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Abstract
Small-bowel obstruction (SBO) is a common and important disease, for which machine learning tools have yet to be
developed. Image annotation is a critical first step for development of such tools. This study assesses whether image
annotation by eye tracking is sufficiently accurate and precise to serve as a first step in the development of machine learning
tools for detection of SBO on CT. Seven subjects diagnosed with SBO by CT were included in the study. For each subject,
an obstructed segment of bowel was chosen. Three observers annotated the centerline of the segment by manual fiducial
placement and by visual fiducial placement using a Tobii 4c eye tracker. Each annotation was repeated three times. The
distance between centerlines was calculated after alignment using dynamic time warping (DTW) and statistically compared
to clinical thresholds for diagnosis of SBO. Intra-observer DTW distance between manual and visual centerlines was
calculated as a measure of accuracy. These distances were 1.1± 0.2, 1.3± 0.4, and 1.8± 0.2 cm for the three observers and
were less than 1.5 cm for two of three observers (P < 0.01). Intra- and inter-observer DTW distances between centerlines
placed with each method were calculated as measures of precision. These distances were 0.6 ± 0.1 and 0.8 ± 0.2 cm for
manual centerlines, 1.1 ± 0.4 and 1.9 ± 0.6 cm for visual centerlines, and were less than 3.0 cm in all cases (P < 0.01).
Results suggest that eye tracking–based annotation is sufficiently accurate and precise for small-bowel centerline annotation
for use in machine learning–based applications.
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Introduction

The small bowel is the site of a wide range of acute
and chronic diseases that are diagnosed by cross-sectional
abdominal imaging. Small-bowel obstruction (SBO) is a
common cause of acute abdominal pain and is the etiology
identified in up to 20% of surgical admissions for that chief
complaint [27, 32]. SBO is often evaluated with CT to help
triage patients to management with either decompression
with a nasogastric tube or surgical intervention. CT findings
have been shown to predict the need for surgery more
accurately than either clinical or laboratory parameters [31].
Prompt diagnosis of the cause and severity of SBO is
essential, as delays in surgical intervention dramatically
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increase mortality to as high as 25% if ischemia is present
[3, 27]. Many other important diseases also affect the small
bowel. Crohn’s disease causes lifelong complications for
afflicted patients, and along with ulcerative colitis affects
approximately 1.3% of the entire US population [9]. MR
enterography is a useful complement to ileocolonoscopy in
its management [2, 5, 30].

On cross-sectional imaging, these diseases of the small
bowel manifest as changes in its caliber, wall thickness,
and enhancement characteristics, as well as changes of the
adjacent mesentery. The location of findings along the linear
course of the small bowel is important in evaluation as
well. For instance, a transition point is the location along
the linear course of the bowel at which its caliber narrows,
and must be identified to determine the cause of an SBO.
Two adjacent transition points suggest closed-loop SBO,
a severe variant which can lead to ischemia and require
surgical management. In the context of inflammatory bowel
disease, correlation with endoscopy is only possible if the
linear location of abnormalities is determined.
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Automated methods to determine the course and
characterize the appearance of the small bowel would thus
have wide ranging benefits in cross-sectional abdominal
imaging of SBO and other diseases. Such methods have
been developed to facilitate analysis of other organ systems
[7, 10, 12–14, 17–19, 23, 24, 37, 38, 40]. However, the
small bowel is unique relative to the systems in which
these methods have been successfully applied. Since it is
a hollow viscus rather than a solid organ, its contents can
vary due to ingested food, bowel preparation, or disease
states. Since it is attached via a flexible mesentery, its course
can vary dramatically due to positioning, peristaltic motion,
congenital variants, and surgical alteration. Thus, at present,
few published methods address these challenges in small
bowel [33, 34, 42]. New automated methods that address
these unique challenges will be required to facilitate prompt
and accurate diagnosis of diseases like SBO.

Fortunately, new technologies may make it possible to
address these challenges successfully [6, 38]. Machine
learning has advanced rapidly in the last decade. In
particular, convolutional neural networks (CNNs) running
on powerful graphics processing units (GPUs) have proved
superior to traditional methods of image analysis in several
contexts [15, 16]. CNNs have been applied to both image
classification and segmentation [28]. However, the vast
amounts of annotated data required to successfully train
CNNs poses a great limitation for their usage, due to the
time consuming nature of these annotations.

Eye tracking systems provide a potential solution for
more facile image annotation, as has been suggested in
the context of annotation for object detection within two-
dimensional images [26]. During interpretation of cross-
sectional imaging, the radiologist uses a mouse to adjust the
position within the volume and to adjust the window and
level settings of the display. During image annotation, the
analyst uses a mouse to contour regions of interest in the
volume, but must concurrently make the same adjustments
as during image interpretation. Using the same interface
device for both tasks may limit the efficiency with which
annotation can be performed. Using a separate interface
device such as an eye tracker to record locations of interest
on the screen may relieve this limitation, if the information
it generates is of acceptable accuracy and precision.
Regardless of whether eye trackers improve efficiency, the
supplemental information which they provide may be of use
in addition to manual annotations. For example, eye trackers
have previously been found useful in radiology for research
regarding pulmonary nodule assessment [8, 29, 35].

In this study, we investigate the use of eye trackers for
annotation of centerlines of segments of obstructed small
bowel on CT. We assess the accuracy of visually placed
centerlines by comparison to manually placed centerlines
using a dynamic time warping (DTW) algorithm. We

assess the precision of visually placed centerlines on the
basis of intra- and inter-observer variability over repeated
annotations. As a benchmark for adequacy, we compare
measures of accuracy and precision to clinical thresholds
for the radius and diameter of obstructed small bowel
respectively.

Materials andMethods

Subject Population

In this HIPAA compliant, IRB-approved study, images from
seven subjects, 4 males and 3 females, with small-bowel
obstruction diagnosed by CT were retrospectively included.
Subjects ranged from 31 to 79 years old (mean 54 years). CT
images were acquired using a 64 or 320 slice scanner, with
3.75 mm reconstructed slice thickness and fields of view
ranging from 35–40 cm. Only axial CT images were used in
the subsequent analysis. Each CT image was also modified
to include a square region measuring 10 × 10 pixels with
attenuation value of 1000 Hounsfield units (HU) centered
15 pixels from each corner as a reference marker.

Eye Tracking

The Tobii 4C Eye Tracker (Tobii Tech, Sweden) was used
for this study, with license for analytical use. Eye trackers
were mounted on each observer’s personal laptop and
desktop computers, using 15.6-, 24-, and 29-in. screens.
Each observer sat with their eyes positioned approximately
2 ft from the monitor. Room lights were left on and were not
dimmed during annotation. Calibration of the eye trackers
was performed with the standard routine available through
the Tobii device driver, using one central point, then three
peripheral points, and then another set of three peripheral
points.

A custom 3D Slicer module was developed to interface
with the eye tracker using the Tobii Research Software
Development Kit Python API. The module recorded points
on the screen at which the observer was looking while
scrolling through a cross-sectional imaging volume. Each
gaze point recorded by the module was used to instantiate
a fiducial point in 3D Slicer, by transforming the screen
coordinates of the gaze point to the coordinate system of the
CT scan based on the geometry of the computer window and
of the imaging slice. Fiducial locations were exported into a
text file for further analysis.

The Tobii 4C eye tracker records gaze points at a rate
of 90 Hz; however, the version of the module used in this
study was only able to record at a rate of 10 Hz due to
limitations related to multi-threading in Python. Subsequent
versions of the module have relieved these limitations to
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Fig. 1 Diagramatic representation of the number of centerline
annotations performed

enable recording at the full 90 Hz, but were not available at
the time of this study.

Although accuracy and precision of angular eyetracking
measurements is available through the Tobii eye tracking
software and Tobii product literature, recapitulating these
measurements was not within the scope of this study, since
accuracy and precision in the imaging domain are more
relevant to utility in the context of image annotation. The
exact size of the CT images on the screen during image
annotation was variable, since observers were allowed to
magnify the images as needed for optimal visualization, and
for that reason was not recorded.

Image Annotation

A single continuous segment of obstructed small bowel in
each CT was chosen for analysis based on its subjective
prominence by a radiologist with 6 years of experience.
Using 3D Slicer and a standard computer mouse, this
radiologist manually placed fiducial points to designate the
beginning and end of each segment and subsequently placed
a series of fiducial points along the approximate centerline
of the entire segment. Two other observers studied this
centerline, and afterwards, manually placed fiducials points
along the centerline of the segment as well. These two
observers were not blinded to the expert annotation due to
their level of training, since the purpose of this study was
to assess variance arising from technique rather than from
interpretation (Fig. 1).

Next, using the custom 3D Slicer module and eye tracker,
all three observers were instructed to look at the center of
the bowel while scrolling from the beginning to the end of
the segment. Fiducial points were placed by the module at

locations corresponding to gaze points recorded by the eye
tracker during this visual task. In addition, at the beginning
and end of the segment, each observer was instructed to
look at the reference markers in each of the four corners of
the image. Using the same custom 3D Slicer module, gaze
points were recorded during this visual task as well and
were used to instantiate fiducial points at each of the eight
corners of the volume. Each observer repeated manual and
visual annotations three times, for a total of 126 annotations
across 7 subjects, 3 observers, 2 methods, and 3 repetitions
as shown in Fig. 2.

The average lengths of all annotated segments were
82.4 ± 22.4 cm. The average distance between adjacent
centerline points was 1.43±0.37 cm for manual annotations,
and 0.59 ± 0.18 cm for visual annotations. Finally, the
average number of placed centerline points was 42 ± 13
for manual annotations and 199 ± 65 for visual annotations
(Fig. 3).

Dynamic TimeWarping

Dynamic time warping (DTW) is an algorithm for aligning
two sequences with unequal numbers of ordered elements
[1, 36], for instance, two trajectories containing different
numbers of points along a small-bowel centerline as in this
application. Since there are a large number of potential
pairings between all points of each trajectory, DTW applies
two constraints to determine the alignment [20]. First,
the order of points in each pairing is non-decreasing, in
keeping with the notion that two trajectories are time series,
and that progress along one should reflect progress along
another. Second, the total cost of all pairings is minimized.
In this application, the cost of each individual pairing
is defined to be the Euclidean distance between pairs of
points. Minimizing the total cost ensures that the pairings
represent the closest possible pairings of points subject
to the first constraint. The average cost over all pairs of
points can then be interpreted as the distance between
trajectories.

The details of our implementation of the DTW algorithm
are as follows. In an analogous formulation to Berndt et. al.
[4], we define two three-dimensional trajectories S and T

with m and n points, as shown in Eq. 1.

S = (x1, y1, z1), (x2, y2, z2)..., (xm, ym, zm), Si = (xi , yi , zi )

T = (x1, y1, z1), (x2, y2, z2)..., (xn, yn, zn), T j = (xj , yj , zj ) (1)

The cost is defined as the three-dimensional Euclidean
distances between points, as in Eq. 2.

δ(Si, T j ) =
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j
T
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)2 +
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f or i = 1, ..., m and j = 1, ..., n (2)
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Fig. 2 Representative image of
visually placed centerline in an
obstructed small-bowel
segment. Different colors
represent different observers

The DTW algorithm constructs a m × n matrix DT W

through dynamic programming as shown in Algorithm 1. A
step between an element of the matrix and an adjacent prior
element represents a pairing of points on each trajectory. For
each element, steps from three prior adjacent elements must
be considered. Of these three possibilities, the step with the
minimum sum of the cost of the prior element and cost of
the step from that prior element is chosen. This minimum
summed cost is recorded as DT W [i, j ], and the step is
recorded as part of a path through the matrix to that element.
Thus, each element DT W [i, j ] represents the minimal total
cost of the pairings of subsets of each trajectory S1...i and
T1...j . After the entire matrix is constructed, the value of
DT W [m, n] represents the minimum total cost of pairings
between the entire trajectories S and T , and the path through
the matrix represents the pairings themselves.

Using this algorithm, DTW distances between pairs of
centerlines were calculated for each subject as shown in
Fig. 4. Average DTW distances were used as a metric
of similarity between manually and visually annotated
centerlines for assessment of accuracy, and between
repetitions of annotations for assessment of precision.

Centerline and Corner Point Filtering

Since small-bowel centerlines and corner points were
recorded in the same visual annotation session, they were
first filtered to allow for separate analysis. Points were
considered corner points if they met two criteria. First, they
were in the same axial slice as the designated beginning or
end of the bowel segment, but were closer to the reference
markers within that slice. This criteria corresponds to the
instructions given to observers during visual annotation.
Second, they were within 3.3 cm of the reference markers.
This criteria excludes a small number of stray points were
felt to represent unintentionally recorded saccades between
corners. The percentage of such points removed from the
analysis across all cases and observers was 2.3 ± 3.1%,
with a maximum of 6.7%. The distribution of distances
between filtered corner points and reference markers is

shown in Fig. 7. Since this distribution does not show any
abrupt cut-off, we felt these criteria captured most gazes that
were intended to be directed towards the reference markers.
The remainder of the points were considered small-bowel
centerline points.

Centerline Analysis

To assess the accuracy of the visual annotations, the
average DTW distance was computed between visual and
manual annotations for all repetitions for a given subject.
This generated a total of 9 distances per subject for each
observer, and a total of 189 distances across all subjects and
observers.
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Fig. 3 Representative image of
visually placed corner points in
the beginning and end slice.
Different colors represent
different observers. White
circles represent a 1.5 cm
boundary around the center of
the marker

To assess the precision of both manual and visual anno-
tations, intra- and inter-observer variability was assessed.
For intra-observer variability, the average DTW distance
was calculated between repetitions performed for a given
subject by a single observer. This was done separately for
annotations from manual and visual annotations. This gen-
erated 3 distances per subject for each observer, and a
total of 63 distances per method across all subjects and
observers. For inter-observer variability, the average DTW
distance was calculated between repetitions performed by
all observers for a given subject. This generated 18 distances
per subject, and a total of 126 distances per method over all
subjects.

Fig. 4 Example of a DTW alignment between two visual annotations
of a small bowel segment done by separate observers. The black lines
match the corresponding points in each trajectory according to the
DTW algorithm

Corner Point Analysis

Corner points were placed to evaluate visual annotations in
the context of a fixed rather than an interpreted structure.
To assess accuracy, the two-dimensional Euclidean distance
between each corner point and its corresponding reference
marker was calculated for all subjects and observers. To
assess precision, the two-dimensional distance between

Fig. 5 Accuracy as represented by the average DTW distance of the
visually annotated centerlines to the manually annotated centerlines.
Each boxplot represents all annotations done by a single observer.
The dashed line represents the 1.5 cm distance specified as acceptable
for accuracy. Mean ± standard deviations as well as P values shown
below. P values correspond to statistical difference between data and
the 1.5 cm distance
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Fig. 6 Intra- and inter-observer variability for manual and visual
centerline annotations as a metric for precision. Each boxplot
represents data from all cases and observers for the two annotation
types. The dashed line represents the 3.0 cm distance specified as
acceptable for precision. Mean ± standard deviations as well as p-
values shown below. P values correspond to statistical difference
between data and the 3.0 cm distance

each corner point in the beginning slice and the projection
of the corresponding corner point from the end slice was
calculated for all subjects and observers.

Statistical Analysis

To determine whether visual annotation would be sufficient
in the clinical context of small-bowel obstruction, DTW
distances were compared to one of two fixed thresholds,
1.5 cm for accuracy and 3.0 cm for precision. These
thresholds were chosen based on the caliber at which small
bowel is considered dilated. This caliber varies according
to clinical practice, but a threshold of 3-cm diameter is
commonly used [11]. Thus, a centerline placed within a
1.5 cm radius of the true centerline would be expected to
be intraluminal. Likewise, two centerlines placed within
3.0 cm of each other both would also be expected to be
intraluminal.

Each of the sets of DTW distances in the above sections
were statistically compared to these fixed thresholds for
accuracy or precision using a one-sample one-tailed t test,
with the null hypothesis that means were above the fixed
thresholds. For centerline accuracy analysis, four t tests
were performed, one for each of the three observers, and
one for all observers in aggregate. For centerline precision
analysis, four t tests were performed, for manual and visual
methods, and for intra- and inter-observer comparisons. For
corner point analysis, two t tests were performed, one for
accuracy and one for precision.

Euclidean distances often follow a chi-squared rather
than normal distribution. However, the robustness of the t
test allows for deviations from normality to be acceptable
as long as the number of samples is sufficiently large. This
is the case because it is the mean of the random samples
of the population that must be normally distributed, not the
population itself. For a large number of samples, the central
limit theorem ensures this is the case [41].

Results

Centerline Analysis

To assess accuracy, DTW distances between manual
and visual annotations of small-bowel centerlines were
calculated and are shown in Fig. 5. For each observer
individually, DTW distances were 1.1±0.2 cm, 1.3±0.4 cm,
and 1.8± 0.2 cm and were less than 1.5 cm for two of three
observers (P < 0.01). For all observers in aggregate, DTW
distances were 1.40 ± 0.43 cm, which was also less than
1.5 cm (P < 0.01).

To assess precision, intra- and inter-observer DTW dis-
tances among repetitions of manual and visual annotations
of small-bowel centerlines were calculated and are shown in
Fig. 6. Intra-observer DTW distances for manual and visual
annotations were 0.6±0.1 cm and 1.1±0.4 cm, respectively.
Inter-observer DTW distances for manual and visual anno-
tations were 0.8 ± 0.2 cm and 1.9 ± 0.9 cm, respectively.
All of these distances were significantly lower than 3.0 cm
(P < 0.01).

Corner Point Analysis

To assess accuracy, 2D Euclidean distances between
visually annotated corner points and reference markers were
calculated and are shown in Fig. 7a. These distances were
1.51 ± 0.77 cm. Although the peak of this distribution was
below 1.5 cm, its mean was not significantly below 1.5 cm
(P > 0.05).

To assess precision, 2D Euclidean distances between
corresponding projected corner points from the beginning
and end slice were calculated and are shown in Fig. 7b.
These distances were 1.10 ± 1.00 cm, which were
significantly below 3.0 cm (P < 0.01).

Discussion

Machine learning tools require annotated data for training
and validation. Manual annotation of medical images can
be a time-consuming process. The inefficiency of manual
annotation is partly due to the use of the same device
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Fig. 7 Histogram representation
of the accuracy and precision
analysis of the visually
annotated corner points. Panel a
represents the distribution of the
radial distances between
visually annotated corner points
and the corner markers. Dashed
red line represents 1.5 cm. Panel
b represents the distribution of
distances between visually
annotated corner markers in the
first and last CT slice of the
small-bowel segments. Dashed
line represents 3.0 cm

a b

for both annotation and for image adjustments that must
be done concurrently with annotation. Eye trackers are an
alternative to the standard computer mouse. They provide
information about the position on the screen at which a user
is looking. Since this information is derived from the user’s
eye rather than hand, the mouse can be used for other tasks
concurrently. In this study, we developed a custom 3D Slicer
module that to facilitate this novel division of labor between
eye and hand. The module uses an eye tracker to perform
visual annotations, while allowing the mouse to be used for
manual image adjustments such as repositioning within the
imaging volume. We investigated the performance of this
system in the clinical context of small-bowel obstruction, a
common and important disease.

The results of this study suggest that visual annotation
of the small-bowel centerline is sufficiently accurate
and precise relative to clinical thresholds for diagnosis
of obstruction. Visually placed centerlines were within
1.5 cm of manually placed centerlines for all observers
in aggregate, and for two of three observers individually.
Since 1.5 cm is the approximate radius of obstructed bowel,
we reason that this level of accuracy is sufficient for both
centerlines to be intraluminal. Likewise, visually placed
centerlines were well within 3.0 cm of each other when
repeated placement was performed. Since the variability of
visual placement was greater than that of manual placement,
the imprecision likely reflects both the performance of
the eye tracker as well as differing interpretations of the
location of the centerline. Nonetheless, since 3.0 cm is the
approximate diameter of obstructed bowel, we reason that
this level of precision is still sufficient for all centerlines to
be intraluminal.

We also investigated the performance of visual anno-
tation of reference markers placed at the corners of the
imaging volume. We found that visual placement of cor-
ner points was precise to well within 3.0 cm, but was not

accurate to within the specified threshold of 1.5 cm. Since
the position of the reference markers was not a matter of
interpretation, the inaccuracy likely reflects inadequate cal-
ibration of the eye tracker. Accuracy was noted to vary
between reference markers in different corners of the vol-
ume (results not shown), which also suggests inadequate
calibration. Nonetheless, the high degree of precision sug-
gests that improved calibration and thus improved accuracy,
may be possible in the future.

Radial distance between centerlines is the quantity
that is most relevant to determining whether both are
intraluminal. DTW distance incorporates both axial and
radial offsets, since it is a sum of Euclidean distances
between points without regard to the orientation of the
centerline. For that reason, DTW distance is an upper bound
on the radial offset, since any axial offset will also be
included in the measurement. Thus, if the average DTW
distance is less than the specified thresholds of 1.5 cm
and 3 cm, the average radial distance would be expected
to satisfy those thresholds as well. We considered using
other metrics, based on distances between line segments or
continuous representations, rather than distances between
points, to better capture radial distance only. However, other
representations require parameterization or processing that
adds complexity, and at some point require discretization
even if only in an integral. For this reason, we selected DTW
distance as it was the simplest metric that still provided
useful information about radial distance.

This study has several limitations. First, many technical
factors varied among observers during visual annotations,
including the computer monitor used, the screen size of
the 3D Slicer application, and the level of magnification
of the displayed CT images. We did not investigate the
effects of these factors on accuracy and precision, but
expect that they could affect both. Second, we did not
investigate the observer-specific performance seen for many
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measurements, which may arise from the observers’ varying
level of training in radiology, but also could potentially arise
from their use of eyeglasses, facial features, or other factors.
Third, we did not record the time required for either manual
or visual annotation. Although we suspect visual annotation
may prove more efficient, we did not directly evaluate that
claim in this study. Fourth, the exclusion of non-dilated
segments limits the applicability of the results to normal
caliber bowel and populations without bowel obstruction.
Finally, the small size of the dataset included in this study
limits the applicability of the results to larger studies, in
which additional factors such as observer fatigue may also
be sources of error.

We plan to pursue several future directions motivated by
the findings of this study. First, to address the inaccuracy
observed in the results, other calibration techniques will
be investigated. One such technique would be to use a
grid of points across the screen rather than just the few
that are shown during the off-the-shelf calibration routine.
Such a technique may leverage the precision to improve
the accuracy of the results. Second, to address the question
of whether visual annotation is more efficient than manual
annotation, we will develop an improved module to record
the time taken for each annotation alongside the annotation
itself. Third, we will investigate whether eye trackers can be
used to annotate other linear or branching structures in the
human body, such as blood vessels or bile ducts [21, 22], or
other volumetric structures like organs or lesions [25, 39].
Finally, we will investigate how to incorporate these visual
annotations into training data for development of machine
learning tools. One such approach would be to label the
region around each centerline as belonging to bowel, and
use those labels to train machine learning tools to perform
segmentation of the bowel. The development of such tools
relies on large volumes of training data, the creation of
which may be accelerated by visual annotation technique
described here.

Conclusion

Small-bowel obstruction is a common and important
disease. Development of machine learning tools for
detection and characterization of small-bowel obstruction
will require a large volume of annotated data. Using
a Tobii eye tracker and custom 3D Slicer module,
we found that visual annotations of the small-bowel
centerline were of sufficient accuracy and precision relative
to clinically derived thresholds for obstruction. These
promising results suggest that visual annotation may help
to generate the large volumes of training data needed
for machine learning tools in the context of small-bowel
obstruction.
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NIH grant T32EB005970.
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