
ARTICLE

Gene-diet interactions associated with complex
trait variation in an advanced intercross outbred
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Phenotypic variation of quantitative traits is orchestrated by a complex interplay between the

environment (e.g. diet) and genetics. However, the impact of gene-environment interactions

on phenotypic traits mostly remains elusive. To address this, we feed 1154 mice of an

autoimmunity-prone intercross line (AIL) three different diets. We find that diet substantially

contributes to the variability of complex traits and unmasks additional genetic susceptibility

quantitative trait loci (QTL). By performing whole-genome sequencing of the AIL founder

strains, we resolve these QTLs to few or single candidate genes. To address whether diet can

also modulate genetic predisposition towards a given trait, we set NZM2410/J mice on

similar dietary regimens as AIL mice. Our data suggest that diet modifies genetic suscept-

ibility to lupus and shifts intestinal bacterial and fungal community composition, which

precedes clinical disease manifestation. Collectively, our study underlines the importance of

including environmental factors in genetic association studies.
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In humans, genome-wide association studies (GWAS) have
identified hundreds of genetic variants associated with com-
plex human diseases and traits, providing detailed insights into

their genetic architecture1. However, depending on the pheno-
typic trait, only 5–50% of the variation is explained by host
genetics while rest remains unexplained2,3. Recently, attention
has shifted on the environment and its interaction with host
genetics as a key regulator of complex traits4. Gene-by-
environment interactions (GxEs) occur when environmental
factors and genetic variation have a joint impact on disease sus-
ceptibility, thus deconstructing their individual contributions4.
These interactions are thought to explain a large proportion of
the unexplained variance in heritability5. For instance, the
interaction of genetics (e.g., the HLA locus) with environment
(e.g., smoking) exemplifies the joint genetic and environmental
control of the risk of developing rheumatoid arthritis (RA). Thus,
while both presence of the HLA-DRB1 haplotype and smoking
confer a similar risk of developing RA, the risk increases fourfold
if both factors are present6. Furthermore, dietary or microbe-
derived metabolites can induce inflammation by modulating
specific receptor responses in the gut, further suggesting that the
environment contributes to complex physiological traits7.

With diet being a major constituent of an organism’s envir-
onment, we hypothesized that diet alone and its interaction with
host genetics may account for a considerable proportion of
phenotypic variability in complex traits. Our interest in this topic
was further provoked by the clinical observation of metabolic and
cardiovascular comorbidity in chronic inflammatory diseases8.
One school of thought considers inflammation a key driver of
metabolic and cardiovascular comorbidity, while the other sug-
gests that this comorbidity may be a result of a joint genetic
control. Meta-analysis of GWAS data, however, has documented
little overlap of risk alleles among inflammatory, metabolic, and
cardiovascular diseases9. In contrast, increased food intake has
been suggested as a more probable risk factor for developing these
diseases10. Nevertheless, little experimental evidence exists in
favor of either hypothesis. To address this controversy and,
unravel the impact of diet on complex traits, we expose a large
colony of an advanced intercross outbred mouse line (AIL) to
three different diets: caloric restriction, Western diet, and control
diet. The overall experimental rationale is to mimic dietary life-
styles in their extremes, such as normal control diet, Western diet
mimicking the food of the modern Western countries, as well as
deficit of food intake in developing countries. A total of 1154 mice
are genotyped and phenotyped for 55 physiological and patho-
physiological traits.

Our results suggest that, for many traits, diet in addition to
genotype or gene-diet interaction, explains a large portion of the
phenotypic variation. Based on publicly available and herein
generated genome sequence data of the parental mouse strains of
the AIL mice, we fine-map several of the quantitative trait loci
(QTLs) to variants in few or even single genes. Most importantly,
the landscape of genomic association of traits changes con-
siderably when diet is considered as an interactive variable with
host genome. To address whether diet-modulated genetic asso-
ciation is functionally relevant, we select one parental strain of the
AIL mice, the NZM2410/J, as it was most susceptible to gene-diet
interaction in our study. This strain develops spontaneous
pathological phenotypes, such as antinuclear antibodies (ANA)
and lupus. We expose NZM2410/J mice to the same three diets.
Under caloric restriction, all NZM2410/J mice are protected from
lupus development and only 5% produce ANA, whereas animals
fed a Western diet succumb due to an accelerated and severe
lupus and more than 50% of the mice produce ANA. To better
understand the underlying mechanisms of diet-modulated lupus
development in NZM2410/J mice, we perform longitudinal

analysis of their intestinal micro- and mycobiota, as well as RNA-
sequencing (RNA-Seq) of their spleens. This reveals that diet-
induced changes in the intestinal micro- and mycobiota precede
clinical disease manifestation in NZM2410/J mice, and are asso-
ciated with ANA production. Furthermore, by associating diet
and pathophysiological traits (e.g., lupus and ANA) with the
RNA-Seq data, we identify dysregulated genes and biological
pathways that predispose NZM2410/J mice to disease onset and
production of ANA. Finally, we use our multi-omics data to fine-
map QTL for ANA production in AIL mice.

Results
Impact of diet and host genetics on complex traits. A large
cohort of male and female mice from an autoimmunity-prone
AIL was fed three different diets (caloric restriction, control-, and
Western-diet) until an age of 24 weeks. Thereafter, mice were
genotyped and phenotyped. In total, we quantified 55 phenotypes
that were defined as either physiological or pathophysiological.
Phenotypes and assessment methods are listed in Supplementary
Table 1. Physiological phenotypes were further categorized into
metabolic, hematological, immunoglobulin, glycosylation pattern,
and other phenotypes. Ultimately, the effects of host genetics,
diet, and sex on the phenotypic variation of each trait were
analyzed as stated in “Methods” (Fig. 1a, b). Diet accounted for
the largest proportion of the phenotypic variation in metabolic
(for example, 48% of the phenotypic variability for final body
weight is explained by diet), immunoglobulin (up to 37% for IgA/
IgM ratio), and pathophysiological traits (up to 46% NAFLD
ballooning; Supplementary Table 1, Supplementary Data 1).

In contrast, diet had little impact on phenotypic variability of
differential blood counts (up to 6% for eosinophils). For IgG
glycosylation traits, specifically composition of the biantennary
sugar residue at Asn297, comparable contributions were observed
for both host genetics (up to 11% for the ratio between sialic acid
and galactose) and diet (up to 12.5% for G1). Other known
covariates, such as sex, only explain a small magnitude of the
phenotypic variation in the studied traits (up to 8% for body
weight at 2 months of age), Supplementary Table 1, Supplemen-
tary Data 1).

Next, to more deeply characterize the impact of genetics, and
identify genomic loci that co-vary with the investigated
phenotypes, we performed QTL mapping. At the genome-wide
level (αgw < 0.05), we identified 21 QTL, corresponding to 18
phenotypes (Fig. 1b, Supplementary Data 1). In addition,
20 suggestive (chromosome-wide) QTL for 13 distinct pheno-
types (Supplementary Data 2) were found (Fig. 1b). Overall, host
genetics accounted for 2–28% of the phenotypic variation, with a
strong genetic association for a cis-QTL for C-reactive protein
(CRP) (LOD= 36.5), and a previously reported QTL for coat
color on chromosomes 2 (LOD= 28.4) and 7 (LOD= 29.2)11

(Supplementary Data 1).

Diet reveals hidden genetic associations. In addition to QTL
exclusively associated with host genetics, we next investigated the
impact of the interaction between host genetics and diet in the
measured phenotypes. Here, we identified 23 gene-diet-associated
QTL for a total of 11 phenotypes at the genome-wide significance
level (Fig. 1b, Supplementary Data 1). At the chromosome-wide
significance level, 114 additional, suggestive QTL correlated with
a total of 38 phenotypes (Supplementary Data 2). Considering
diet as an interacting variable in the QTL mapping led to a shift of
the genetic association that has been mapped when solely
focusing on genetics. For instance, while host genetics is asso-
ciated with body weight only at early time points (2 months),
additional QTL are observed at 2 months as well as at later time
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Fig. 1 Phenotyping, QTL identification, and fine mapping of dietary perturbations in an AIL mouse population. a Heatmap illustrating distribution
(normalized between 1.5 to −1.5) of the investigated complex traits in AIL mice for the three dietary regimens in both sexes. Data were analyzed using
Kruskal–Wallis test followed by Dunn’s test for multiple comparisons (P-value was adjusted by Sidak correction procedure). For binary phenotypes (ANA
and NASH), chi-square test was performed followed by Fisher exact test for multiple comparisons where p-values were adjusted by Benjamini-Hochberg
correction procedure. The asterisk (*) within each box indicates statistical significance (Padj < 0.05), whereas the different color codes indicate the
association of the particular trait with either diet (yellow), sex (pink) or both (blue). Extension of the abbreviations of the traits and their sample size (n) are
provided in Supplementary table 1. b Manhattan plot showing QTL (αgw < 0.05) in the AIL population associated with various complex traits. The x-axis
describes chromosomes in the C57BL/6J mouse genome (reference mouse assembly mm10), while the y-axis represents the LOD score (log of odds
ratios). The QTL marked with blue represent the additive model, while gold and pink represent diet- and sex-interacting QTL, respectively. c An overview of
variants called from 4 founder mouse strains (BxD2/TyJ, MRL/MpJ, NZM2410J, and CAST/EiJ) compared to the C57BL/6J mouse genome reference
assembly (mm10). Each track in the circle indicates the relative density of single nucleotide polymorphisms (SNPs) and insertions and deletions (indels) for
four strains across mouse chromosomes. d Schematic representation of fine-mapped genes for weight (6 months) under the influence of diet using whole-
genome sequencing. The uppermost panel shows founders coefficients for significant QTL in chromosome 5. The middle panel shows a line plot for QTL
with a red line indicating a genome-wide significance level (αgw < 0.05). The lowermost panel shows the genes present within the QTL and variants
differing between NZM2410/J and MRL/MpJ strains, leading to the exclusion of several candidate genes. Source data for (a) are provided in the Source
Data file
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points (4 and 6 months) when considering diet as an interacting
variable (Supplementary Data 1). Moreover, gene-diet-associated
QTL, derive mainly from the genome of the NZM2410/J and the
MRL/MpJ mouse, were also identified for the pathophysiological
traits such as NAFLD (LOD= 6.3), steatosis (LOD= 7.9), and
ballooning (LOD= 5.9). Taken together, these results show that
diet changes the genetic association of several of the investigated
complex traits. To understand the impact of the sex on complex
traits, we next considered sex as an interacting variable in our
QTL-mapping study. The gene/sex-co-regulated QTL accounted
mainly for hematological and metabolic parameters. In detail,
four phenotypes were associated with 7 QTL at genome-wide
significance, and an additional 30 phenotypes show an association
with 88 QTL at the chromosome-wide significance level (Fig. 1b,
Supplementary Data 1–2, URL: http://diet.ag-ludwig.com). The
impact of sex on complex traits points towards an interaction of
autosomal with idiochromosomal genes.

QTL fine-mapping using whole-genome sequencing. One of the
main challenges in QTL-mapping studies is to reach sufficient
resolution to identify few- to single candidate genes. In our cross,
the average size of the QTL we defined at genome-wide- sig-
nificance level (αgw < 0.05) is 1.57 ± (SEM) 1.59 Mb. Therefore, to
further enhance the QTL resolution, we sequenced the genomes
(whole-genome sequencing, ~30× coverage) of three parental
strains, i.e., BxD2/TyJ, MRL/MpJ, and NZM2410/J and derived
the genome of CAST/EiJ mice from a publicly available data-
base12. Detailed assembly statistics for the four strains is men-
tioned in Supplementary Data 3. Since these strains are inbred, we
exclusively called homozygous single nucleotide polymorphisms
(SNPs), insertions and deletions (indels). In comparison to the
C57B6/J (mm10) genome, we found 5,203,605 SNPs and
1,054,204 indels in the MRL/MpJ strain, 5,612,844 SNPs and
1,111,081 indels in the NZM2410/J strain, and 2,562,122 SNPs
and 513,925 indels in the BxD2/TyJ strain. In comparison to
other sequenced strains (Mouse Genomes Project), 1.5%, 1.8%,
and 2.9% were novel SNPs, and 29.3%, 32.9%, and 33.9% were
novel indels for BxD2/TyJ, MRL/MpJ, and NZM2410/J mice
strains, respectively13 (Fig. 1c, Supplementary Data 3). Compar-
ison of the genomic landscape of founder strains (Fig. 1d)
reduced the number of candidate genes for the 51 identified QTL
(αgw < 0.05), corresponding to 30 phenotypes (Supplementary
Data 1).

Next, we categorized QTL defined at genome-wide significance
into three groups according to the degree of evidence supporting
the candidacy of the gene for the respective trait: The first group
comprises genes whose candidacy is either supported by human
GWAS, a corresponding spontaneous phenotype in knockout
mice or a presence of a cis-QTL (Supplementary Data 1). This
group of genes contained 58% of the overall identified genes in
our study. Of these, 68% were controlled by gene-diet interaction,
followed by genes exclusively controlled by host genetics (18%)
and gene-sex interaction (14%). For example, two of the host
genetics-associated genes, B4galt1 and Igh, were fine mapped to
loci on chromosomes 4 and 12, respectively and have been shown
to contribute to glycosylation modifications in humans14. In
detail, deficiency in B4galt1 leads to a severe congenital
neurological disorder of glycosylation type IId. The Igh locus
was recently discovered to be associated with IgG N-glycosylation
in human GWAS15. Among the genotype-by diet-associated
candidate genes, a locus on chromosome 5 containing the
Napepld gene contributed to body weight at age 4 and 6 months.
Napepld encodes for N-acyl phosphatidylethanolamine phospho-
lipase D, which has a known function in hydrolyzing diet-
induced N-acylphosphatidylethanolamines16. Deletion of

Napepld in adipocytes leads to obesity, glucose intolerance and
adipose inflammation17. Similarly, among the genes associated
with gene-diet interaction, we identified the Nr4a3 gene at a locus
for body weight, which was suggested as a potential target for
amelioration of insulin resistance as well as treatment of type 2
diabetes and metabolic syndrome18.

The second category of identified QTL comprised eight loci
with genes whose candidacy is strongly corroborated by
published evidence. As an example, among the genes regulated
solely by host genetics, Cux1 and Cysltr1 were associated with
body weight and eosinophil abundance, respectively. Cux1 is
known to modulate food intake in both rodents and humans, and
Cysltr1 governs eosinophil influx and migration into tissues19.
Furthermore, within the group of loci associated with the gene-
diet interaction, Nfkbia and Casp9 were present. The Nfkbia is
associated with immunoglobulin M (IgM) concentrations, and
mice harboring a germline mutation in Nfkbia exhibit defective B
cell maturation and antibody production20. Both steatosis and
NAFLD were associated with Casp9, and described as a potential
marker for hepatocyte apoptosis during the development of
NAFLD21.

The remaining eight QTL, comprising the third group, contain
candidate genes that were yet to be associated for their biological
relevance with the observed phenotypes. The majority of the
candidate genes in this group were associated with physiological
phenotypes such as body weight (Parp8, Ube2cbp, Sec61b, and
Ubl3) and hematological parameters (Kcnd3, Diaph2, and Sorc3).

Diet modulates genetic susceptibility. To this end, we demon-
strate that diet shifts the genetic association and uncovered
multiple genes associated with metabolic and pathophysiological
traits. Nonetheless, it was unclear whether this diet-mediated
effect of genetic association is of functional relevance. While
addressing gene-diet interactions models, we observed that the
NZM2410/J and the MRL/MpJ strains were the major con-
tributors to phenotypic variation in the AIL population (Sup-
plementary Data 1, URL: http://diet.ag-ludwig.com). Both strains
are prone to the spontaneous development of autoimmune dis-
eases, such as lupus and pancreatitis22,23. Independently, we also
observe a host genetics-associated locus for ANA, a characteristic
feature of lupus, mapped to the genome of the NZM2410/J mice.
To address whether diet has a functional impact on genetic dis-
ease susceptibility, we exposed NZM2410/J mice to the same
three dietary regimens as for the AIL population. Subsequently,
the prevalence of ANA and lupus development were monitored
over time. As expected, mice on caloric restriction gain less
weight over time than mice on control or Western diet (Fig. 2a,
b). Regarding lupus development, 41% of mice on control diet
develop lupus nephritis. In contrast, none of the mice on caloric
restriction and almost all mice (90%) on Western diet develop
lupus. Of note, in the Western diet group, disease onset, as
measured by proteinuria, was accelerated, with an average onset
on week 20.0 ± (SEM) 3.0 compared to week 24.0 ± (SEM) 2.7 in
the control group (Fig. 2c). The clinical findings were further
supported by histopathological changes in the kidneys. Specifi-
cally, crescent formation and frequency of periodic acid–Schiff
(PAS) positive deposits were lowest in mice held at caloric
restriction and highest in mice fed Western diet (Fig. 2d–f). In
line with the clinical and histological observations, only 5.6% of
mice on caloric restriction had circulating ANA, while this
increased to 52.6% in mice on Western diet (Fig. 2g). Collectively,
our results indicate that diet modulates the genetic susceptibility
to develop lupus. Next, to delineate changes induced by diet that
resulted in differential susceptibility to lupus, we studied gut flora
(longitudinally) and transcriptomic alterations in these mice.
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Diet-associated changes of the microbiota before disease onset.
Previous studies documented that diet changes the composition
of the intestinal bacterial and fungal communities24,25. Further-
more, alterations in the gut micro- and mycobiome are frequently
associated with disease phenotypes, including SLE26,27. However,
the majority of these studies present cross-sectional data collected

following manifestation of disease phenotype. Thus, it remains
largely unknown whether the observed alterations in the micro-
biota composition occur prior to disease or as a consequence of
the disease phenotype.

Therefore, we performed longitudinal sampling of feces from
lupus-prone NZM2410/J mice that were set on the same diet as
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the AIL mice. We categorized samples into three stages, i.e., (1)
collected immediately after weaning (naive); (2) at a transient
state in which all mice were phenotypically healthy (i.e., absence
of proteinuria); and (3) at a final time point, which was either at
the end of the observation period or at the time when mice had to
be sacrificed because of severe, lupus-nephritis-induced weight
loss. Afterwards, using amplicon- based next generation sequen-
cing, samples were investigated for microbial (V1–V2) and
mycobial (ITS2) composition. For microbiota, species diversity
(alpha diversity, Chao1 index) among the different diets was
significant in the naïve, transient and final stages, showing a
higher diversity in mice on calorie-reduced diet (Fig. 3a). Most
likely, the identified differences in the microbial composition at
this early stage reflect the immature gut microbiome present at
this age28. Differences in alpha diversity were also found for
transient and final stages when stratifying the mice for presence
or absence of lupus (Fig. 3a). Notably, at the transient stage, none
of the mice show any signs of disease, but the samples were
characterized based on the establishment of future disease at the
final time point. Therefore, our results indicate that changes in
microbial communities occur before the actual clinical disease
manifestation. With respect to the mycobiome, we did not find
differences in fungal richness (Chao1 index) at any stage for the
stratified subgroups (diet and disease; Supplementary Fig. 1a).
However, the observed species diversity (Shannon index) showed
differences between diseased and non-diseased mice at the
transient stage (Fig. 3b).

For beta-diversity (UniFrac distances), we observe significant
changes in the microbial composition across different diets and
disease at the transient and final stages (Fig. 3c; Supplementary
Fig. 1b). For the mycobiota, differences in the beta-diversity
(Jaccard distances) were found when stratifying the mice based
on diet at transient and final stages (Fig. 3d; Supplementary Fig.
1c). To identify, potential microbial and fungal biomarkers for
traits (diet and disease), we used the LEfSe algorithm29. The
linear discriminant analysis effect size (LEfSe) method combines
standard statistical tests with biological consistency and effect
relevance to determine the features (taxonomical ranks) that most
likely explain the differences between classes (such as diet and
disease). For mycobiome, at the transient stage, fungi such as
Sporobolomyces were especially abundant in the calorie-restricted
(Supplementary Fig. 2a) and non-diseased (Supplementary Fig.
2c) groups, while Wallemia were more abundant in Western diet
and diseased mice (Fig. 3e). With the progression of disease, at
the final stage, Cytospora were more abundant among the calorie-
restricted (Supplementary Fig. 2b) and non-diseased mice
(Supplementary Fig. 2d), while Capronia pilosella, Exophiala
and Helotiales were abundant in the Western-diet and diseased
groups. For microbiota, at transient stage Paraburkholderia,
Betaproteobacteria, Dubosiella and Faecalibaculum were abun-
dant in the calorie-restricted and non-diseased groups at both
transient and final stages (Fig. 3f). In contrast, Dorea longicatena,
Lachnoclostridium and Roseburia were abundant in the Western
diet and disease group of mice (Supplementary Fig. 2 e–h).

Spleen transcriptomic changes associate with diet or disease. As
germinal center formation in the spleen is a key event in
autoimmune-prone mice30, and its formation at least partially
drives lupus pathogenesis31 we next investigated splenic tran-
scriptome in the NZM2410/J mice. In total, we identified 1415
differentially expressed genes (Padj < 0.05) when stratifying the
data based on diet (Supplementary Data 4) and 1,349 differen-
tially expressed genes when differentiating between healthy and
diseased mice (Supplementary Data 5). Of these differentially
expressed genes, 830 genes were common to both diet and disease

status, suggesting that this gene-set is important for disease and is
modulated by diet (Supplementary Data 5). Pathways enriched in
diseased mice and mice fed Western diet included the comple-
ment cascade, FCERI signaling, cytokine signaling, and neu-
trophil degranulation. The butyrophilin family interaction was
enriched in calorie-restricted and non-diseased mice (Supple-
mentary Data 6, Supplementary Table 2).

Given the significant changes in the gut micro- and mycobiota
composition in the NZM2410/J under different diets leading to
lupus, we next examined the gene signatures associated with
micro- and mycobiota. In this context, we used an approach
proposed by Tong and colleagues, where they show that
microbiota can be clustered into functional microbial commu-
nities (FMCs) based on taxa co-occurrences patterns32. To
determine such ecological structures, they first construct micro-
bial co-occurrence networks. Nodes of these networks, represent-
ing OTUs were grouped based on their topological overlaps using
hierarchical clustering and were termed as FMCs. Such an
approach provides dimensionality reduction (eigenOTUs; that
can be described as first principle component of FMCs to
summarize the OTU abundances in a given community), which
can be used to associate communities with multiple traits. We
applied this strategy on the gut microbial and fungal commu-
nities. First, for the microbiome data, we find that out of the six
clustered modules, FMC1, comprised of 105 OTUs, was
significantly upregulated in diseased and Western diet fed mice
(Fig. 4a). Similarly, we identified classified functional fungal
communities (FFCs) and correlated them with sex, disease state,
stages of sampling, and diet. We identified 6 FFCs, of which
FFC4, consisting of 24 OTUs, was associated with diet and disease
progression (Fig. 4b). It was suggested that fungi and their
metabolites can affect targeted bacterial species33. To explore
potential correlations between the FMC1 and FFC4 we used the
SparCC algorithm34 (Fig. 4c, Supplementary Fig. 3). While the
majority of taxa showed negative inter-domain correlations, such
as Eisenbergiella tayi and Chytridiomycota, other taxa, including
Ruminococcus torques and Pezizaceae, showed the strongest
positive inter-domain correlation (Fig. 4c). This suggests that diet
may modulate complex intestinal micro-ecosystems that con-
tribute to disease pathogenesis.

Next, to explore potential host disease-associated molecular
mechanisms modulated by micro- and mycobiota we correlated
the eigenOTU values of FMC1 and FFC4 to the expression levels
of genes derived from NZM2410/J mice. We identified 679 and
116 differentially expressed genes associated with FMC1 (Sup-
plementary Data 7) and FFC4, respectively (Supplementary Data
8). Of these genes, 43 genes were common between micro- and
mycobiota, and 38 genes contributed to disease and were also
dictated by diet. The 38 genes were enriched for ontology terms
classified as biological processes (Padj < 0.01), specifically defense
response to virus, regulation of innate immune response, and
regulation of ribonuclease activity (Fig. 4d).

Candidate gene associated with ANA. In AIL mice, ANA pre-
valence was lowest in mice on caloric restriction compared to
mice set on control or Western dietary regimens (Fig. 5a).
Moreover, ANA prevalence was associated with host genetics
(Fig. 1b). Specifically, a non-diet-interactive QTL for ANA
mapped to the MHC locus on chromosome 17 (Fig. 5b). For the
peak SNP (UNC27797171) within this QTL, the allele derived
from NZM2410/J accounted for ANA prevalence (Fig. 5c). By
examining the NZM2410/J specific consequential mutation
derived from whole-genome sequencing, we further shortlisted
the set of 81 genes within the ANA-associated locus to 58 can-
didate genes. To further fine-map this QTL, we used the splenic
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RNA expression data generated in NZM2410/J mice, who simi-
larly to the AIL population harbor identical patterns of ANA
prevalence among the various diets (Figs. 2g, 5a). Based on the
presence or absence of ANA we observed 1,458 differentially
expressed transcripts (Supplementary Data 9). Of these, 11 genes

(H2-Eb2, Myo1f, Tap1, Cfb, C2, H2-K1, Psmb9, Psmb8, Tnxb,
Rps28, and Col11a2) were shared among the above shortlisted 58
candidate genes (Fig. 5f). We next evaluated the RNA-Seq data
after stratification for diet, which is a risk factor for ANA pro-
duction in our study. Here, compared to the control or Western
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diet, 2004 genes were differentially expressed in mice held at
caloric restriction (Supplementary Data 10). To further identify a
diet-modulated gene controlling ANA production, we overlapped
1458 differentially expressed genes (identified for ANA presence
or absence) with 2004 genes (stratification based on diet) and
identified 850 shared genes between the two comparisons. Out of
the 850 transcripts 8 genes overlapped with the 11 genes (Myo1f,
Tap1, Cfb, C2, H2-K1, Psmb9, Psmb8, and Tnxb), which we fine-
mapped for ANA QTL. Additionally, we find that ANA pro-
duction in the NZM2410/J mice differed based on their intestinal

microbial and fungal composition (Fig. 5d). Out of the identified
functional communities, we found FMC3, FMC5, and FFC6 to be
associated with the production of ANA (Fig. 5e; Supplementary
Fig. 4). After correlating the RNA-Seq data to FMC3, FMC5, and
FFC6, we identified 1980, 429, and 102 differentially expressed
genes, respectively (Supplementary Data 11–13). A comparison of
differentially expressed genes from above analysis with fine-
mapped eight genes for ANA QTL led single common candidate
gene, i.e., Tnxb (Fig. 5g). The expression levels of Tnxb negatively
correlated with both FMC3 and FFC6, and were upregulated in
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calorie-restricted mice. Collectively, our data identifies Tnxb as a
potential critical regulator of ANA production. Furthermore, our
data suggests that its expression may be modulated by calorie
restriction and associated traits such as microbiota and
mycobiota.

Discussion
In this study, we show an eminent impact of diet in comparison
to host genetics on both metabolic (i.e., body weight, steatosis and
cholesterol levels) and immune-system-related complex traits
(i.e., immunoglobulins levels) in mice. While host genetics
explains (additive QTL) some of the metabolic and immune-
system-related traits, its interaction with diet reveals additional
associations (interactive QTL). When using sex as an interactive
covariate, we identified predominantly QTL accounting for
hematological parameters. Recently, a systematic review of animal
research showed a vast over-representation of experiments that
exclusively included mice of a single sex in their experiments.
Where two sexes were included, most of the data was analyzed
without taking sex into account. Using sex as a biological variable,
close to 10% of categorical traits and over 50% of continuous data
exhibited sexual dimorphism35. Herein, we show a much lesser
impact of sex on the variability of complex traits. This seeming
discrepancy may be best explained by the difference in mouse
phenotypes investigated. To fine map the identified QTL, some of
the associations were resolved to single candidate genes by uti-
lizing the sequenced genomes of the founder strains of the AIL
(NZM2410/J, BxD2/TyJ, and MRL/MpJ mice) and the publicly
available genome of the CAST/EiJ mice. For instance, in addition
to potential candidate genes, we also identify genes that were
validated by reports in human GWAS or in vivo knockout studies
(Supplementary Data 1). Next, to address if diet has a modulatory
impact on host-genetics determined phenotypic traits, we fed
NZM2410/J inbred mice three different diets, similar to AIL mice.
NZM2410/J mice, which are genetically prone to develop lupus,
also explained the majority of gene-diet-associated QTL in the
AIL population. In NZM2410/J mice, caloric restriction led to a
complete protection from clinical lupus manifestation. Con-
versely, 90% disease penetrance was observed in the mice fed a
Western diet. Hence, we demonstrate that diet overrides genetic
susceptibility and delays disease onset. Similar to other studies, we
found that diet reshapes the gut microbiome and possibly
prompts differences in disease susceptibility36. Additionally, we
show that these effects of diet are not limited to the gut micro-
biome but extend to the gut mycobiome. Furthermore, our data
indicates that alterations in intestinal bacterial and fungal com-
munities precede the onset of lupus. In-depth analysis of the
intestinal micro- and mycobiomes revealed that only a subset of
co-occurring communities (FMC1 and FFC4) is associated with

diet over time. By exploring transcriptomics in these mice, we
show that diet, micro- and mycobiome associate with immune-
related genes and pathways in disease pathogenesis. We did not
monitor, however, the mice for their locomotor activity, which
may have been impacted by the different diets37. Thus, this needs
to be taken into consideration as a limitation when interpreting
the data of our study.

In addition, we here illustrate the strength of our collective
data, and analysis strategy to fine-map complex genetic suscept-
ibility loci. Specifically, as an example, we apply a multi-omics
approach to resolve a complex additive QTL for ANA, located on
the MHC locus (chromosome 17, 33–34Mb). Though, in com-
parison to other mouse strains, the NZM2410/J strain, which is a
cross between NZW and NZB strains, have a high ANA pre-
valence38, the allele A (peak SNP UNC27797171) derived from
NZM2410/J mice is associated with a low ANA prevalence. This
is in accordance with previous studies, which showed that the
presence of a homozygous H2 allele in the MHC locus of the
NZB/BINJ mice protects from ANA production39. When strati-
fied for ANA prevalence based on the observed alleles (A/G)
within the peak SNP and diet, we show that mice having pro-
tecting A allele held on Western diet show high prevalence of
ANA in comparison to mice on calorie-restricted diet having a
susceptible allele G. Altogether, our results suggest that diet
reverses the effect of host genetics in controlling a complex trait
like ANA. Thus, it is tempting to speculate that under a calorie-
restricted dietary regimen, one may countermand this inherited
predisposition to develop disease. The shared similarity between
NZM2410/J mice and AIL population in regard to ANA
prevalence-dependency on diet and the microbial/mycobial
composition, permitted us to integrate and examine data between
the two. As a result, we used multiple datasets obtained in the
course of our study to fine map a protective candidate gene, Tnxb,
for an ANA QTL. The gene Tnxb has been associated with ANA-
related pathophysiological phenotypes, such as lupus, in several
populations40,41. Additionally, Tnxb deficiency has been reported
to suppress hepatic dysfunction by suppressing inflammatory cell
infiltrate induced in mice by a high-fat and high-cholesterol
diet42.

In summary, our study highlights the importance of including
diet in experimental setups for understanding molecular
mechanisms associated with complex traits and suggests that the
same should be done in human GWAS to avert spurious asso-
ciations. In terms of clinical translation, identifying gene-
environment interaction may help to identify pharmaceutical
interventions that are beneficial for a defined subgroup of the
population carrying a specific genotype43. For instance, it is
tempting to speculate, based on the results of our study that lupus
patients expressing lower levels of the TNXB gene are likely to

Fig. 4 Identification of functional microbial and fungal communities associated with diet and disease and their association with transcriptome data.
Functional microbial (a) and fungal (b) community (FMC, FFC, respectively)–trait correlations and adjusted P-values. Each value within the cell without the
brackets shows the Spearman correlation coefficient between covariate of interest and eigenOTUs. The adjusted P-values are given within the brackets in
each cell were derived using Wilcoxon test for sex (microbial, nfemales= 24 and nmales= 31; fungal, nfemales= 15 and nmales= 17) and disease at final stage
(microbial, nyes= 22/nno= 31; fungal, nyes= 14/nno= 17), and the Kruskal–Wallis test for various disease stages (microbial, nnaive= 50, ntrans= 55, and
nfinal= 53; fungal, nnaive= 29, ntrans= 32, and nfinal= 31) and diet (microbial, ncalorie restricted= 18, ncontrol= 17, and nwestern= 20; fungal, ncalorie restricted= 11,
ncontrol= 11, and nwestern= 10) and were further adjusted for multiple comparisons across different modules using Benjamini-Hochberg correction
procedure. The degree of correlation is indicated by the color of the cell in accordance with the color legend. c Heat map showing the correlation between
FMC1 (rows) and FFC4 (columns) OTUs (species identified by both RDP and NCBI BLAST) calculated by the SparCC algorithm. The color codes and of the
cells indicate either positive (purple) or negative (orange) correlations among the species (Padj < 0.05), while the size of the cell positively correlates with
the degree of the correlation. d Heatmap describing differentially expressed genes intersecting between disease (n= 16) and no disease (n= 16), diet
groups i.e calorie-reduced (n= 11), control (n= 11) and western (n= 10) and associated with FMC1 and FFC4. The color-coded heatmap shows purple as
high expression and yellow as low expression of genes (rows) among the samples belonging to different groups (columns). Source data for (a–d) are
provided in the Source Data file
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benefit more from caloric restriction. Moreover, our results in the
NZM2410/J mice indicate that dietary regulation of the micro-
biome is associated with lupus development, suggesting that
dietary interventions and/or use of probiotics may be used as
preventive measures in populations at risk.

Methods
Animal experiments. The four-way advanced intercross line was generated by
intercrossing MRL/MpJ, NZM2410/J, BxD2/TyJ and Cast/EiJ strains at equal strain
and sex distribution. Mice were intercrossed for 20 generations with at least 50
breeding pairs per generation. Offspring mice used in this study were transferred
into separate cages after weaning at 3–4 weeks. Each cage contained mice of either
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sex and was randomly allocated to one of the three different diets: control mouse
chow, caloric restriction, and Western diet. Control mouse chow (#1320, Altromin
Spezialfutter GmbH, Lage, Germany) was given ad libitum. Caloric restriction was
performed by 40% reduction of the control mouse chow consumed by the age and
sex matched controls. Western diet was rich in cholesterol, butter fat, sugar (S0587-
E020, ssniff Spezialdiäten GmbH, Soest, Germany). All 1154 animals were held
under specific pathogen-free conditions at 12-h light/dark cycle at the animal
facility of the University of Lübeck, Germany. The mice were kept on the corre-
sponding diets until the age of 6 months, at which point 1154 animals were still
alive. At the age of 2- and 4-months blood collection by facial vein puncture was
performed. Furthermore, stool samples were collected and the current weight of the
animals was obtained on the 2nd, 4th, and 6th months of dietary intervention. At
the age of 6 months all animals were euthanized and sampled for stools, blood, and
liver. All animal experiments were conducted according to the European Com-
munity rules for animal care, approved by the respective governmental adminis-
tration (Ministry for Energy, Agriculture, the Environment and Rural Areas, file
number 27–2/13) and performed by certified personnel.

Differential blood cell counts. Blood was collected at 2 and 4 months of age by
facial vein puncture. At 6 months of age, mice were euthanized using CO2 and
blood was collected by a cardiac puncture. Immediately after collection, 20 µl of
whole blood were added into a tube containing 20 µl of EDTA. The measurement
of whole blood samples was performed using HemaVet 950 (Drew Scientific Inc,
Miami Lakes, USA). After the measurement, the corresponding results were
adjusted to the dilution factor.

Liver staining and analysis. Histological analysis of the obtained liver samples was
performed on 10 µm hematoxylin/eosin stained formalin-fixed sections. The
scoring was performed by an investigator unaware of the dietary allocation of the
mouse according to standard protocols. Lobular inflammation and hepatocyte
ballooning were evaluated semi-quantitatively: steatosis (0–3), lobular inflamma-
tion (0–2), hepatocellular ballooning (0–2), and fibrosis (0–4); whereby 0 indicates
the absence of the items and higher numbers correlate to an increasing severity.

HDL/LDL analysis. Prior to blood collection, mice were fasted overnight. After
blood collection, serum samples were obtained by centrifugation at 13,000 × g for
10 min. Total cholesterol and HDL/LDL were measured using the EnzyChrom AF
HDL and LDL/VLDL Assay Kit (BioAssay Systems, Hayward, USA) according to
the manufacturer’s instructions.

Glycosylation. Total murine IgG glycosylation was measured by HILIC-HPLC.
Total IgG from murine serum was purified by Protein G coupled monolith material
(BIA Separations, Vienna, Austria). The Fc N-glycan was then released by endo-
glycosidase S (EndoS) derived from Streptococcus pyogenes that cleaves the glycan
in the chitobiose core. The glycans were then labeled with anthranilamide (Sigma-
Aldrich GmbH, Darmstadt, Germany) and separated by hydrophobicity on a
Dionex Ultimate 3000 HPLC (Thermo Fisher Scientific GmbH, Dreieich, Ger-
many) using a Xbridge XP BEH Glycan column (1.7 µm, 100 × 2.1 mm i.d.; Waters,
Milford, MA USA). Peaks for agalactosylated (G0), mono- (G1) or bi-(G2)
galactosylated as well as mono- (G1S1 or G2S1) and bi-(G2S2) sialylated glycans
were detected. Bisected glycans were not observed. The percentage distribution of
the detected peaks was calculated by dividing the area under the curve of a specific
peak with the total area of all detected peaks. In addition, the following traits were
derived from the detected glycans: “Gal” (all peaks except G0), “term gal” (peaks
G1+G2), “sial” (peaks G1S1+G2S1+G2S2), “sial by gal” (“sial” divided by
“gal”), “mono gal” (peaks G1+G1S1), “bi gal” (peaks G2+G2S1+G2S2).

Immunoglobulins. Total immunoglobulin IgG, IgA, IgM isotypes levels were
measured in serum samples by sandwich ELISA (Bethyl Laboratories, Montgomery,
TX, USA), according to manufacturer’s instructions. In total, serum samples from
534 mice were measured. Also, six additional traits were calculated as linear com-
binations of the log-transformed and standardized individual immunoglobulin
isotype values (IgA, IgG and IgM)44. For general immunoglobulin production
capacity, we calculated total immunoglobulin AGM as (log(IgA)+ log(IgG)+ log
(IgM)). The efficacy of class switching was defined by AG (log(IgA)+ log(IgG)),
while the ratio of class-switch to non-class-switch immunoglobulins was measured
as AG/M ((log(IgA)+ log(IgG)) − log(IgM)). Isotype-specific class switching was
calculated by A/M (log(IgA) − log(IgM)) and G/M (log(IgG) − log(IgM)). The
opposite direction on the two isotypes was captured by A/G (log(IgA) − log(IgG)).

CRP measurement. Mouse CRP was measured in mouse serum using mouse CRP
DuoSet ELISA (R&D Systems, Wiesbaden-Nordenstadt, Germany) in accordance
with the manufacturer’s instructions. The CRP concentration was determined in
435 serum samples at 6 months after they were set on different diets.

Indirect immunofluorescence microscopy on HEp-20–10 cells. For the detec-
tion of circulating ANA, serum samples of AIL and NZM2410/J mice were
investigated using indirect immunofluorescence on HEp-20–10 cells (Euroimmun
AG, Lübeck, Germany). Briefly, serum samples were diluted 1:100, 1:1,000 and
1:10,000 in PBST, added to HEp-20–10 Biochips (Euroimmun AG, Lübeck, Ger-
many) and incubated for 30 min at room temperature. Afterwards, slides were
washed twice for 5 min with PBST and treated with 1:100 diluted FITC-conjugated
polyclonal swine anti-rabbit IgG (Dako, Hamburg, Germany). The analysis of
samples was performed by an investigator who was unaware of the dietary allo-
cation of the mice.

Genotyping of AIL mice. Genomic DNA was isolated from the tips of the tails of
AIL mice obtained during mouse sampling at month 6. Purification was performed
using the DNeasy Blood & Tissue Kit (Qiagen GmbH, Hilden, Germany) according
to the manufacturer’s protocol. Extracted DNA was quantified using NanoDrop
(Implen, Munich, Germany) and adjusted to 50 ng/µl in TE Buffer (10 mM Tris, 1
mM EDTA, pH 8). DNA samples were stored at −20 °C until further use. DNA
samples from 1154 mice were analyzed by MegaMUGA genotyping array covering
77,800 markers throughout the mouse genome. Genotyping was performed at
Neogen/GeneSeek (Lincoln, NE). Using plink, we filtered out noninformative SNPs
based on minor allele frequency (maf) > 0.05, missing geno probability < 0.1 and
common homozygous SNPs among the founders resulting into 55,458 SNPs, which
were used in downstream analysis45. We used HAPPY R package for probabilistic
reconstruction of AIL mouse genome in term of four founder strains46. Using a
hidden Markov model (HMM), at every adjacent marker interval across a chro-
mosome, we estimated the posterior probability that each mouse was in one of the
four possible genotype states. These probabilities were converted to three dimen-
sional arrays in R. and A kinship matrix, which represents intra-individuals rela-
tionship, was calculated using kinship.probs function (DOQTL R package)47.

We applied box-cox transformation to all the quantitative traits to bring it to
normal shape except body weight which was already normally distributed.
Afterwards, we fitted each trait for sex, diet as fixed effect and kinship as random
effect to estimate residuals (r) using hglm R package48. An advantage of such
approach is that, (i) in hglm models distributions other than gaussian (such as
binomial), can be incorporated and (ii) it also results in increased performance of
the downstream statistics as computationally expensive high dimensional kinship
matrix regression is not required while associating residuals from the traits to the
genotype while conducting permutation to access significance.

Fig. 5 Fine mapping of diet-associated ANA QTL. a Stacked percent bar plot shows distribution of ANA between three dietary groups caloric restriction
(nANA−= 239, nANA+= 64), control (nANA−= 319, nANA+= 192) and western diet (nANA−= 149, nANA+= 145) in AIL mice. b The X-Y line plot depicts the
log of the odds (LOD) ratios on the y-axis and positions on chromosome 17 (Mb) on the x-axis with the genome-wide threshold indicated in red. The insert
below shows genes present in the ANA QTL. While genes highlighted in blue contain consequential variation derived from the genome of the NZM2410/J
mice, genes shown in orange are also differentially expressed between ANA-positive and ANA-negative mice. c Stacked percent bar plot illustrating the
distribution of ANA+ (n= 401) vs. ANA− (n= 707) mice in the AIL population based on the allele within the peak SNP (UNC27797171; nAA= 104, nAG=
459 and nGG= 545) and diet (ncalorie restricted=303, ncontrol= 511 and nwestern= 294). While the A allele is derived from NZM2410/J mice, the G allele is
derived from the MRL/MpJ, BxD2/TyJ, or CAST/EiJ mice. Data for panels a and c were analyzed using the X2 test with Fischer exact test as a post hoc
test. *p < 0.05, **p < 0.01, n.s., not significant. d PCoA plot showing differences in beta diversity in the microbiome (unweighted UniFrac distance, left
panel) and mycobiome (Jaccard distance, right panel) between ANA positive (nmicrobiome= 16, nmycobiome= 16) and negative samples (nmicrobiome= 37,
nmycobiome= 18). Statistical significance was assessed using the adonis function in R (permutations= 999). e Boxplot (the band indicates the median, the
box indicates the first and third quartiles and whiskers indicate 1.5*interquartile range) illustrates significant functional microbial (FMC3 & FMC5) and
fungal (FFC6) communities associated with ANA presence (nFMC= 16, nFFC= 16) or absence (nFMC= 37, nFFC= 18) (Mann–Whitney U test, *p < 0.05).
f Heatmap showing the expression of genes that are differentially expressed for the ANA phenotype and present within the ANA QTL. g Five-way Venn
diagram demonstrating a multi-omics strategy used to fine map a diet-regulated gene within the ANA QTL. Source data for (a, c–f) are provided in the
Source Data file
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In our study, we tested three types of model for identification of host genetics
loci (QTL) associated with studied traits. (i) host-genotype (G) expressed as
posterior probability from four founders association with r (residuals from hglm).
In this model, we calculated log likelihood ratios of traits for each interval across
the genome and converted them to log of odd ratios (LOD scores). (ii) G × Diet
association with r. In this model, LOD scores were calculated by comparing trait
log likelihood for G with G × Diet49 (iii) Similarly, for G × Sex interactions LOD
scores were calculated by comparing trait log likelihood for G with G × Sex.
Genome (significant) and chromosome (suggestive) wide significance, denoted as
αg-w and αc-w, as estimated by traditional permutation (1000) for each trait-based
method at 5% threshold. Off note, if the QTL within the chromosome was
significant for genome-wide threshold than the QTL was not considered as
chromosome-wide (suggestive) QTL. The confidence interval for a QTL was
described by 1.5 LOD drop.

Whole-genome sequencing of founder strains. Genomic DNA of three founder
strains (NZM2410/J, MRL/MpJ, BxD2/TyJ) was isolated from the tips of the tails of
mice from each of the founder strains using the DNeasy Blood & Tissue Kit
(Qiagen GmbH, Hilden, Germany) according to the manufacturer’s instructions.
To detect the possible DNA degradation, the quality of the obtained genomic DNA
was controlled by electrophoresis on a 0.7% agarose gel at 15 V overnight. Whole-
genome sequencing was performed on a HiSeq X machine, 150 × 2 paired end
sequencing with ~30× (Quick Biology, Pasadena, CA, USA). Data were obtained in
FastQ format. The quality of the sequenced reads was evaluated by Fastqc soft-
ware50, and reads with phred score < 30 were filtered. The remaining reads were
aligned to C57BL/6 J GRCm38 (mm10) mouse reference genome and BAM file per
strain was obtained using the BWA-MEM (v0.7.10) software with default para-
meters51. The BAM files were evaluated for quality of the alignment with reference
genome using Qualimap software52. Downstream analysis for SNP and indel
detection was performed as following. Each BAM file was sorted and filtered for
possible PCR and optical duplicates using Picard Tools (v1.141). Reads were rea-
ligned to improve SNP and indel calling around indels using default options by the
GATK v3.5 ‘IndelRealigner’ tool. We used a combination of SAMtools mpileup
(v1.5) and BCFtools call (v1.5) for the identification of SNPs and indels. The
following options were specified for SAMtools: ‘-t DP,DV,DP4,SP,DPR,INFO/DPR
-I -E -Q 0 -pm 3 -F 0.25 -d 500 -ug’ and BCFtools call; ‘-mv -f GQ,GP -p 0.99’. To
improve the accuracy of indel calls, indels were then left-aligned and normalized
using the bcftools norm function with the parameters ‘-D -s -m+ indels’. To
ensure high quality, we used bcftools annotated with the following parameters:
“StrandBias= 0.0001, EndDistBias= 0.0001, MaxDP= 150, BaseQualBias= 0,
MinMQ= 20, MinAB= 5, Qual= 10, VDB= 0, GapWin= 3, MapQualBias= 0,
SnpGap= 2, MinDP= 5” was used as a soft filter for SNPs and indels variants.
These filtered out low confidence variants and removed false positive SNPs and
indels due to alignment artifacts. We retained only high-quality (i.e., passed all
filters) and homozygous variants. Additionally, the SNPs and indels common
among the four founders were filtered out. SNPs and indels were annotated for
their functional class, consequence and known transcripts if available using
Ensembl VEP server53.

Strategy for fine-mapping QTL using whole-genome sequencing. We mapped
distinct complex traits to various chromosomal regions (QTL) of mouse genome
within confidence interval of 2–3Mb (Supplementary Data 1). We further aimed to
resolve these regions to single or few genes using whole-genome sequencing of
founder strains. Briefly, for each QTL we estimated the founder allele effect. In
most cases, the higher LOD score is a consequence of differences of one or two
strains alleles from other founders, due to single diallelic polymorphism leading to
variation in traits. These differences were manually inspected and strain-specific
SNPs and Indels were kept in a given QTL. Further, we prioritized the identified
SNPs and Indels based on their consequences (Ensembl VEP). For example, we
filtered all the synonymous SNP for the downstream analysis. This approach led to
filtering of the genes which were not polymorphic among the founders and
therefore inconsequential for the variation in the trait. The remaining genes in the
QTL were investigated for association with traits by curated databases such as
GWAS Catalog54 and GeneCARD55 and thorough literature search by two inde-
pendent investigators. Once we identified several traits associated genes we
investigated SNPs and Indels associated to the genes. We prioritized polymorph-
isms in 5′UTR, 3′UTR (regulator of gene expression) and missense mutation over
other type of consequences.

Dietary intervention in NZM2410/J. All animal experiments were approved by
the Ministry for Energy, Agriculture, the Environment and Rural Areas, file
number 35–3/10 and performed by certified personnel. The NZM2410/J breeding
pairs were obtained from the Jackson laboratories and further breeding was per-
formed in the animal facility of University of Lübeck, Gemany. A total of 55
NZM2410/J mice were randomly allocated to one of the three diets, (control,
Western or caloric restriction) after weaning at 3 weeks of age. Control diet (S0587-
E001, ssniff Spezialdiäten GmbH, Lage, Germany) was given ad libitum. Caloric
restriction was performed by 40% reduction of food amount consumed by sex and
age matched control diet mice. Western diet was rich in cholesterol, butter fat,

sugar (S0587-E020, ssniff Spezialdiäten GmbH, Lage, Germany). A detailed over-
view of the exact composition of each of the diets can be reviewed in Supple-
mentary Table 3. The mice were kept on the respective diet for 28 weeks. Blood was
collected monthly by facial vein puncture, stool samples from individual mice were
collected every 2 weeks and proteinuria was measured weekly. Mice that developed
clinical disease were euthanized in the event that they lost 25% of their body
weight. All surviving animals were euthanized and sampled for stool, blood, kid-
neys, and spleens.

Proteinuria analysis. Urine samples were collected weekly by gentle urinary
bladder massage. The samples were tested using Combur3 Test urine sticks (Roche,
Mannheim, Germany). If proteinuria above 100 mg/dl was detected on two con-
secutive weeks, the date of the first detection was determined as clinical manifes-
tation of proteinuria.

Gene expression profiling of NZM2410/J spleen. Total RNA was extracted
from frozen spleen samples preserved in RNAlater using TRIzolTM reagent
(Thermo Fischer Scientific GmbH, Dreieich, Germany) according to the manu-
facturer’s instructions. Total RNA was further treated with a DNase I kit (Qiagen
GmbH, Hilden, Germany) and purified with columns using a QIAamp RNA Blood
Mini Kit (Qiagen GmbH, Hilden, Germany) in accordance with the manufacturer’s
instructions. Consequently, RNA concentrations were quantified using a Nano-
Drop 2000c spectrophotometer (Thermo Fischer Scientific GmbH, Dreieich,
Germany). cDNA libraries were constructed using Illumina’s TruSeq® RNA Sample
Preparation V2 kit (Illumina Inc., San Diego, CA USA) following the procedures
outlined in the manufacturer’s manual and sequenced on Illumina NextSeq
machine in a High Output mode. Bcl files were obtained from the Illumina Nextseq
system and converted to fastQ using CASAVA’s bcl2fastq2 (v.2.19). The fastQ
paired end reads were trimmed using Trimmomatic (v.0.36) for removing adapter
sequences and low quality (q < 20) sequences56. We used Tuxedo protocol for
downstream processing of RNAseq data57: The filtered fastQ reads were aligned to
the mouse genome (GRCm38) using tophat2 (v2.0.13) with the default parameter,
and bam files were generated for each sample. Cufflinks (v2.2.1) were used to
assemble transcripts, and a gtf file per sample was created. Cuffmerge with refer-
ence known gene GTF (downloaded from Ensembl database) was used to merge
assemblies into a single GTF file for all the samples. The abundance or counts of
every known and novel transcript across samples was summarized using feature-
Counts (v1.5.2)58. The output was used as input to the DESeq2 R package59. In the
DESeq2 R package, differentially expressed genes were identified by the Wald test
for binary traits, such as disease and ANA, and the likelihood-ratio test for multiple
groups, such as diet. The identification of differentially expressed genes corre-
sponding to microbiota and mycobiota was performed using eigenOTU values
derived for the modules turquoise (microbiota) and FFC4 (mycobiota) as quanti-
tative traits. The genes with Padj < 0.05 were considered significant. The enriched
reactome pathways and gene networks were identified using gene ontology con-
sortium and INMEX web server60,61.

16S rRNA gene sequencing and analysis. The hypervariable V1–V2 region of the
bacterial 16S rRNA gene was amplified following a dual indexing approach for each
sample following standard protocolls62. All primers used in this study are indicated
in Supplementary Table 4. In brief, the primers used for amplification contain
universal bacterial primers 27F and 338R as well as P5 (forward) and P7 (reverse)
sequences

(5′AATGATACGGCGACCACCGAGATCTACACXXXXXXXXTATGGTAAT
TG

TAGAGTTTGATCCTGGCTCAG-3′) and (5′-CAAGCAGAAGACGGCATA
CGA

GATXXXXXXXXAGTCAGTCAGCCTGCTGCCTCCCGTAGGAGT-3′).
To increase annealing temperature of the sequencing primers, as recommended,

a 12-base linker sequence was added to bacterial primer. Each PCR product was
tagged using unique eight-base multiplex identifier, included in the primers
(designated as XXXXXXXX). Total RNA was extracted using the AllPrep DNA/
RNA Qiagen kit (Qiagen GmbH, Hilden, Germany) according to the
manufacturer’s protocol. cDNA synthesis was performed using High-Capacity
cDNA Reverse Transcription Kits (Thermo Fischer Scientific GmbH, Dreieich,
Germany). The purity of the isolated RNA was evaluated by negative reverse
transcriptase PCR and agarose gel electrophoresis. PCR amplifications were done
using the cDNA template (100 ng in a volume of a 12.5 μL) using the Phusion® Hot
Start II DNA High-Fidelity DNA Polymerase (Finnzymes, Espoo, Finland). Cycling
conditions were as follows: initial denaturation for 30 s at 98 °C; 30 cycles of 9 s at
98 °C, 30 s at 55 °C, and 30 s at 72 °C; final extension for 10 min at 72 °C. Reactions
were duplicated and products were merged in order to obtain a final volume of 25-
µL PCR for each sample. To check the purity of the PCR products, blank (template-
free) reactions using different combinations of forward and reverse primers were
added. Next, using an image analysis software (Bio-Rad Laboratories GmbH,
Munich, Germany), we quantified PCR product concentrations, and products were
further pooled to generate equimolar subpools. Subpools were then extracted from
agarose gel with the Qiagen MinElute Gel Extraction Kit (Qiagen GmbH, Hilden,
Germany) and quantified with the Quant-iT™ dsDNA BR Assay Kit on a Qubit
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fluorometer (Thermo Fischer Scientific GmbH, Dreieich, Germany). Ultimately,
for each library, subpools were combined to one single equimolar pool. Further
purification was achieved using AMPure® Beads (Beckman Coulter, Brea, CA,
USA). As recommended by the supplier, prior to sequencing, libraries were run on
an Agilent Bioanalyzer. Finally, using the MiSeq Reagent Kit v3 600 cycles
sequencing chemistry (Illumina Inc., San Diego, CA, USA), these libraries were
sequenced on a MiSeq.

No mismatch to the barcode was allowed while demultiplexing (CASAVA,
Illumina). USEARCH was used to merge raw forward and reverse reads USEARCH
(v.7)63. In USEARCH, both forward and reverse reads were trimmed where first
base below quality score of Q= 2 was found. The trimmed reads were used for
merging paired ends, where we allowed minimum two mismatches in the
overlapping region of minimum 150 bp and minimum read length of 200 bp.
Merged reads with length of less than 200 bp or more than 330 bp were discarded
from downstream analysis. These reads were also filtered by parameter of expected
error (E= 0.5). Chimeric sequences were removed by both the de novo method
(UCHIME)64 and the reference-based method (comparison with the SILVA Gold
reference database). We used the RDP classifier (v11.0) at confidence 0.80 and 1000
iterations to classify sequences as Phylum to Genus level65. Species level OTUs
(operational taxonomic units) classification was performed representative unique
FASTA sequences for each OTU derived was using the usearch algorithm at a
threshold of 0.97 (binning at 97 % similarity)63. Taxonomy was assigned to each
OTU by comparing with the Greengenes database using uclust66. For downstream
analysis, we constructed a phylogenetic tree using various functionalities of QIIME
software67. First, we used representative fasta sequences for each OTU and aligned
it against the Greengenes database using script align_seqs.py with the pyNAST
algorithm. The filter_alignment.py was used to remove positions that are gaps in
every sequence. Finally, a phylogenetic tree between the represented OTU
sequences was constructed using the fasttree algorithm (make_phylogeny.py).

Quantitative and ecological analysis. As reported earlier, for ecological analysis,
we removed singletons and subsampled our OTU data to 20000 reads per sample.
An alpha diversity (α) index (Chao1 index) was calculated for each stage separately
with a QIIME package67. The difference in α diversity for dichotomous traits such
as disease state (continuously healthy or future/present disease) or sex (female/
male) was assessed by the Mann–Whitney U test and polychotomous variables
such as diet at each stage separately (i.e., naive, transient and final) by the
Kruskal–Wallis test. To measure beta diversity, we calculated the unweighted
UniFrac distance matrix among the samples. Using a distance matrix, PCoA
(principle coordinate analysis) was performed to compare different groups. The
significance among the groups was assessed by the adonis R function with 999
permutations. To identify differentially abundant taxa (phylum to genus by RDP
classifier and species level OTUs) across the groups, we used the LEfSe (Linear
discriminant analysis effect size) algorithm29. In this analysis, taxa were considered
significant when the LDA (linear discriminant analysis) score was >1.5 and the
Mann–Whitney U test (disease) or Kruskal–Wallis test (diet) P-value was <0.05.We
estimated the FMC using python-based SparCC (Sparse Correlations for Com-
positional) and R-based WGCNA program68. We first filtered OTUs with a
minimum of 10 reads in at least 25 samples, resulting in 293 OTUs for downstream
processing. Afterwards, we used SparCC (ρij) to infer the co-occurrence relation-
ship between the OTUs. Then, a weighted adjacency matrix (network) was defined
by raising ρij to a power aij= (0.5+ 0.5ρij)β, with β= 432. We identified clusters of
FMCs based on the topological overlap measures of adjacency matrix derived from
branches of hierarchical clustering tree. The minimum cluster size used was 10. To
summarize the profiles of co-occurrence modules, eigenOTUs were computed as
implemented in the R function module Eigengenes. These eigenOTUs were cor-
related with different traits, such as the presence or absence of proteinuria, diet,
stages and sex, to obtain a module-trait relationship. Additionally, the correlation
among the species level OTUs between functional microbial and mycobial com-
munity, fungal-fungal interaction, bacteria-bacteria interaction and fungal-bacterial
interaction was calculated by SparCC implementation in R (FastSpar), and p-values
were adjusted for multiple comparison by the Benjamini-Hochberg procedure68.

ITS2 gene sequencing and analysis. An internal transcribed spacer region 2
(ITS2) gene library was constructed according to a dual indexing strategy using the
fITS7 (forward) and ITS4 (reverse) primers (forward 5′- AATGATACGGCGAC
CACCGAGATCTACACXXXXXXXXTATGGTAATTG

GTCCTCCGCTTATTGATATGC-3′, reverse 5′-CAAGCAGAAGACGGCATAC
GAGATXXXXXXXXAGTCAGTCAGCCGTGA[AG]TCATCGAATCTTTG-3′)69
(Supplementary Table 4). The primers contain a unique multiplex identifier
(designated as XXXXXXXX), the 10-nt pad sequence to prevent hairpin formation
(underlined), the 2-nt linker sequence, and ITS2-specific primer sequences. The
reverse primer was degenerated at one position. The stool samples were stored in
RNAlater (QIAGEN, Hilden, Germany) in a −20 °C freezer before DNA isolation.
RNAlater was removed by washing the samples twice in PBS. Afterwards, DNA
was extracted using the DNeasy PowerLyzer PowerSoil Kit (Qiagen GmbH, Hilden,
Germany) according to the manufacturer´s instructions with an additional step of
2 h incubation at 55 °C with Proteinase K (Qiagen GmbH, Hilden, Germany),
followed by homogenization at 6000 rpm 3 × 15 s in Precellys tissue homogenizer
(Bertin instruments, Frankfurt am Main, Germany). PCR amplifications were

conducted using the Phusion® Hot Start II DNA High-Fidelity DNA Polymerase
(Finnzymes, Espoo, Finland). Cycling conditions were as follows: initial
denaturation for 30 s at 98 °C; 35 cycles of 9 s at 98 °C, 30 s at 50 °C, and 30 s at
72 °C; final extension for 10 min at 72 °C. Template-free reactions using different
combinations of forward and reverse primers served as negative controls. PCR
product concentrations were quantified on a 1.5% agarose gel using CAPT-analysis
software (Vilber Lourmat, Marne-la-Vallée, France). Following quantification,
products were mixed together to make equimolar subpools. Subpools were then
extracted from agarose gel with the Qiagen MinElute Gel Extraction Kit (Qiagen
GmbH, Hilden, Germany) and quantified with a Qubit dsDNA HS assay kit on a
Qubit fluorometer (Thermo Fischer Scientific GmbH, Dreieich, Germany).
Subpools were then combined in one equimolar pool to a single library. The final
library was purified using Agencourt AMPure® Beads (Beckman Coulter,
Indianapolis, USA), quantified by a NEBNext Library quantification Kit (New
England BioLabs GmbH, Frankfurt am Main, Germany) and subjected to analysis
on the Agilent Bioanalyzer (Agilent, Santa Clara, CA, USA) prior to sequencing.
The Amplicon libraries were sequenced on a MiSeq using the MiSeq Reagent Kit v3
600 cycles sequencing chemistry (Illumina Inc., San Diego, CA, USA). Similar to
microbiota, no mismatch to the barcode was allowed while demultiplexing
mycobiota reads (CASAVA, Illumina).

Quantitative and ecological analysis. The raw mycobiota data were processed
using PIPITS pipeline69. Briefly, the paired end reads were merged and filtered
using the “PIPITS_PREP” module. The fastx-toolkit was used to merge paired
reads, and reads below q < 20 were filtered out. Next, “PIPITS_FUNITS” was used
to extract reads that belong to ITS region. We used the UNITE UCHIME dataset
for reference-based chimera removal and UCHIME for de novo chimera removal
by the vsearch algorithm (v.2.8) with E= 0.570. Phylum to genus level classification
of the reads was performed using RDP classifier with UNITE database as reference
at confidence 0.80 and 1000 iterations71. OTU clustering at 97% threshold was
performed using vsearch with default parameters. The taxonomic classification of
the FASTA sequences for each OTU was performed using the RDP classifier. The
abundance table was extracted for both taxa classification and OTUs after
removing singletons and used in QIIME for ecological analysis. The samples were
divided into three stages and subsampled to 10,000 reads. The samples that did not
pass the threshold were eliminated from the study. The α-diversity was obtained
using the Shannon index (species evenness), and significance was assessed using
the Mann–Whitney U test or Kruskal–Wallis test. For beta diversity, Jaccard dis-
tance (nonphylogenetic distance) was calculated among the samples, and PCoA
was performed. The significance was assessed by the adonis function in R. With the
same parameter as in microbiota, we identified differentially abundant mycobiota
taxa using LefSe29. Similar to FMC, we also calculated FFC (functional fungal
community). For clustering modules, the parameters were kept the same except for
the minimum cluster size, which was kept at 5 due to the lower diversity of fungal
species. The eigenOTUs from FFCs were correlated with different traits, such as
sex, diet, disease and stage, to identify FFCs associated with each trait.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
Whole-genome sequencing data for BxD2/TyJ, MRL/MpJ, and NZM2410/J mice strains
have been deposited in database European Nucleotide Archive (ENA) in FASTQ format
and publicly available under accession number [PRJEB29771]. The raw sequencing data,
i.e., FASTQ files for RNA-Seq, microbiome and mycobiome from NZM2410/J, have been
deposited in public database NCBI SRA under accession number [PRJNA543200].
Additionally, Plink formatted genotype data (bed and bim files) for advance inter-cross
line mice, quality control of alignment from whole-genome sequencing (Qualimap
output), VCF files from sequenced strains and founder coefficient plots for every
genome-wide QTL are publicly available on the Dryad database [https://doi.org/10.5061/
dryad.c8gc64n]. The data can be visualized and explored at [http://diet.ag-ludwig.com].
The source data underlying Figs. 1a, 2b–c, 2e–g, 3a–f, 4a–d, 5a, 5c–f and Supplementary
Figs. 1a–c and 2a–h, 3a–c, 4a–b are provided as a Source Data file. All other data
supporting the findings of this study are contained within the article and its
Supplementary information files.

Code availability
All codes generated or used during the current study are available at Github repository
and Zenodo database [https://doi.org/10.5281/zenodo.3347025].
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