Skip to main content
. 2018 Nov 30;32(5):793–807. doi: 10.1007/s10278-018-0160-1

Table 1.

Comparison of prostate segmentation results with the literature

2D/3D Modalities Dataset size Approach Reported performance Prostate segmentation Registration Validation protocol
Rampun et al. [30] 2D Mono-modal 45 Engineered features 0.93 AUC Manual N/A 9-fold CV
Lemaitre 3D Multi-modal 17a Engineered 0.834 AUC Manual Automatic Leave one out
et al. [19, 21] features (elastic)
Trigui et al. [41] 2D Bi-modal 34a Engineered 0.72 sensitivity Manual N/A 10-fold CV
features 0.88 specificity
Wang and 3D Multi-modal 17a Texton 0.884 AUC Manual Automatic Leave one out
Zwiggelaar [46] dictionary (rigid)
Kohl et al. [17] 2D Bi-modal 152 GANs 0.55 sensitivity 0.98 specificity Implicit N/A 4-fold CV
Kiraly et al. [16] 2D Multi-modal 202 Convolutional encoder-decoder 0.843 AUC Automatic (elastic) Level-set 5-fold CV
Yang et al. [50] 2D Bi-modal 360 Dual path CNN 0.89 sensitivity Implicit Implicit 5-fold CV

a From the I2CVB dataset