 8 Watts) on ice. Protein quantification was performed via BCA

assay. 150 mg worm protein lysate was transferred to a 4 mL FA-free glass vial, and 1 mL of freshly prepared 100% acetonitrile /

37% hydrochloric acid (4:1, v/v) was added to the lysate, together with deuterium-labeled internal standards (d5-C18:0

(5.04 nmol), d4-C24:0 (2.52 nmol), and d4-C26:0 (0.25 nmol)). Samples were vortexed for 5 s and hydrolysed by incubating at

90�C for 4 hours. After incubation, samples were cooled to room temperature, 2 mL hexane was added and samples were vortexed

for 10 s. The upper layer was transferred to a FA-free glass vial and evaporated under a nitrogen stream at room temperature. 100 mL

of hexane was added to each tube and samples were transferred to a Gilson Vial. ESI-MS analysis was carried out using an Acquity

UPLCBinary Solvent manager (Waters, MilfordMA) with an Acquity UPLC samplemanager connected to a Quattro Premier XEmass

spectrometer (Waters, Milford MA), run in the negative ESI mode. FA concentrations were calculated using a five-point calibration

curve for C18:0, C24:0 and C26:0 (analytes). The calibration mixture contained different types of FA species (0, 25, 50, 100 and
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200 ml) added to 50 mL of internal standard composed of d5-C18:0 (100.8 mM), d4-C24:0 (50.29 mM), and d4-C26:0 (5.06 mM). Stan-

dards were extracted and analyzed as described above. The input concentration for each FAwas plotted against the ratio of the peak

height of the analyte to the peak height of the corresponding internal standard. The resulting standard curve was used to calculate

sample FA concentrations. The FA concentrations in each sample were then normalized by sample volume and protein concentration

of worm lysate. Concentrations were log2 transformed and a linear model was fitted to the data. Significant changes in

metabolite levels were estimated using multiple univariate analysis and post hoc Tukey’s multiple comparison statistical test.

Benjamini-Hochberg multiple comparison adjustment was applied with an FDR threshold of < 0.05.

Nematode Lifespan Analysis
Experimental NGM plates were prepared by seeding with 100 mL of bacterial culture and leaving lawns to grow for 4 days at 20�C. To
prevent progeny development, plates were supplemented with 5-fluoro-20-deoxyuridine (FUdR, 30 mM) one day prior to use. To

initiate the experiment (day 0), worms that had been age-synchronized via alkaline hypochlorite treatment were transferred to plates

at the L4-stage, unless otherwise stated. For perhexiline treatment, wormswere grown on plates supplementedwith 2.5mMperhexi-

line from the L1-stage and were additionally exposed to metformin from the L4-stage. For acs-1 RNAi knockdown, worms were

grown on RNAi bacteria from the L1-L4 stage and were then transferred onto OP50 for the remainder of the experiment. For

cco-1 RNAi knockdown, worms were grown on RNAi bacteria from egg-L4 stage and were then transferred onto OP50 for the

remainder of the experiment. Worms were maintained at 20�C and were transferred to fresh plates every 4 days until day 12. Survival

was monitored at regular time points and worms were scored as dead if they did not respond to touching with a platinum wire.

Worms that exhibited severe vulva protrusion were censored. Statistical significance was estimated by the log rank test and

Cox proportional hazards (CPH) analysis where appropriate using JMP 12 (SAS Institute). All lifespans represent pooled data

from 2-3 independent experimental replicates (with the exception of Figures S2K, S2L, S3E, S4I, and S4J). Within each experimental

replicate, 2-3 independent populations of approximately 30 worms (�60-90 worms total) were included per condition. Associated

statistics can be found in Table S1.

Nematode Fluorescence Microscopy
Experimental NGM plates were seeded with bacteria and supplemented with FUdR as for lifespan analysis and worms were trans-

ferred onto plates at the L4-stage. For experiments involving OXCT-1/C05C10.3 RNAi knockdown, worms were grown on RNAi bac-

teria from egg and were transferred onto OP50 at the L4 stage. For the quantification of transgenic reporter strain fluorescence,

worms were maintained at 20�C and were imaged on day 2 of adulthood for all experiments with the exception of those involving

the Dcrp pCrp bacterial strain where imaging took place on day 4 of adulthood. Worms were anesthetised with 1% levamisole on

NGM plates and were imaged under a 63x objective using a Zeiss Axio Zoom V16 microscope system equipped with an AxioCam

MRm camera operated by Zen 2 software (Zeiss). Either the GFP filterset (excitation: 450-490 nm; emission: 500-550 nm) or the RFP

filterset (excitation: 559-585 nm; emission: 600-690 nm) was used depending on the strain being imaged. All images were exported in

TIFF or CZI format and fluorescence levels were quantified using Volocity 5.2 software (PerkinElmer) run on a Surface tablet (Micro-

soft). The fluorescence intensity of individual worms was calculated as the pixel density of the entire cross-sectional area of the worm

from which the pixel density of the background had been subtracted. 2 independent trials were carried out with a minimum of

15 worms imaged per condition per trial. If worms were imaged in groups (Figures S1C, S7K, and S7L) the fluorescence intensity

was calculated automatically by setting a minimum threshold intensity that excluded the background. 3 independent trials were car-

ried out with 1-2 groups of 8 worms imaged per condition per trial. Data was analyzed using R (R core team). Fluorescence intensity

values were log2 transformed and multiple univariate analysis was performed using a linear model.

Confocal microscopy was carried out with the Pdhs-3::dhs-3::GFP and Pvha-6::mRFP-PTS1 strains in order to visualize lipid drop-

lets and peroxisomal networks, respectively. L4-stage worms were transferred onto experimental plates and were maintained at

20�C until imaging on day 2 of adulthood. Worms were mounted onto 2% agarose pads and were anesthetised with 1% levamisole.

Worms were imaged under a 63x oil-immersion objective using a Zeiss LSM 880 microscope system controlled by Zen Black soft-

ware (Zeiss). Images were taken in the region of the anterior intestinal cells of the Pdhs-3::dhs-3::GFP reporter strain using the argon

laser at 488 nm. Images were taken of the intestinal mid-section of the vha-6p::mRFP-PTS1 strain, in accordance with a previous

study (Weir et al., 2017), using the DPSS 561-10 laser at 561 nm. 2-3 independent trials were carried out with aminimum of 11 worms

imaged per condition.

Nematode RNA Sequencing
Experimental plates were seeded with 150 mL of bacterial culture and lawns were left to grow for 4 days at 20�C. Worms were age-

synchronized by alkaline hypochlorite treatment and were transferred onto plates at the L4 stage. Approximately 1000 worms were

transferred per condition for a total of 4 independent biological replicates. Worms were maintained at 20�C before collection on day

2 of adulthood. Worms were collected from plates in sterile nuclease free water and were transferred to 2 mL lysing matrix D tubes

(MP Biomedicals) with lysing beads removed. Worms were then washed three times by letting the worms settle at the bottom of the

tube, removing the supernatant and resuspending them in sterile nuclease free water. On the final wash, the supernatant was

removed to leave worms in 100 mL of liquid. The lysing beads were added back to tubes with 400 mL of TRIzol (Zymo research)

and after ten seconds of shaking, samples were flash frozen in liquid nitrogen and were then stored at �80�C until RNA extraction.
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To extract RNA, frozen samples were vortexed until thawed and then flash frozen in liquid nitrogen again. Samples were then vor-

texed for a total of 10 minutes with 30 s of chilling on ice every 2 minutes to prevent heating of samples. Samples were transferred

to RNase free tubes and 1 volume of 100% ethanol was added. RNA was extracted using a Direct-zol RNA Miniprep kit (Zymo

Research). The RNA concentration of each sample was measured using a NanoDrop 2000 spectrophotometer (Thermo Fisher Sci-

entific) and a Qubit assay kit (Thermo Fisher Scientific). The RNA quality of each sample was measured using a 2100 BioAnalyzer

(Aligent). All samples tested had RIN values of 9.8-10. Samples were shipped on dry ice to Genewiz, Inc (NJ, USA) for RNaseq.

RNA libraries were prepared using a NEBNext Ultra RNA library preparation kit with poly-A selection. Sequencing was performed

on an Illumina HiSeq 2500with approximately 16million single-end 50bp reads generated per sample. Raw read quality was checked

using FastQC 0.11.5 and contaminating sequence adapters were removed using Trimmomatic 0.36. Clean reads were aligned to the

C. elegans reference genome WBcel235 using HISAT 2.0.5. Read counts were obtained at gene level using StringTie 1.3.3 with

C. elegans WBcel235 Ensembl annotation v87. Transcription analysis was performed at the gene level using EdgeR. Only genes

with counts per million (CPM) > 1 in all samples in at least one experimental group were considered for analysis. A generalized linear

model was fitted to the data and differential gene expression was estimated. Batch adjustment was performed by incorporating an

additional batch factor in the model. Differential gene expression was considered significant after Benjamini–Hochberg multiple

comparison adjustment with a FDR threshold of < 0.05. Enrichment analysis was performed for GO terms and KEGGpathways, using

the goana and kegga functions of the limma package with adjustment for gene length. Gene were mapped to annotations using their

Entrez Gene IDs. Significance of KEGG pathway and GO term enrichment was determined following Benjamini–Hochberg multiple

comparison adjustment with an FDR < 0.05. The ‘‘Longevity effect’’ could be more precisely stated as a ‘‘metformin induced and

bacteria modulated lifespan extension effect’’ given that metformin supplementation only extends worm lifespan on OP50, but

not on the metformin-resistant OP50-MR strain. Given these properties of the OP50-MR, we use it as a reference in identifying

the transcriptional changes which can be associated both with the metformin induced nematode lifespan extension and its bacterial

modulation by metformin sensitive OP50 strain. We accomplish this by subtracting the transcriptional changes observed in metfor-

min treatment in worms incubated on OP50-MR from the corresponding changes observed in worms incubated in OP50. Therefore,

the ‘‘longevity effect’’ is not a combination of metformin’s effects, but the difference of its effects between worms incubated on OP50

versus OP50-MR.

Four-way Host-Microbe-Drug-Nutrient Screen
Biolog phenotype microarray (PM) plates PM1 & PM2A containing carbon sources, PM3B containing nitrogen sources and PM4A

containing sulfur and phosphorus sources were used in the screen. Caproic acid, Capric acid, 4-Hydroxy benzoic acid and

2-Hydroxy benzoic acid were excluded from analysis due to strong detrimental effects on bacterial growth. Liquid NGM was

used as the based media instead of the Biolog IF-0a media provided by Biolog. Liquid NGM ± 50 mMmetformin was supplemented

with 1X tetrazolium dye and was inoculated with an overnight culture of OP50 at a final OD600 of 0.026. Plates were incubated for

24 hours at 37�C, 180 rpm and bacterial growth (via tetrazolium dye precipitation) was measured at 750 nm every 5 minutes using

a Tecan Infinite M2000microplate reader operated via Magellan V6.5 software (Tecan). 4 independent replicates were carried out per

plate. Bacterial growth was estimated as the OD area under the curve (AUC) integral at 750 nm. AUC values were log2 transformed

and were normalized by the bacterial growth values on NGM base media in the absence of nutrient sources. A linear model was then

fitted to the data andmultiple univariate analysis was performed. Significant effects of nutrient supplementation, metformin treatment

and their interaction were estimated using post hoc Tukey’s multiple comparison statistical test. Benjamini–Hochberg multiple

comparison adjustment was applied with an FDR threshold of < 0.05.

For measurement of C. elegans Pacs-2::GFP fluorescence, the nutrients in the wells of the Biolog plates were resuspended in

220 mL of molten NGM agar supplemented with 50mMmetformin and transferred to fresh 96-well plates. The agar was left to solidify

for 30minutes and plates were dried in a laminar flow hood for 20minutes. 5 mL of overnight OP50 culture was added to eachwell and

plates were again dried in a laminar flow hood for 2 hours. Plates were then incubated at 20�C for 4 days to allow bacterial lawns to

grow. 5 worms were transferred to each well at the L4 stage of development. 6 mL of 2.5 mM FUdR was added to each well one day

prior to transferring worms to prevent the development of progeny. Worms were maintained at 20�C for 30 hours. Worms were

prepared for imaging by adding 10 mL of 1% levamisole to each well. Fluorescencemicroscopy was carried out under a 30x objective

using a Leica M205FA microscope with a GFP filter set (excitation: 450-490 nm; emission: 500-550 nm) operated by LAS V4.0 soft-

ware (Leica Microsystems). Images were taken of each well individually and files were exported in TIFF format. A total of 5 indepen-

dent trials were carried out per plate. Fluorescence data was analyzed using Python scikit-image and scikit-learn libraries. TIFF

images were converted from RGB to HSV color space for easy separation of color and brightness information. Individual worms

in images were separated using adaptive thresholding, sobel filtering and watershed segmentation. Individual worm fluorescence

intensity levels were then log2 transformed to allow relative comparisons to be made. Due to the segmented expression of the

Pacs-2::GFP transgene throughout the worm, fluorescence intensity had a wide and non-normal distribution, with minimum and

maximum values spanning the whole dynamic range captured in the image. In order to increase the analysis sensitivity to subtle

changes in fluorescence intensity, the 90th quartile (Q90) of log2 transformed intensity distribution was used as a robust measure

of maximum fluorescence intensity in individual worms. These estimates were normalized against the values obtained for worms

maintained on negative control wells (NGM + 50 mM metformin with no nutritional supplement). No significant and measurable dif-

ferences in Pacs-2::GFP levels by nutrient supplementation were observed in the absence of metformin treatment (data not shown).
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This enabled the relative increase or decrease in transgene expression levels caused by the presence of each nutritional supplement

to be calculated. Multiple univariate analysis was performed with these values using a linear model and significance of fluorescence

changes was determined after Benjamini–Hochberg multiple comparison adjustment with an FDR threshold of < 0.05.

Enrichment analysis of the data obtained from the four-way screen was performed in terms of KEGG pathways and metabolite

classes for both bacteria and C. elegans. Metabolite class data was acquired from the EcoCyc database using PathwayTools and

pythoncyc API with unique EcoCyc IDs of each supplement. KEGGpathway data was collected using the E. coli annotation database

org.EcK12.eg.db Bioconductor package in R (R core team) and KEGG IDs provided by Biolog. Both metabolite class and KEGG

pathway enrichment was estimated using a hypergeometric test. Term enrichments were considered significant following a

Benjamini–Hochberg multiple comparison adjustment with an FDR threshold of < 0.05.

Drosophila melanogaster Lifespan Analysis
Flies were reared at standard larval density by transferring�18 ml of egg suspension into bottles. Eclosing adults were collected over

a 12-h period, and allowed to mate for 48 h before sorting females at a density of 15 per vial, using 10 vials per condition.

For the agmatine lifespan experiments, SYAmedium (5% sucrose, 10% yeast (MP Biomedicals), 1.5% agar, plus nipagin and pro-

pionic acid as anti-fungal agents; (Piper et al., 2014)) was supplemented with 0, 1, 2.5, 10 or 25 mM agmatine (from a 1 M stock in

water, pH 5.5) while the foodwas�55�C. For the bacterial colonization lifespans, flies weremade germ-free several generations prior

to experiments by dechorionating eggs with 3%–5% bleach followed by washing in PBS. SYA food was used during development

and mating, while lifespan assays were performed on chemically-defined or holidic medium (Piper et al., 2014) with minor modifica-

tions to obtain pH 6.5. For themodified chemically-defined medium, the pH of amino acid stocks was not adjusted, phosphate buffer

at pH 6.5 was used (instead of acetate buffer), sucrose and propionic acid were omitted, and nipagin was used as sole anti-fungal

agent. Modified holidic medium was supplemented with the appropriate concentration of metformin dissolved in water or IPTG at

final concentration of 50 mM or equivalent volume of water as a control. All vials were spotted with 50 ml of overnight bacterial culture

except those used for the germ-free group.

All flies were maintained at 25�Cwith 12 h light:12 h dark cycles and 60% humidity. Flies were transferred to fresh food and scored

for survival every 2-3 days. Lifespan curves were plotted using JMP 12 (SAS Institute) and statistical significance was determined

by the log rank test and by Cox Proportional Hazards analysis as appropriate. 1 trial was performed with a total of n�150 flies per

condition (10 independent vials containing 15 flies each).

Drosophila melanogaster Fecundity Assay

Flies treated with agmatine to day 7 were allowed to lay for 24 h. The total number of eggs laid was counted visually under a light

microscope, then divided to give average fecundity per fly. Data are means of n = 10 vials with 15 females each per condition,

with each vial representing an independent biological replicate. Statistical analysis was performed by one-way ANOVA using

GraphPad Prism 6 software.

Drosophila melanogaster Body Weight Measurement

Flies treated with agmatine to day 14 were snap frozen in liquid nitrogen, and weighed in groups of 5 on a precision balance, then

divided to give average body wet weight per fly. 8 independent biological replicates, each containing 5 flies. Statistical analysis

was performed by one-way ANOVA using GraphPad Prism 6 software.

Refinement of Bacterial Metabolic Models
For microbial community modeling, we used a resource of 818 metabolic models of the human gut microbiota (AGORA resource,

version 1.02, (Magnúsdóttir et al., 2017)). We extensively manually curated models from the AGORA resource to remove inconsis-

tencies introduced in the draft reconstruction process that led to wrong annotations of reaction reversibility and energy generation

through thermodynamically infeasible futile cycles in community modeling based on the originally published models (Graspeuntner

et al., 2019). Since AGORA models did not contain transporters for agmatine, we queried TransportDB (http://www.

membranetransport.org/transportDB2/index.html) for known agmatine transporters and included them based on the detection of

homologs to reported sequences in Transport DB in the corresponding bacterial models. More precisely, a BLAST search of known

agmatine transporter proteins against the genome sequences of the bacterial species within the AGORA collection was performed

(i.e., tblastn). BLAST hits with a bit-score above 50 (empiric cut-off for transporter genes) and a query coverage equal or above 75%

were considered as evidence for the existence of the corresponding agmatine transporter. In total, we identified at least one agmatine

transporter in 257 species. Since SpeA, one of the two agmatine-producing enzymes inE. coli, is reported to be located in the cell wall

(cf. https://ecocyc.org/gene?orgid=ECOLI&id=EG10959), we additionally searched for homologs of this gene in genomes of species

of the AGORA resource using a bitscore cut-off of 200 (empiric cut-off for non-transporter genes). We identified homologs of speA in

124 species for which we added an extracellular agmatine-producing reaction from arginine based on the cytosolic ‘‘ARGDC’’ reac-

tion contained in the correspondingmodels (with the ID ARGDC_EXT). Additionally, an agmatine outflow reaction was added for each

species in which either an agmatine transporter or an agmatine biosynthetic genewas detected. Subsequently, we tested production

of agmatine across all bacterial models using flux balance analysis by maximizing agmatine production assuming the Kiel Diet

(see below). We found that 182 out of 812 models were able to produce agmatine. We tested the ability of the models of the

AGORA resource to grow on the Kiel diet. To this end, we constrained each model with this diet and maximized bacterial biomass

production. We assumed a cut-off of a minimal biomass production of 0.01 mmol/gM/d for growth (see the section ‘‘In silico
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Prediction of Microbial Agmatine Production’’ for details on the unit of measurement). Based on this cut-off, we identified 58 out of

818 AGORA models that were not able to grow and thus excluded from further analysis.

Derivation of the Kiel Cohort Diet
For microbial community modeling, detailed information on the nutritional compounds available to the microbial community is

required. Here we took advantage of the availability of detailed dietary information of the individual participants from the Kiel cohort

from the EPIC food frequency questionnaire (Brandstetter et al., 1999) that allows to derive detailed information on the molecular

composition of the diet of each participant that can be used as input for community modeling. In a first step, we mapped dietary

compounds present in the EPIC data to the corresponding exchange compound present in the AGORAmodels (see Table S5F). Sub-

sequently, the weight of the corresponding compounds was converted to millimoles using information on the molecular weight of

each compound. Subsequently, molecular concentrations were divided by 200 to obtain nutrients available per gram of bacterial

biomass in the gut microbiome. We noted that the EPIC data contained only limited information on nitrogen-rich compounds

such as nucleotides and polyamines. Thus, we expanded the molecular composition of the diets of each participant through infor-

mation on the composition of these compounds. To this end, we made use of information on the consumption of different types of

food items from the EPIC data (measured in gram across a list of 140 hierarchically ordered food items).

For nucleotides (purines and pyrimidines), we used various literature sources as reference (Table S5F). We matched food items

from the EPIC data to the foods in the database and calculated the average for each group/subgroup (in the EPIC data). In case

of missing information for a food item (e.g., beer), we used alternative sources or available information from websites. If we were

not able to find alternative information, we used average values from the corresponding food group within the EPIC data as source.

Since measurements only indicated total amounts of each type of nucleotide (e.g., adenosine), we splitted the corresponding

molecular concentration into the different corresponding molecular compounds (e.g., adenosine and desoxyadenosine). Since no

information on pyrimidine content of food itemswas available we extrapolated values from purines to pyrimidines. Thus, we assumed

that the molecular concentration of the purine adenosine equates the molecular concentration of thymidine and uracil combined and

that the molecular concentration of guanosine equals that of cytosine. For more details on the assumptions used for deriving molec-

ular quantities of individual compounds, please see Table S5F. For polyamines, we used measured quantities of cadaverine, putres-

cine, spermidine and spermine of typical food items from the literature (Table S5F). The quantity of ornithine in food items has been

only poorly reported so far. Thus, we used information on reported ornithine content for food items for which we also had data on

other polyamines available to derive a median ornithine to polyamine ratio. We found that the median ornithine to polyamine ratio

for all foods with complete data available was 3.28. Thus, for all food items without data, we extrapolated ornithine content from

the content of cadaverine, putrescine, spermidine and spermine through multiplication of total molecular concentrations of these

compounds with the factor 3.28.

To derive participant-specific diets, we determined the molecular composition of their dietary uptake based on details provided by

the food frequency questionnaire with the additions reported above. To make diets comparable across participants, we normalized

them according to the reported caloric value of each diet to the median caloric value across all participants (8799 kJ). Moreover, the

bacterial metabolic models from the AGORA resource were originally reconstructed and tested on a predefined ‘‘Western diet’’ or

similarly defined diets (Magnúsdóttir et al., 2017). To avoid problems due to individual compounds not covered by our derived

diet on the metabolic capacity of individual bacterial models, we combined our derived diet with the originally defined

Western diet. To this end, we derived participant-specific diets by reducing the influx of compounds provided by the original

Western diet to 10% of their original value and supplementing 90% of the recorded values of dietary intake of each compound

for each participant from the Kiel cohort. Additionally, we retained the original constraints on the inflow of phosphate, copper,

manganese, zinc, iron(3+) and chloride as we found these compounds to strongly limit growth for individual bacterial models.

Predicted agmatine production in metformin users also remained significantly increased compared to healthy obese controls,

when using 1% of the Western diet (99% diet from the participants) or 100% of the Western diet (0% recorded diet from the partic-

ipants) on the Kiel cohort (Table S5M). Likewise, for the other cohorts for which we did not have specific dietary data available,

we used the average uptake across all participants from the Kiel cohort (see Table S5F for the molecular composition) combined

with 10% Western diet.

The derived dietary input for each participant has been deposited in the PopGen Biobank (Schleswig-Holstein, Germany) and is

available via a structured application procedure (https://www.uksh.de/p2n/Information+for+Researchers.html).

Derivation of Community Composition from Metagenomics Data
Previously published metagenomic sequences, obtained from feces of type 2 diabetic patients distinct for metformin treatment and

healthy controls, were obtained from the European Nucleotide database and the Sequence Read Archive (see section Cohort Infor-

mation for Accession Numbers and Metadata). The raw read data was extracted, merged sample wise and quality controlled for

adaptor contamination and base call qualities. Adaptor sequences with an overlap of R 3 bp as well as base calls with a Phred+33

quality score of < 30 were trimmed from the 30 ends of reads using cutadapt (version 1.12). As adaptor sequences, we employed

Illumina’s Nextera transposon sequence (CTGTCTCTTATACACATCT) together with the reverse complements of the TruSeq forward

(CCGAGCCCACGAGACNNNNNNNNATCTCGTATGCCGTCTTCTGCTTG) and reverse primers (GACGCTGCCGACGANNNNNNNN

GTGTAGATCTCGGTGGTCGCCGTATCATT).
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Subsequently, reads were quality controlled via prinseq lite (version 0.20.4) by a sliding window approach with step size 5 bp, win-

dow size 10 bp, mean base quality < 30 and a minimum length filter that discarded any reads shorter than 50 bp (Spanish cohort) or

35 bp (Danish and Swedish cohorts) after all other quality controlling steps. In order to filter out host sequences, remaining sequences

were mapped to the human reference genome (hg38), as released in December 2013 in the version of the University of California

Santa Cruz, including unplaced and unlocalized parts. The unmapped remainder of reads were than mapped against the recon-

structed bacterial genomes published in the AGORA set (version 1.02, obtained from https://webdav-r3lab.uni.lu/public/msp/

AGORA/genomes/ inMarch 2018). The number of readsmapping to each AGORA species can be found in theMendeley data archive

(https://data.mendeley.com/datasets/crmtpmd622/draft?a=ef347ccd-7532-44b0-8925-d2c04a71b419). Differential abundance

of bacterial species between metformin treated versus untreated was tested via generalized linear models as implemented in the

R-package ‘‘DESeq2.’’ Statistical evaluation was performed via the two-sided Wilcoxon rank-sum test without continuity correction

and via the R-package ‘‘DESeq2.’’

In silico Prediction of Microbial Agmatine Production
Please note that while in constraint-basedmetabolic models the usual unit of measurement is mmol per gram dry-weight per hour we

here use mmol per gram microbiome (i.e., full weight of the bacteria in the gut) by normalizing dietary uptake to the amount of com-

pounds available per gram ofmicrobiota in the colon (estimated total weight of 200 g) per day. Thus, the unit ofmeasurement ofmeta-

bolic fluxes for the community simulations ismmol per grammicrobiota per day (mmol/gM/d). In order to predict microbial production

of agmatine, we derived microbial community models for each patient in the individual cohorts (Graspeuntner et al., 2019). To this

end, we initially determined the microbial species present in each participant’s fecal microbiome. For 16 s rRNA profiling data,

16S rRNA gene reads for each participant were mapped against the 16S rRNA genes of species from the AGORA resource and

the closest matching bacterial species above a similarity threshold of 97% was used (cf. (Graspeuntner et al., 2019)). For metage-

nomics data, metagenomic reads were mapped against the genomes of species from the AGORA resource as described above.

After mapping reads to species, abundances were normalized to relative abundances for each participant to a sum of 1 across all

mapped species. For 16S rRNA profiling data we assumed presence of a species for a relative abundance cut-off ofR 0.1% of total

reads and an abundance cut-off ofR 0.01% for metagenomic data due to the lower read depth of 16S rRNA profiling data compared

to metagenomics data. Subsequently, the models representing the species contained in each participant’s microbiome were joined

together in a common compartment. In order to enforce the species composition detected in each participant, biomass outflow re-

actions of the individual bacterial models were blocked and an additional biomass outflow reaction was introduced that consumed

the biomass of all present bacteria in the relative proportion in which each bacteriumwas detected in themicrobiota. Additionally, we

used coupling constraints to connect flux through each reaction in a species to a minimal biomass production for that species

(Graspeuntner et al., 2019). Models were constrained with either the Kiel diet as reported above (for testing agmatine production

in the Spanish, Swedish and Danish cohort) or the respective diet of each individual participant (for testing the influence of individual

diets on agmatine production in the Kiel cohort). For the Kiel cohort we moreover tested the impact of using different relative

compositions of the original Western diet versus the patient-specific diet (Table S5L).

To predict agmatine production capacity for the thus reconstructedmicrobial community of each participant, we used flux balance

analysis with concomitant maximization of agmatine outflow andminimization of total flux as objective function using the R-package

sybil (Gelius-Dietrich et al., 2013). The objective function coefficient for agmatine production was one and �10�6 multiplied with the

absolute sum of flux for flux minimization (Graspeuntner et al., 2019). Predicted agmatine production capacity for each participant

can be found in Supplementary Tables S5G-J. Species-specific agmatine production was determined by extracting the agmatine

production of individual bacterial strains from metformin-treated patients from each cohort from the optimization results and sum-

ming across all bacterial models belonging to the same species. Likewise, side-products of agmatine production were obtained from

metformin-treated patients from the Kiel cohort. In order to exclude that increased agmatine production in metformin-treated pa-

tients was due to differences in dietary habits between both groups, we repeated community simulations for the dietary input of

each patient for the individual microbial composition of all diabetic patients. We found that for each individual patient’s diet, median

predicted agmatine production capacity by microbiota of metformin-treated patients was always higher than that of non-metformin-

treated patients. To investigate the influence of individual dietary compounds on agmatine production capacity, we repeated opti-

mizations for metformin-treated type 2 diabetic patients from the Kiel cohort assuming the Kiel diet as base diet. For each participant

and each dietary compound reported in the EPIC data, we tested the impact of supplying 1mmol of the corresponding compound on

maximal agmatine production (Table S5B).

It has to be noted that in our modeling approach we used the diet of each participant as input, while we used fecal microbiota as

representative microbial community composition. While dietary absorption takes place mostly in the small intestine with a smaller

contribution by the larger intestine (Kiela and Ghishan, 2016), the fecal microbiota mostly reflects the microbial composition of the

large intestine. While peak concentrations of metformin have been observed in the jejunum (middle part of the small intestine),

also around 30% remain unabsorbed and enter the large intestine (Kiela and Ghishan, 2016) affecting themicrobial community there.

Studies specifically investigating the microbiota of the small intestine report the presence of Escherichia and Citrobacter species

(Sundin et al., 2017) which our modeling approach predicts to be potent producers of agmatine (Figure 5C). Thus, while our modeling

approach most specifically reflects the diet available to the microbial community in the small intestine, for which no patient-specific

data on microbiota composition is available, the most important producers of agmatine which we observe in the microbial
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communities of the large intestine are nevertheless present in the small intestine. Moreover, we have repeated community optimi-

zation for the Kiel cohort while removing compounds according to their absorption in the small intestine by subtracting from the

diet of each participant for each compound the fraction of that compound being absorbed in the small intestine (Cohn et al.,

2010; Elmadfa and Leitzmann, 2015). We find that all reported significant differences in the individual subgroups of the Kiel cohort

remain significant when accounting for absorption (Table S5M).

Metabolic Modeling of Escherichia coli OP50
For metabolic modeling of Escherichia coli OP50 we derived the molecular composition of Nematode Growth Medium (NGM) ac-

cording to the respective Cold Spring Harbor Protocol (http://cshprotocols.cshlp.org/content/2008/10/pdb.rec11474.full). The

composition of peptone was based on BD Bacto Peptone (BD Bionutrients Technical Manual BD Biosciences – Advanced Bio-

processing, 4th edition https://www.bd.com/documents/guides/user-guides/DS_CM_Bionutrients-technical-manual_UG_EN.pdf)

and the composition of BD Bacto Agar (Difco & BBL Manual, 2nd Edition https://www.bd.com/europe/regulatory/Assets/IFU/

Difco_BBL/281230.pdf). We assumed unlimited oxygen supply. The pH value was obtained from the media published on http://

protocols.mmml.nl/index.php/protocols2/c-elegans/elegans-media. The quantity of iron was evenly split between Fe2+ and Fe3+,

while the quantity of glutamine was inferred from the quantity of glutamate. The full composition of the NGM medium is provided

in Table S5A. To test which compounds could theoretically increase the production of agmatine in E. coli OP50 when supplemented

to the growth medium we used flux balance analysis on a genome scale model of this strain (Zimmermann et al., 2019) to predict the

maximum agmatine production capacity on NGM medium supplemented with different compounds. To this end, the derived NGM

diet (see above) was extended by an additional inflow (+ 5mmol/L) of each compound of interest. The increased agmatine production

capacity was calculated as the predicted agmatine yield with compound supplementation divided by the predicted yield under NGM

medium alone (Table S5B).

QUANTIFICATION AND STATISTICAL ANALYSIS

General
Data was considered statistically significant when p < 0.05, one-way ANOVA, two-way ANOVA or Benjamini-Hochberg FDR < 0.05

as indicated in the figure, figure legend or experimental methods. Asterisks denote corresponding statistical significance *p < 0.05;

**p < 0.01; ***p < 0.001. Data is presented as the mean ± SD or mean ± SE where appropriate from at least 3 independent biological

replicates, unless stated otherwise in figures, figure labels or experimental methods. Statistical analysis was performed using

GraphPad Prism 6 software, log rank test in JMP 12 software (SAS Institute), linear modeling and ANOVA in R, as indicated.

High-Throughput Screens
Data analysis was performed using the R statistical analysis software package v3.5.0 (https://www.r-project.org) or Python v2.7.15

(https://www.python.org) unless stated otherwise. Linear modeling/regression was accomplished using R base function ‘‘lm,’’ and

function ‘‘glht’’ from ‘‘multcomp’’ package. Data handling and plotting was performed using R ‘‘tidyverse’’ packages (https://www.

tidyverse.org).

To test whether an increase in agmatine production capacity due to the specific nutrient supplementation was associated with

increased growth of E. coli OP50 in Metformin-containing medium (Table S5D), we compared the predicted agmatine production

capacity with the growth phenotypes as measured with BIOLOG C-source plates (see section ‘‘Four-way Host-Microbe-Drug-

Nutrient Screen’’). The association between predictions and measured growth (quantified as area under curve) was analyzed using

linear mixed effect models within R and the package ‘lme4’ (version 1.1-19: The predicted agmatine production capacity was consid-

ered as fixed factor that influences growth. Intercepts for each replicate were defined as random effect to account for potential batch-

effects between BIOLOG plates. To obtain p values, likelihood ratio tests of the full model against the control model without time as

fixed effect of interest were performed. Visual analyses of residual plots revealed no obvious deviation of homoscedasticity or

normality.

Similar to the effect on bacterial growth, we further investigated the association of Pacs-2::GFP fluorescence in C. elegans in

different supplemented nutrient growth environments with the predicted agmatine production capacity of the associated E. coli

OP50 population (Table S5C). A mixed ANOVA was used to analyze the association of agmatine production capacity with

Pacs-2::GFP fluorescence while considering the replicate identity as repeated-measures.

Statistical Testing of Metformin-associated Differences in Agmatine Production from Human Cohorts
Differences in agmatine production between cohorts were tested using theWilcoxon rank-sum test. Using phenotypic data available

for the Kiel cohort, we tested the influence of 30 phenotypic parameters including body measures, blood chemistry, disease status

andmedication on predicted agmatine production. Since the groupswithin this cohort significantly differed in bodymass index (BMI),

we used partial spearman correlation by correlating predicted agmatine production of each participant against the individual

phenotypic parameters while controlling for BMI. After correcting for multiple testing using false discovery rate control, we found

that metformin treatment (FDR, p = 2.4x10�4), type 2 diabetic status (FDR, p = 1.3x10�3), age (FDR, p = 1.3x10�2), anti-hypertensive

medication (FDR, p = 1.2x10�2), gender (FDR, p = 2.7x10�2) and coronary heart disease status (FDR, p = 3.7x10�2) was significantly
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associated with agmatine production. Also controlling for age, only metformin treatment (FDR, p = 4.2x10�4) and type 2 diabetic

status (FDR, p = 2.8x10�3) remained significant. After removing metformin-treated patients from the cohort, type 2 diabetic status

was not significantly associated with agmatine production anymore, thus excluding a primary influence of type 2 diabetic status

on agmatine production alone. All interactions for the individual tests are provided in Table S5H.

For the longitudinal Spanish cohort, linear mixed effect (LME) models were used to investigate temporal changes in the micro-

biome’s capacity to produce agmatine during metformin treatment and placebo administration, respectively. Time (months of treat-

ment) was considered as the fixed factor of interest. The initial levels of the agmatine production capacity (intercepts) for each patient

was defined as random effect. LME-models were fitted using the R-package ‘‘lme4’’ (version 1.1-19). To obtain p values, likelihood

ratio tests of the full model against the control model without time as fixed effect of interest were performed. Visually analyses of

residual plots revealed no obvious deviation of homoscedasticity or normality.

DATA AND CODE AVAILABILITY

C. elegans RNA sequencing data is available at ArrayExpress: E-MTAB-7272. Additional data associated with this paper has

been deposited at Mendeley Data at http://data.mendeley.com/login?redirectPath=/datasets/crmtpmd622/draft?a=ef347ccd-

7532-44b0-8925-d2c04a71b419. Computer code used in this study is available from GitHub: https://github.com/CabreiroLab/

4-way_paper.
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Figure S1. Four-Way Host-Microbe-Drug-Nutrient Screens Identify a Signaling Hub for the Integration of Drug and Nutrient Signals, Related

to Figure 1

(A) Bacterial growth of E. coli OP50 on different types of media with increasing concentrations of metformin. Shaded area shows mean growth OD ± SD.

(B) Bacterial growth of E. coli OP50-MR (metformin resistant) on different types of media with increasing concentrations of metformin. Shaded area shows mean

growth OD ± SD.

(C) Pacs-2::GFP expression of worms grown on E. coli OP50 with different types of media and increasing concentrations of metformin. Significance stars

represent comparison with 0 mM metformin for each media type.

(D) Comparison of nutrient effects on E. coli OP50 growth and worm Pacs-2::GFP expression in the context of metformin treatment.

(E and F) Correlation between nutrient rescue of worm Pacs-2::GFP fluorescence and nutrient effect on E. coli OP50 growth in control (E), and metformin

treatment conditions (F). Nutrient supplementation without metformin (r2 = 0.057, p = 8.8 3 10�6) (E) nor nutrient supplementation with metformin (r2 = 0.097,

p = 4.9 3 10�9) (F) does strongly predict the effects of metformin on host physiology.

(G) Strong correlation (r2 = 0.76, p = 6.03 10�6) between effects of nutrient supplementation on E. coliOP50 growth in control (x axis) versus metformin treatment

conditions (y axis).

(H) Venn diagram of nutrients with significant effects on E. coli and/or worms in the context of metformin treatment.

(I) Top panel: Bacterial growth curves on base NGM media and with nutrient supplementation. Shaded area represents mean growth OD ± SD. Here and in

following panels, red corresponds to control and purple to metformin treatment conditions. Middle panel: Examples of worm Pacs-2::GFP expression with the

corresponding nutrient supplementation and the type of drug-nutrient interaction in worm response. Bottom panel: Histograms of worm Pacs-2::GFP expression

in log2 scale, with distribution density shown on y axis. Shaded area shows worm brightness distribution SD for individual worms. Vertical lines indicate Q90 worm

Pacs-2::GFP expression values. Red- Control and Blue – 50 mM metformin. Full lines- NGM control and dotted lines – NGM plus indicated nutrient supple-

mentation. Full lines are represented in all conditions as a reference for direct comparison.

(J) Bacterial growth estimates based on log2 transformed AUC values (top) andworm Pacs-2::GFP expression estimates based on log2 transformed fluorescence

brightness Q90 values (bottom). Dashed lines indicate bacterial growth on NGM and a worm Pacs-2::GFP expression level used as a reference. Arrows indicate

metformin treatment and significant interaction effects (FDR < 0.05).
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Figure S2. E. coli Integrates Drug and Nutritional Cues to Regulate Host Physiology, Related to Figure 1

(A and B) Supplementation with L-serine (A) or adenosine (B) does not suppress worm lifespan extension by metformin.

(C) Supplementation with glycerol rescues inhibition of bacterial growth by metformin in control E. coliOP50 but not in OP50 DglpKmutants unable to catabolize

glycerol.

(D–G) Glycerol supplementation suppressesmetformin-induced upregulation ofPacs-2::GFP expression (D-E) and abolishes lifespan extension (F-G) in worms in

a bacteria-dependent manner. Nutrient effects are rescued by an E. coli OP50 DglpK mutant unable to catabolize glycerol. In (E), each panel shows 5 individ-

ual worms.

(H) Supplementation with D-ribose rescues inhibition of bacterial growth bymetformin in control E. coliOP50 but not in OP50 DrbsKmutants unable to catabolize

D-ribose.

(I–L) D-ribose supplementation suppresses metformin-induced upregulation of Pacs-2::GFP expression (I-J) and abolishes lifespan extension (K-L) in worms in a

bacteria-dependent manner. Nutrient effects are rescued by an E. coli OP50 DrbsK mutant unable to catabolize D-ribose. In (I), each panel shows 5 individ-

ual worms.

Data are represented as mean ± SEM unless otherwise stated. *p < 0.05; **p < 0.01; ***p < 0.001. For C, D, H, and J, significance stars represent metformin effect

(purple) and metformin-nutrient interaction (green). See also Table S1 for lifespan statistics and table S2 for screen statistics.
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Figure S3. Bacterial Proteomics Identify Transcriptional Networks Underlying Metformin Effects in E. coli, Related to Figure 2

(A) Bacterial growth curves of E. coli OP50 transcription factor (TF) mutants with increasing concentrations of metformin. Shaded area shows mean growth

OD ± SD.

(B) Bacterial growth summaries of E. coli OP50 deletion mutants for TFs associated with proteomic changes in response to metformin treatment. Significance

stars represent comparison with OP50 for each metformin concentration. Opposite to the effects of metformin on the resistant OP50-MR strain compared to

OP50, Dcra and DarcA mutants exhibited increased sensitivity to bacterial growth inhibition by metformin.

(C and D) Metformin regulates worm Pacs-2::GFP expression in a E. coli OP50 TF-dependent manner. Worms grown on Dcra (A) and DarcAmutants (B) showed

an increased activation of host Pacs-2::GFP expression in an additive manner to metformin. For C, significance stars represent comparison with OP50 at 0 mM

(red) or 50 mM (purple) and metformin-genotype interaction (green). In (D), each panel shows 5 individual worms.

(E and F) Worm lifespan extension by metformin is enhanced with a Dcra E. coli OP50 mutant at low (6. 25 mM) (E) but not high (50 mM) (F) drug concentrations.

As previously reported (Cabreiro et al., 2013), these data suggest a shift in the window of action of metformin on host longevity depending on the sensitivity of

the bacterial strain to growth inhibition by metformin.

(G-N) Survival curves of E. coli OP50 TF mutants that do not affect worm lifespan extension by metformin.

Data are represented as mean ± SEM unless otherwise stated. *p < 0.05; **p < 0.01; ***p < 0.001. See also Table S1 for lifespan statistics and Table S3 for

proteomics statistics.
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Figure S4. Bacterial PTS-Crp Signaling Regulates Metformin Effects on Organismal Metabolism and Lifespan, Related to Figure 3

(A and B) Glucose supplementation suppresses upregulation of worm Pacs-2::GFP expression bymetformin. For B, significance stars represent metformin effect

(purple) and metformin-nutrient interaction (green). In (A), each panel shows 5 individual worms.

(C) Deletion of E. coli OP50 crr abolishes worm lifespan extension by metformin.

(D) Bacterial growth curves of E. coli OP50 PTS-Crp signaling mutants with increasing concentrations of metformin. Shaded area shows mean growth OD ± SD.

(E) Bacterial growth summaries of E. coliOP50 PTS-Crp signaling mutants with increasing concentrations of metformin. Significance stars represent comparison

with OP50 for each metformin concentration.

(F) Glycerol supplementation suppresses upregulation of Crp in metformin-treated E. coli OP50.

(G) Metformin significantly increases the ratio of PEP/Pyruvate, the glycolytic flux sensor, in E. coli but the effect is abolished by glucose supplementation.

(H) An E. coli OP50 Dcrp pCrp strain exhibits augmented Crp expression in response to increasing concentrations of IPTG.

(I) Induction of PCrp overexpression is required to extend C. elegans lifespan. IPTG supplementation at 50 mM does not extend worm lifespan.

(J) Overexpression of functionally diverse E. coli proteins in distinct sub-cellular compartments does not extendC. elegans lifespan implying that overexpression

alone by a protein-inducible plasmid in bacteria does not affect C elegans lifespan.

(K) Induction of E. coli pCrp overexpression is required to increase Pacs-2::GFP expression in worms.

(L) Worms grown on DcyaA pCrp E. coli OP50 are longer lived compared to worms grown on DcyaA E. coli OP50 when supplemented with cAMP (1 mM) and

25 mM IPTG.

(M) Growth summaries of OP50 and Dcrp E. coliOP50 strains overexpressing Crp in response to increasing concentrations of IPTG. Significance stars represent

comparison with 0 mM IPTG for each strain.

(N) Growth summary of OP50 and DcyaA E. coliOP50 strains overexpressing Crp in response to increasing concentrations of IPTG. Significance stars represent

interaction between Crp overexpression and IPTG versus untreated control.

(O–Q) An E. coli OP50 DcpdA mutant unable to degrade cAMP extends worm lifespan (K) but not in the absence of cyaA (L) and crp (M).

(R) Metformin does not extend lifespan of germ-free flies in chemically-defined media.

Data are represented as mean ± SEM unless otherwise stated. n.s. non-significant, *p < 0.05; **p < 0.01; ***p < 0.001. See also Table S1 for lifespan statistics.
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Figure S5. Bacterial Agmatine Regulates Host Metabolism and Lifespan, Related to Figure 4

(A) PCA plot of E. coli metabolomics data showing effect of metformin treatment on control E. coli OP50 and a OP50 Dcrp mutant and the effect of

Crp overexpression.

(B) Worm Pacs-2::GFP expression is increased by a DspeB E. coli OP50 mutant.

(C) Bacterial growth curves of E. coli arginine catabolism mutants. Shaded area show mean growth OD ± SD.

(D) Agmatine supplementation delays worm development and reproduction in a bacteria-dependent manner.

(E) Agmatine supplementation extends lifespan in worms grown on a DadiADastADspeADspeB E. coli OP50 mutant unable to metabolize agmatine.

(F–H) Agmatine supplementation reducesDrosophila fecundity (F) and body weight (G) and extendsDrosophila lifespan (H) in a concentration-dependentmanner

on SYA media.

(I) Measurements of macromolecular content (proteins, sugars and lipids) of control E. coliOP50 and aDadiADspeAOP50mutant show no significant differences

between the strains. Significance stars represent metformin effect (purple) and metformin-genotype interaction (green).

(J) Metformin does not extend lifespan further when worms are grown on a DastADspeB E. coli OP50 mutant.

(K) Predicted relative increase in agmatine production by E. coli OP50 following supplementation of 5 mmol of different nutrients to NGMmedium. Nutrients are

grouped according to their class.

(L) Top 15 metabolites according to predicted increase of agmatine production by E. coli OP50 on NGM medium following supplementation of 5 mmol of each

compound. Only compounds present in the diet of the Kiel cohort are shown.

(M) Comparison of predicted increases in agmatine production following nutrient supplementation to NGM medium and experimentally measured E. coli OP50

growth phenotype rescue by nutrients on Biolog plates in response to metformin. A significant association between predicted agmatine production capacity and

measured growth-rescue of metformin-treated E. coli OP50 (linear model p = 2.0 3 10�6, Table S5D).

(N) Predicted increases in agmatine production capacity of themicrobiota of metformin-treated patients following supplementation 1mmol of each compound to

the reported diet of the participant available per gram of microbiota. Only compounds present in the diet of the Kiel cohort are shown.

Abbreviations: FC, fold-change. Data are represented as mean ± SEM unless otherwise stated. n.s. non-significant, *p < 0.05; **p < 0.01; ***p < 0.001.

Abbreviations: FC, fold-change. See also Table S1 for lifespan statistics and Table S4 for metabolomics statistics.
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Figure S6. Metformin and Bacterium-Dependent Transcriptional and Metabolic Signatures in C. elegans, Related to Figure 6

(A) Venn diagram showing an overlap of metformin-induced significant (FDR < 0.05) transcriptional changes in worms on E. coliOP50 and OP50-MR strains, and

the subset responsible for the longevity phenotype.

(B) Metformin increases the expression of worm genes involved in multiple processes in a bacteria-dependent manner. Significance stars represent metformin

effect (purple) and metformin-bacteria interaction (green).

(C) Metformin-induced increases in worm gene expression revealed by RNaseq are recapitulated using fluorescent transgenic reporter lines.

(D) Diagram of genes and metabolites involved in fatty acid metabolism that were studied in order to evaluate their contribution to metformin effects on host

metabolism and lifespan. Transgenic reporter strains (green) were used to quantify the expression of the following genes: atgl-1, required to mobilize fatty acids

from triglyceride stores; acs-2, required for fatty acid activation; cpt-5 and cpt-2, required for transport of fatty acids across the mitochondrial membrane;

acad-10, a mitochondrial b�oxidation enzyme and dhs-23, a peroxisomal short chain dehydrogenase involved in steroid and lipid metabolism. Genetic mutants

(legend continued on next page)



or RNAi knockdown (orange) were used to investigate the role of the following genes: nhr-49, a global regulator of b�oxidation; acs-1, a mitochondrial

b�oxidation enzyme; acox-1.1/5, peroxisomal b�oxidation enzymes; fzo-1 and eat-3, required for mitochondrial fusion; drp-1, required for mitochondrial fission;

nuo-1, gas-1, isp-1 and cco-1, required for electron transport chain function and prx-5, required for peroxisomal biogenesis. Lipid droplets and peroxisomeswere

visualized using transgenic strains that report the dhs-3 lipid droplet marker protein and a RFP-PTS1 peroxisome-targeting sequence fusion, respectively (blue).

Worms were also treated with perhexiline, an inhibitor of b�oxidation and acetoacetate, a product of fatty acid b�oxidation.

(E and F) Confocal visualization of worm lipid droplets (E) and peroxisomes (F) show effects of metformin in worms in a bacterial OP50-MR-dependent manner.

10 mm scale bar. No changes in gene expression for dhs-3 or vha-6 were observed (Table S6).

(G) Metformin increases worm peroxisomal abundance in a bacterial OP50-MR-dependent manner. Significance stars represent metformin effect (purple) and

metformin-bacteria interaction (green).

Data are represented as mean ± SEM n.s.- non-significant, *p < 0.05; **p < 0.01; ***p < 0.001. See also Table S1 for lifespan statistics and Table S6 for RNA-seq

statistics.
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Figure S7. Metformin Increases Fatty Acid Oxidation to Regulate Host Metabolism and Lifespan, Related to Figure 7

(A and B) Quality of representation (measured as squared cosine) of the variables (Samples in (A) and metabolites in (B)) in the first three Principle Components.

Value ranges between 0 and 1, where 1 corresponds to the maximum quality of representation.

(C–E) Worm lifespan extension by metformin is suppressed in fzo-1 (C) and eat-3 (D) mitochondrial fusion mutants and a drp-1 mitochondrial fission mutant

(E) involved in mitochondrial homeostasis.

(F–I) Worm lifespan extension by metformin is suppressed in gas-1 (F) and nuo-1 (G) mitochondrial respiration complex I mutants, an isp-1 mitochondrial

complex III mutant (H) and with RNAi knockdown of cco-1 encoding a mitochondrial complex IV subunit (I).

(J) Metformin does not further extend lifespan of worms treated with the FAO-inhibitor perhexiline (control plates supplemented with 0.25% DMSO).

(K) Worm lifespan extension by metformin is suppressed in a prx-5 peroxisomal biogenesis mutant.

(L) Worm lifespan extension by metformin is abolished by acetoacetate supplementation.

(M) Acetoacetate synergizes with metformin to inhibit E. coli OP50 growth. Significance stars represent metformin effect (purple) and metformin-acetoacetate

interaction (green).

(N) Acetoacetate supplementation suppresses metformin-induced upregulation of worm Pacs-2::GFP expression in a concentration-dependent manner.

Significance stars represent metformin effect (purple) and metformin-acetoacetate interaction (green).

(O) Acetoacetate supplementation suppresses metformin-induced upregulation of multiple worm lipid metabolism and FAO-related genes. Significance stars

represent metformin effect (purple) and metformin-acetoacetate interaction (green).

(P) Suppression of metformin-induced upregulation of worm Pacs-2::GFP expression by acetoacetate is partially rescued by RNAi knockdown of Succinyl-

CoA:3-Ketoacid-CoA Transferase OXCT-1/C05C10.3, a gene involved in the catabolism of ketone bodies including acetoacetate. This suggests that effect of

acetoacetate partly depends on its utilization as metabolic fuel. Significance stars represent metformin effect (purple) andmetformin-OXCT-1 interaction (green).

Data are represented as mean ± SEM. **p < 0.01; ***p < 0.001. See also Table S1 for lifespan statistics and Table S7 for fatty acid metabolomics statistics.
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