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The N-terminal (1– 83) fragment of the major constituent of
plasma high-density lipoprotein, apolipoprotein A-I (apoA-I),
strongly tends to form amyloid fibrils, leading to systemic amy-
loidosis. Here, using a series of deletion variants, we examined
the roles of two major amyloidogenic segments (residues 14 –22
and 50 –58) in the aggregation and fibril formation of an amy-
loidogenic G26R variant of the apoA-I 1– 83 fragment (apoA-I
1– 83/G26R). Thioflavin T fluorescence assays and atomic force
microscopy revealed that elimination of residues 14 –22 com-
pletely inhibits fibril formation of apoA-I 1– 83/G26R, whereas
�32– 40 and �50 –58 variants formed fibrils with markedly
reduced nucleation and fibril growth rates. CD measurements
revealed structural transitions from random coil to �-sheet
structures in all deletion variants except for the �14 –22 variant,
indicating that residues 14 –22 are critical for the �-transition
and fibril formation. Thermodynamic analysis of the kinetics of
fibril formation by apoA-I 1– 83/G26R indicated that both
nucleation and fibril growth are enthalpically unfavorable,
whereas entropically, nucleation is favorable, but fibril growth is
unfavorable. Interestingly, the nucleation of the �50 –58 variant
was entropically unfavorable, indicating that residues 50 –58
entropically promote the nucleation step in fibril formation of
apoA-I 1– 83/G26R. Moreover, a residue-level structural inves-
tigation of apoA-I 1– 83/G26R fibrils with site-specific pyrene
labeling indicated that the two amyloidogenic segments are in
close proximity to form an amyloid core structure, whereas the
N- and C-terminal tail regions are excluded from the amyloid
core. These results provide critical insights into the aggregation
mechanism and fibril structure of the amyloidogenic N-termi-
nal fragment of apoA-I.

Apolipoprotein (apoA-I)3 is the major structural and func-
tional constituent of plasma high-density lipoprotein (HDL)

that plays a critical role in the formation and metabolism of
HDL particles (1, 2). Many naturally occurring mutations in
human apoA-I are associated with reduced plasma HDL levels
and hereditary systemic amyloidosis (3). To date, �20 naturally
occurring mutations in human apoA-I associated with familial
amyloid polyneuropathy have been reported (4, 5) in which the
majority of the amyloidogenic mutations are clustered in two
regions of the N-terminal residues 26 –90 and 154 –178 (4, 6, 7).
Hereditary apoA-I amyloidosis is characterized by deposition
of the N-terminal 80 –100-residue fragments of the variant pro-
tein as amyloid fibrils in peripheral organs such as heart, liver,
kidneys, or gastrointestinal tract, causing organ damage (6, 8,
9). It has been hypothesized that the specific amyloidogenic
mutations perturb the native protein structure, increasing sus-
ceptibility to proteolysis and thereby releasing the N-terminal
amyloidogenic fragment (4, 10). The molecular basis for the
onset and development of apoA-I systemic amyloidosis is
largely unknown.

Sequence-based analyses of N-terminal residues 1–100 in
apoA-I predict that there are two major aggregation-prone seg-
ments (residues 14 –22 and 50 –58) together with a minor seg-
ment (residues 69 –72) in which the rank order of aggregation
propensity is residues 14 –22 � residues 50 –58 � residues
69 –72 (10, 11). In agreement with this prediction, the N-termi-
nal 1– 83 or 1–93 fragments of apoA-I were shown to have a
strong propensity to form amyloid fibrils (11, 12). Studies of
synthetic apoA-I fragment peptides demonstrated that the
peptides containing either the first (residues 14 –22) or the sec-
ond (residues 50 –58) amyloidogenic segment have the ability
to form amyloid-like fibrils with �-transition, whereas the pep-
tide only containing residues 69 –72 does not form fibrils at
neutral pH (13, 14). Interestingly, because the two major amy-
loidogenic segments (residues 14 –22 and 50 –58) overlap with
the hydrophobic �-helix–forming regions upon lipid binding
(15, 16), lipid membrane environments significantly affect the
fibril-forming properties of the N-terminal fragments or pep-
tides of apoA-I (17–19).

We previously reported that the Iowa (G26R) point muta-
tion, the first and most common amyloidogenic mutation
found in apoA-I (20, 21), greatly facilitates fibril formation by
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the N-terminal 1– 83 fragment of apoA-I in solution (12) as well
as on lipid membranes (18, 19). Secondary structure examina-
tions of the G26R variant of full-length apoA-I by EPR spectros-
copy (21) and hydrogen– deuterium exchange MS (22) demon-
strated that the G26R mutation induces widespread �-helix
destabilization in the N-terminal helix bundle domain and
promotes a transition of residues 27–56 to �-strand–rich struc-
ture. However, structural information on amyloid fibrils
formed by the N-terminal fragment of apoA-I G26R variant is
lacking.

In the present study, we asked how each amyloidogenic seg-
ment in apoA-I modulates aggregation and fibril formation of
the N-terminal 1– 83 fragment of the G26R variant using a
series of deletion variants (�14 –22, �32– 40, �50 –58, and
�68 –76) that lack different amyloidogenic regions along the
molecule. We also examined the intermolecular contacts of
apoA-I 1– 83/G26R fibrils at a residue level by employing site-
directed cysteine mutagenesis and fluorescence labeling to gain
structural insights into amyloid fibrils formed by the N-termi-
nal fragment of apoA-I G26R.

Results

Design of deletion or cysteine-substituted variants of apoA-I
1– 83/G26R

We designed two types of mutations in the N-terminal 1– 83
fragment of apoA-I G26R variant: deletion mutations that
remove nine amino acid residues in the amyloidogenic regions
of the protein and single amino acid mutations that introduce
cysteine substitutions for labeling by pyrene maleimide at dif-
ferent positions along the molecule (Fig. 1A). The deletion vari-
ants, �14 –22, �50 –58, and �68 –76, lack the highly amyloido-
genic segments of residues 14 –22, 50 –58, and 69 –72,

respectively (10), whereas the �32– 40 variant lacks the puta-
tive loop region between two �-strands from residues 14 –31 to
41–58 (23) (Fig. 1B). In the cysteine variants, cysteine residues
were introduced into the highly amyloidogenic segments
together with the N- and C-terminal tail regions that have low
amyloid propensity (Fig. 1B). The Cys-substituted positions
were selectively labeled with pyrene maleimide to probe the
polarity and intermolecular proximity of different segments of
apoA-I 1– 83/G26R fragment in the fibril form. We note that
cysteine mutations and pyrene labeling did not significantly
inhibit the fibril-forming ability of the protein, although several
mutants appeared to have somewhat enhanced fibril-forming
propensity (Fig. S1).

Effect of deletion on fibril-forming property of apoA-I
1– 83/G26R

We first examined the fibril-forming propensities of the dele-
tion variants of apoA-I 1– 83/G26R using the amyloid-sensitive
fluorescent dye thioflavin T (ThT). As reported previously (12),
apoA-I 1– 83/G26R exhibited a large increase in ThT fluores-
cence at neutral pH (Fig. 2A). In contrast, there was no increase
in ThT fluorescence for the �14 –22 variant, indicating that
residues 14 –22 are crucial for fibril formation of apoA-I 1– 83/
G26R. Significantly delayed increases in ThT fluorescence for
the �32– 40 and �50 –58 variants suggest that the segments
spanning residues 32– 40 as well as 50 –58 are important for
nucleation in fibril formation of the 1– 83/G26R variant. Inter-
estingly, the �68 –76 variant exhibited greatly enhanced ThT
fluorescence intensity (Fig. 2A, inset), suggesting the possibility
that residues 68 –76 inhibit the fibril-forming ability of apoA-I
1– 83/G26R. However, precipitation analyses of fibrils formed
by the 1– 83/G26R deletion variants indicated that the fibril-
forming ability of the �68 –76 variant is somewhat less than
that of the other apoA-I 1– 83/G26R variants except for
�14 –22 (Fig. S2). Such an inhibited or delayed increase in ThT
fluorescence for the �14 –22, �32– 40, or �50 –58 variant and
the enhanced ThT fluorescence for the �68 –76 variant were
also observed at different protein concentrations (Fig. S3).

The kinetics of the ThT fluorescence increase were analyzed
by the Finke–Watzky two-step model of a homogeneous nucle-
ation followed by autocatalytic heterogeneous fibril growth,
which has been applied to a broad range of protein aggregation
kinetics (24 –27). Comparison of rate constants of the nucle-
ation (k1) and fibril growth (k2) for fibril formation by the dele-
tion variants (Fig. 2, B and C) clearly demonstrates that the
�32– 40 and �50 –58 variants have significantly decreased
rate constants of both nucleation and fibril growth, whereas the
�68 –76 exhibits similar kinetic parameters compared with
1– 83/G26R. Kinetic parameters obtained by the empirical sig-
moidal equation (Fig. 2, D and E) provide similar conclusions:
the �32– 40 and �50 –58 variants significantly increase the lag
time and decrease the apparent rate constant for fibril growth.
We note that the Finke–Watzky model is based on two pseu-
doelementary reaction steps of nucleation and fibril growth
without further considerations on the nuclei size and fibril
propagation mechanisms such as secondary pathways (27),
although it has been proposed that the secondary nucleation

Figure 1. Design of deletion and cysteine variants of apoA-I 1– 83/G26R.
A, primary sequence of the N-terminal residues 1– 83 of human apoA-I G26R
variant. Deleted regions in the deletion variants are highlighted with shaded
boxes. The amino acids substituted with cysteine for pyrene labeling are
underlined and shown in bold. B, amyloid propensity prediction and �-aggre-
gation propensity of the N-terminal residues 1– 83 of apoA-I G26R variant.
Amyloid propensity prediction was generated using the consensus algorithm
AmylPred2 (54). �-Aggregation propensity was calculated with the Zyggre-
gator method (55). Residues 14 –31 (21) and 46 –59 (13) predicted to have
high amyloid-forming propensity are shown as arrows.
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process occurs during fibril formation of �-amyloid peptides
and �-synuclein (28 –30).

We next performed circular dichroism (CD) measurements
of the 1– 83/G26R deletion variants to determine the secondary
structural changes during incubation. As shown in Fig. 3, all
spectra of the deletion variants except for �14 –22 displayed a

single minimum at around 216 nm after incubation for 120 h,
implying conversion from random coil to �-sheet–rich struc-
ture. Consistent with the delayed increase in ThT fluorescence
(Fig. 2A), such apparent transition to �-structure was not
observed for the �32– 40 and �50 –58 variants at shorter incu-
bation for 60 h (Fig. S4A). No secondary structural change
occurred for the �14 –22 variant during incubation.

Fig. 4 shows atomic force microscopy (AFM) and transmis-
sion EM (TEM) images of the 1– 83/G26R deletion variants
after 120-h incubation. AFM images (Fig. 4A) show that the
1– 83/G26R as well as �32– 40, �50 –58, and �68 –76 variants
formed straight fibrils, whereas �14 –22 did not form apparent
fibrils but rather formed small spherical aggregates. TEM
observations also confirm the formation of straight fibrils by
the 1– 83/G26R as well as the deletion variants except for the
�14 –22 variant, in which it rarely formed fibrils (Fig. 4B). In
contrast, apparent straight fibrils were not observed for the
�32– 40 and �50 –58 variants at incubation for 60 h (Fig. S4B).
These results indicate that the highly amyloidogenic segment
spanning residues 14 –22 is necessary for the formation of amy-
loid fibril structure by apoA-I 1– 83/G26R, whereas the seg-
ments of residues 32– 40 and 50 –58 are not necessary for fibril
formation but modulate the kinetics of nucleation and fibril
formation. Consistently, the fibrils formed by the deletion vari-
ants after 120-h incubation exhibited stability against urea
denaturation similar to that of 1– 83/G26R fibrils (Fig. S5). In
addition, the fibrils formed by the deletion variants induced
strong cytotoxicity with HEK293 cells similarly to 1– 83/G26R
fibrils, whereas the �14 –22 exhibited reduced cytotoxicity (Fig.
S6). This indicates that the formation of the fibril structure is
critical to the cytotoxicity of apoA-I 1– 83/G26R variants (12).

Thermodynamic analysis of fibril formation by apoA-I
1– 83/G26R

To understand the thermodynamic aspects of the aggrega-
tion of apoA-I 1– 83/G26R into amyloid fibrils, we explored the
effect of temperature on the kinetics of formation of amyloid-
like fibrils. We note that CD measurements confirmed that
there are no secondary structural changes across the tempera-
ture range of 25– 42 °C (data not shown). Fig. 5A shows the time
course of ThT fluorescence intensity with the fitted curves by
the Finke–Watzky two-step model at different temperatures.
Comparison of rate constants of the nucleation (k1) and fibril
growth (k2) at each temperature indicates that both rate con-
stants greatly increase with temperature (Fig. 5B). From the
linear relationship of ln(k1/T) or ln(k2/T) with 1/T based on the
Eyring equation (Fig. 5C), the activation enthalpy �H* and
entropy �S* for the nucleation and fibril growth steps in fibril
formation by apoA-I 1– 83/G26R were obtained. Table 1 sum-
marizes the �H* and �S* values and the activation Gibbs free
energy �G*. These parameters demonstrated that although the
activation free energy barriers for nucleation and fibril growth
are similar, the contributions of activation enthalpy and
entropy to the free energy barrier are quite different: the nucle-
ation step is enthalpically unfavorable but entropically favor-
able, whereas fibril growth is both enthalpically and entropi-
cally unfavorable. That is, the free energy barrier for nucleation

Figure 2. Formation of amyloid-like structure was monitored by ThT fluo-
rescence for apoA-I 1– 83/G26R and deletion variants at 37 °C. A, 1– 83/
G26R (Œ), 1– 83/G26R �14 –22 (ƒ), 1– 83/G26R �32– 40 (‚), 1– 83/G26R
�50 –58 (E), and 1– 83/G26R �68 –76 (f). The inset shows comparison of
1– 83/G26R and 1– 83/G26R �68 –76. ApoA-I 1– 83 variants were incubated at
37 °C with agitation on an orbital rotator in the presence of 10 �M ThT. The
data were from at least three independent experiments. Error bars represent
S.E. The solid lines are the fitted curves by the Finke–Watzky two-step model.
Protein concentration was 0.1 mg/ml. a.u., arbitrary units. B and C, compari-
son of rate constants of nucleation (k1) and fibril growth (k2) for fibril forma-
tion of 1– 83/G26R variants according to Finke–Watzky Equation 2. D and E,
comparison of lag time (D) and apparent rate constant (E) for the growth of
fibrils of apoA-I 1– 83/G26R variants according to sigmoidal Equation 1. Error
bars represent S.E. **, p � 0.01; ***, p � 0.001; ****, p � 0.0001 versus 1– 83/
G26R. N.D., not determined.
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is entirely enthalpic, whereas that for fibril growth consists of
both enthalpic and entropic barriers.

We also performed thermodynamic analysis of fibril forma-
tion by the deletion variants to gain insight into the role of each
segment in fibril formation by apoA-I 1– 83/G26R (Figs. 5D and
S7). The �14 –22 variant did not form fibrils at any tempera-
tures examined (Fig. S7A). In contrast, the �50 –58 variant
exhibited temperature-dependent increases in ThT fluores-
cence (Fig. S7C), and Eyring plots of rate constants of k1 and k2
(Fig. 5D) gave the thermodynamic parameters for fibril forma-
tion of the �50 –58 variant (Table 1). Despite similar activation
free energy barriers between apoA-I 1– 83/G26R and the

�50 –58 variant, a large reduction in the unfavorable activation
enthalpy and the concomitant unfavorable activation entropy
for nucleation in fibril formation of �50 –58 are observed, in
sharp contrast to the favorable entropy of nucleation for 1– 83/
G26R. For fibril growth of the �50 –58 variant, the activation
enthalpy and entropy are both unfavorable. These results
indicate that residues 50 –58 entropically drive the nucle-
ation in fibril formation by apoA-I 1– 83/G26R. Similar to
�50 –58, the �32– 40 variant exhibits the unfavorable acti-
vation enthalpy and entropy for nucleation in which the
reduction in the unfavorable activation enthalpy from 1– 83/
G26R is much smaller than that for �50 –58 (Table 1).

Figure 3. Far-UV CD spectra of apoA-I 1– 83/G26R and deletion variants before (0 h; dashed line) and after incubation for 120 h (solid line). A,
1– 83/G26R; B, 1– 83/G26R �14 –22; C, 1– 83/G26R �32– 40; D, 1– 83/G26R �50 –58; E, 1– 83/G26R �68 –76. Protein concentration was 50 �g/ml. deg, degrees.

Figure 4. AFM (A) and TEM (B) images of apoA-I 1– 83/G26R and deletion variants after 120-h incubation. Scale bars represent 1 �m (AFM) and 0.5 �m or
100 nm (TEM), respectively.
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Regarding the �68 –76 variant, the thermodynamic param-
eters for nucleation are similar, but the unfavorable activa-
tion enthalpy of fibril growth is significantly reduced com-
pared with 1– 83/G26R (Table 1). This indicates that
residues 68 –76 inhibit fibril growth of apoA-I 1– 83/G26R
by increasing the unfavorable activation enthalpy.

Determination of amyloid core regions in apoA-I 1– 83/G26R
fibrils

We next performed fluorescence measurements of pyrene-
labeled apoA-I 1– 83/G26R variants to map intermolecular
proximities of different segments in the fibril form. Pyrene fluo-
rescence emission spectra display unique features that give
information on the spatial proximity and polarity of the envi-
ronment. When two pyrene rings are within 10 Å of each other,

a broad and red-shifted emission peak appears generally at
around 470 nm, attributed to formation of an excited-state
dimer, excimer (31). Thus, the excimer ratio (ratio of fluo-
rescence intensity of excimer at 470 nm to that of monomer
at 385 nm) indicates the extent of excimer formation and,
therefore, the intermolecular proximity of pyrene-labeled
positions of the protein in oligomers and fibrils (32–36). In
addition, we also determined the pyrene scale as the inten-
sity ratio between bands at 375 and 385 nm to evaluate the
local hydrophobicity around the probe at the labeled posi-
tions (33, 37).

Fig. 6, A and B, show typical fluorescence emission spectra of
pyrene-labeled apoA-I 1– 83/G26R variants before and after
incubation. Before incubation, no excimer peaks at around 470
nm were observed for all pyrene-labeled variants (all fluores-
cence emission spectra of pyrene-labeled variants are shown in
Fig. S8). In fibrils, a large excimer peak appeared when the label
was at position 22, whereas only a small excimer peak was seen
with the label at position 81. Fig. 6C shows the profile of exci-
mer ratios as well as the pyrene scale in fibrils as a function of
residue number. Positions 22 and 52 exhibit high excimer
ratios, consistent with two regions around the highly amyloido-
genic segments (residues 14 –22 and 50 –58) having strong
intermolecular contacts. In contrast, low excimer ratios at posi-
tions 2, 8, 72, and 81 suggest sequestration of the N- and C-ter-
minal tail regions from intermolecular contacts. The relatively
low excimer ratio at position 36 agrees with the prediction that
residues 32– 40 form a loop region between two �-strands (23).
We note that pyrene scale values for all labeled positions are
similarly low (Fig. 6C), indicating that pyrene molecules at
all labeled positions in fibrils are located in hydrophobic
environments.

Figure 5. Thermodynamic analysis of amyloid fibril formation of apoA-I 1-83/G26R variants. A, kinetics of formation of amyloid-like structure monitored
by ThT fluorescence for apoA-I 1– 83/G26R at different temperatures. The data were from at least four independent experiments. Error bars represent S.E. The
dashed lines are the fitted curves by the Finke–Watzky two-step model. Protein concentration was 50 �g/ml. a.u., arbitrary units. B, comparison of rate constants
of nucleation (k1) and fibril growth (k2) for fibril formation of 1– 83/G26R. Error bars represent S.E. C, Eyring plots of rate constants of k1 and k2 for fibril formation
of 1– 83/G26R. D, Eyring plots of rate constants k1 and k2 for fibril formation of 1– 83/G26R �50 –58.

Table 1
Thermodynamic parameters for nucleation and fibril growth in fibril
formation of apoA-I 1– 83/G26R and deletion variants
The data were from at least three independent experiments.

�H*a �S*a �G*b

kJ/mol J/mol K kJ/mol
ApoA-I 1–83/G26R

Nucleation (k1) 126 � 20 55 � 14 109
Fibril growth (k2) 65 � 6 �122 � 33 103

�32–40
Nucleation (k1) 77 � 12 �122 � 64 115
Fibril growth (k2) 87 � 22 �47 � 14 102

�50–58
Nucleation (k1) 22 � 14 �281 � 160 110
Fibril growth (k2) 98 � 6 �20 � 2 104

�68–76
Nucleation (k1) 137 � 16 70 � 14 115
Fibril growth (k2) 47 � 10 �170 � 45 100

a �H* and �S* were obtained from the slope and y-intercept of the linear plot,
respectively, according to Equation 3.

b �G* was calculated from �H* and �S* according to �G* � �H* � T�S* at 37 °C.
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Discussion

Sequence-based predictions of the �-aggregation (11) and
amyloid propensity (10) indicate that there are two major
aggregation-prone segments of residues 14 –22 and 50 –58 in
the N-terminal 1– 83 residues of apoA-I. Based on the second-
ary structure examination of the aggregates of apoA-I G26R
variant (21), together with a finding that a peptide comprising
residues 46 –59 of apoA-I forms amyloid-like fibrils (13), it was
considered that two segments spanning residues 14 –31 and
46 –59 in apoA-I 1– 83/G26R are highly amyloidogenic regions
(Fig. 1B). Indeed, we previously demonstrated that synthetic
apoA-I fragment peptides containing these two amyloidogenic
segments have the ability to form amyloid-like fibrils (14, 18,
38). However, details on the roles of each amyloidogenic seg-
ment in amyloid fibril formation by apoA-I 1– 83/G26R are
unknown.

The present study demonstrated that the deletion of residues
14 –22 completely inhibits �-transition and fibril formation of
apoA-I 1– 83/G26R, whereas the deletion of residues 50 –58
markedly decreases the rate constants of nucleation and fibril
elongation (Fig. 2, B and C). This information clearly indicates
that the first amyloidogenic segment containing residues
14 –22 is crucial for fibril formation of apoA-I 1– 83/G26R,
whereas the second amyloidogenic segment containing resi-
dues 50 –58 is largely involved in the nucleation step of fibril

formation. Indeed, a Y18P mutation that impairs formation of
�-sheet structure in residues 14 –22 strongly inhibited fibril
formation by apoA-I 1– 83/G26R (18). Interestingly, the effects
of deletions on the fibril-forming ability of apoA-I 1– 83/G26R
bound to lipid membranes are quite different from those in
solution (Fig. S9). Because �-helix formation of the amyloido-
genic segments upon lipid binding strongly inhibits �-transi-
tion and fibril formation by the N-terminal fragment of apoA-I
(18, 19), it is likely that the second amyloidogenic segment con-
taining residues 50 –58 is not available for fibril formation of
apoA-I 1– 83/G26R on the membrane surface (19). The inhib-
itory effect of the deletion of residues 32– 40 on the kinetics of
nucleation and fibril growth (Fig. 2) is possibly because the lack
of residues 32– 40 may alter the appropriate intramolecular
interaction between two putative �-strands consisting of highly
amyloidogenic residues of 14 –22 and 50 –58 in fibril formation.
Deletion of residues 68 –76 that are rich in negatively charged
amino acids has small effects on the kinetics of fibril formation
but causes great increases in ThT fluorescence intensity (Fig. 2).
This indicates that the C-terminal tail region that is rich in
negatively charged amino acids has inhibitory effects on aggre-
gation and fibril formation of apoA-I 1– 83/G26R as observed
for �-synuclein (39).

The thermodynamic analyses of ThT fluorescence kinetics
(Figs. 5 and S7) give further insights into the molecular mech-

Figure 6. Mapping of amyloid core regions in apoA-I 1– 83/G26R fibrils. A and B, fluorescence emission spectra of pyrene (Py)-labeled apoA-I 1– 83/G26R
variants before (0 h; dashed line) and after incubation for 120 h (solid line). A, 1– 83/L22C-Py/G26R; B, 1– 83/G26R/G81C-Py. Protein concentration was 10 �g/ml.
C, excimer ratio profile for pyrene-labeled apoA-I 1– 83/G26R variants in amyloid fibrils. The ratio of excimer fluorescence to monomer fluorescence is plotted.
The pyrene scale as the ratio of pyrene fluorescence intensity at 375 nm to that at 385 nm is also plotted. Residues 14 –31 and 46 –59 predicted to have high
amyloid-forming propensity are shown as arrows. Error bars represent S.E. a.u., arbitrary units.
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anism of aggregation and fibril formation of apoA-I 1– 83/
G26R and deletion variants. In fibril formation of apoA-I 1– 83/
G26R, the nucleation process is enthalpically unfavorable but
entropically favorable, whereas the fibril elongation process is
enthalpically and entropically unfavorable (Table 1). The unfa-
vorable activation enthalpies of nucleation and fibril growth are
generally observed for many amyloidogenic proteins (40 –43),
likely due to the net unfavorable formation and breakage of
many weak interactions necessary to reach the transition state
(42). In contrast, the favorable activation entropies of nucle-
ation observed for 1– 83/G26R (Table 1) as well as a fungal
prion-forming domain (40) and �-amyloid 42 (43) peptides are
thought to come from the desolvation of hydrophobic regions
of the protein/peptide molecule in the transition state (42, 43).
The unfavorable activation entropy of fibril growth for 1– 83/
G26R may arise because resolvation of the fibril surface domi-
nates over desolvation of the existing nucleus (43).

The activation energy parameters for nucleation in fibril for-
mation of the �50 –58 variant are quite different from those of
1– 83/G26R (Table 1). Based on the X-ray crystal structure of
C-terminally truncated human apoA-I �185–243 showing that
residues 44 –55 are in an extended nonhelical conformation
(44), it was proposed that residues 44 –55 provide a template for
nucleation of intermolecular �-aggregation (7). In this regard, it
is possible that the favorable activation entropy of nucleation of
apoA-I 1– 83/G26R comes from desolvation of the exposed seg-
ment in residues 44 –55 in the nucleation process. Consistent
with this idea, deletion of residues 50 –58 causes the activation
entropy of nucleation to be highly negative (Table 1), indicating
that the segment in residues 50 –58 entropically promotes
nucleation in fibril formation of the 1– 83/G26R molecule. In
addition, a large reduction in the unfavorable activation
enthalpy of nucleation observed for the �50 –58 variant (Table
1) suggests that desolvation of the segment in residues 50 –58
seems to contribute to the unfavorable activation enthalpy in
forming a nucleus (42).

The �32– 40 variant also exhibits the unfavorable activation
enthalpy and entropy for nucleation similar to the case of
�50 –58 variant (Table 1). However, the reduction in the unfa-
vorable activation enthalpy from 1– 83/G26R is much smaller
than that for �50 –58. This may suggest that the deletion of
residues 32– 40 inhibits the nucleation step, possibly through
altering the appropriate intermolecular interaction of the sec-
ond amyloidogenic segment containing residues 50 –58. In
contrast, the thermodynamic parameters of nucleation for the
�68 –78 variant are similar to those of 1– 83/G26R, but the
unfavorable activation enthalpy of fibril growth is significantly
reduced (Table 1). This indicates that residues 68 –76 enthalpi-
cally inhibit fibril growth of apoA-I 1– 83/G26R and may
explain why the �68 –78 variant exhibits the great increases in
ThT fluorescence intensity (Fig. 2). That is, the lower unfavor-
able activation enthalpy of fibril growth is likely to decrease the
critical concentration at which fibrils appear from nuclei (45,
46), leading to the formation of a large number of fibrils. Indeed,
the great enhancement of ThT fluorescence was also observed
for 1– 83/G26R and the �50 –58 variant with increasing con-
centration of protein (Fig. S3).

The use of pyrene to probe the spatial proximity (�10 Å)
between pairs of labeled residues in the proteins has been suc-
cessfully employed to gain structural details of oligomers and
fibrils formed by a yeast prion (32), �-synuclein (35, 36), and
nondisease-related HypF-N protein (34). Based on the FRET
study, we previously proposed a hypothetical model of fibril
structure of the N-terminal fragment of apoA-I G26R variant in
which �-strands from residues 14 –31 and 41–58 form a self-
complementary steric zipper stabilized by van der Waals and
hydrophobic interactions (23). In addition, solid-state NMR
analysis of aggregates formed by methionine-oxidized full-
length apoA-I revealed that several amino acids within residues
13–22 and 50 –59 are detected as �-sheet structure (47). The
results of pyrene excimer fluorescence of apoA-I 1– 83/G26R
fibrils (Fig. 6) demonstrate for the first time that the two seg-
ments with high amyloid-forming propensity (residues 14 –22
and 50 –58) are indeed in close proximity to form amyloid core
structure, whereas the N-terminal (residues 1–10) and C-ter-
minal (residues 70 – 83) tail regions as well as the central
(around residues 32– 40) region are likely to be excluded
from the amyloid core. Because C-terminal residues 70 – 83
(EFWDNLEKETEGLR) are rich in negatively charged amino
acids at neutral pH, electrostatic repulsions would inhibit the
intermolecular aggregation of this region. In addition, the pres-
ence of proline residues at the extreme N-terminal region is
likely to prevent the �-structure–rich aggregation (48, 49). It
should be noted that, in amyloid fibrils, apoA-I molecules are
proposed to be packed in a parallel, in-register �-sheet struc-
ture (10, 23).

In summary, we have demonstrated that the two highly amy-
loidogenic segments of residues 14 –22 and 50 –58 play crucial
roles in aggregation and fibril formation of the G26R variant of
the N-terminal 1– 83 fragment of apoA-I in which residues
14 –22 are necessary for fibril formation, whereas residues
50 –58 entropically drive the nucleation process. In addition,
structural investigation of apoA-I 1– 83/G26R fibrils indicates
that these two amyloidogenic segments are in close proximity
to form amyloid core structure, whereas the N- and C-terminal
tail regions are excluded from the amyloid core. The present
findings provide novel molecular insights into the aggregation
mechanism and fibril structure of the amyloidogenic N-termi-
nal fragment of apoA-I as summarized in Fig. 7.

Experimental procedures

Preparation of recombinant apoA-I proteins

The N-terminal fragment 1– 83 of apoA-I with G26R substi-
tution (apoA-I 1– 83/G26R) and its engineered variants with
deletions of �14 –22, �32– 40, �50 –58, and �68 –76 or cys-
teine substitutions of E2C, W8C, L14C, L22C, S36C, S52C,
S58C, L64C, W72C, and G81C were expressed in Escherichia
coli as thioredoxin fusion proteins and isolated and purified as
described (12, 18). Cleavage of the thioredoxin fusion protein
with thrombin leaves the target apoA-I with two extra amino
acids, Gly-Ser, at the N terminus. The apoA-I preparations
were at least 95% pure as assessed by SDS-PAGE. These apoA-I
variants were dialyzed from 6 M guanidine HCl with or without
1% �-mercaptoethanol solution into the appropriate buffer
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before use. Labeling of cysteine-containing apoA-I 1– 83/G26R
variants with N-(1-pyrene)maleimide (Thermo Fisher Scien-
tific, Rockford, IL) was performed as described (50, 51).

Preparation of small unilamellar vesicles

Small unilamellar vesicles were prepared as described previ-
ously (18, 52). Briefly, a dried film of egg phosphatidylcholine
(Kewpie, Tokyo, Japan) was hydrated in 10 mM Tris-HCl buffer
(150 mM NaCl, 0.02% NaN3, pH 7.4) and sonicated on ice under
nitrogen. After removing titanium debris, the samples were
centrifuged in a Beckman MLA-55 rotor for 1.5 h at 15 °C at
40,000 rpm to separate any remaining large vesicles.

CD spectroscopy

Far-UV CD spectra were recorded from 190 to 260 nm at
25 °C using a Jasco J-1500 spectropolarimeter (Jasco, Tokyo,
Japan). The apoA-I variants of 50 �g/ml in 10 mM Tris-HCl
buffer (pH 7.4) were subjected to CD measurements in a 1-mm
quartz cuvette, and the results were corrected by subtracting
the buffer baseline.

Fluorescence measurements

Fluorescence measurements were carried out with an F-2700 or
F-7000 fluorescence spectrophotometer (Hitachi High-Technol-
ogies, Tokyo, Japan) at 25 °C. Kinetics of formation of amyloid-like
structure were monitored using ThT. ApoA-I 1–83/G26R vari-
ants (100 �g/ml) in 10 mM Tris-HCl buffer (150 mM NaCl, 0.02%
NaN3, pH 7.4) were incubated at 37 °C with agitation on an orbital
rotator in the presence of 10 �M ThT. ThT fluorescence was
recorded at 485 nm with an excitation wavelength of 445 nm. The
time-dependent increase in ThT fluorescence intensity was fitted
to a sigmoidal equation (12, 53),

F � F0 �
Fmax � F0

1 � exp	kapp
tm � t��
(Eq. 1)

where F is the fluorescence intensity, F0 is the initial baseline
during the lag phase, and Fmax is the final baseline after the
growth phase has ended. kapp is the apparent rate constant for
the growth of fibrils, and tm is the time to 50% of maximal
fluorescence. The lag time is calculated as tm � 2/k.

ThT fluorescence data were also analyzed by the Finke–
Watzky two-step model equation for nucleation followed by
autocatalytic growth (24, 41),

F � F0

Fmax � F0
� 1 �

k1 � k2	A�0

k1 exp
k1 � k2	A�0�t � k2	A�0 (Eq. 2)

where [A]0 is initial concentration of monomer protein and
k1 and k2 are the rate constants corresponding to the nucleation
and growth of fibrils, respectively. Thermodynamic parameters
for nucleation and fibril growth were determined from the
Eyring equations,

ln�k

T� � �
�H*

R

1

T
�

�S*

R
� ln�kB

h� (Eq. 3)

�G* � �RT ln�hk

kBT� (Eq. 4)

where kB and h are the Boltzmann and Planck constants,
respectively. The activation enthalpy (�H*) and entropy (�S*)
were obtained from the slope and y-intercept of the linear plot
according to Equation 3, respectively. The activation Gibbs free
energy (�G*) was calculated from the rate constant k according
to Equation 4 or from �H* and �S* according to �G* � �H* �
T�S*.

For proximity analysis, pyrene emission fluorescence of
pyrene-labeled apoA-I 1– 83/G26R variants were monitored
before and after incubation. To obtain optimal pyrene excimer
signals, mixtures of 25 mol % of pyrene-labeled and 75 mol % of
unlabeled proteins were used (32, 35). Pyrene emission fluores-
cence was recorded from 360 to 600 nm using a 342-nm exci-
tation wavelength. The pyrene scale was calculated as the ratio
of fluorescence intensity at 375 nm to that at 385 nm (33, 37).
Excimer to monomer ratio was calculated as the ratio of fluo-
rescence intensity at 470 nm (excimer signal) to that at 385 nm
(monomer signal).

For chemical denaturation experiments, fibrils of apoA-I
1– 83/G26R deletion variants (50 �g/ml) in 10 mM Tris-HCl
buffer (150 mM NaCl, 0.02% NaN3, pH 7.4) were incubated
overnight at 4 °C with urea at various concentrations in the
presence of 10 �M ThT. Denaturation of fibrils was monitored
from the change in ThT fluorescence intensity.

AFM

Each sample solution in 10 mM Tris buffer was diluted to 10
�g/ml with distilled water, and 10 �l of the mixture was depos-
ited on freshly cleaved mica (The Nilaco Co., Tokyo, Japan).
After washing three times with distilled water (20 �l), samples
were imaged under ambient conditions at room temperature
using a NanoScope� IIIa tapping-mode AFM (Veeco, Plain-
view, NY) and Micro cantilever OMCL-AC160TS-R3 (Olym-
pus, Tokyo, Japan).

Figure 7. Schematic representation of the aggregation mechanism of apoA-I 1– 83/G26R. In aggregation and fibril formation of apoA-I 1– 83/G26R, the
two highly amyloidogenic segments of residues 14 –22 (shown in red) and 50 –58 (shown in blue) play crucial roles: residues 14 –22 are necessary for fibril
formation, whereas residues 50 –58 entropically drive the nucleation process. The nucleation process is enthalpically unfavorable (activation enthalpy �H* �
0) but entropically favorable (activation entropy �S* � 0), whereas the fibril elongation process is enthalpically and entropically unfavorable (�H* � 0, �S* �
0). The favorable activation entropy of nucleation is thought to come from desolvation of residues 50 –58. In a fibrillar state, the two amyloidogenic segments
are in close proximity to form amyloid core structure, whereas the N- and C-terminal tail regions are excluded from the amyloid core. It has been proposed that
apoA-I molecules are packed in a parallel, in-register �-sheet structure in amyloid fibrils (10, 23). See the text for more detail.
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TEM

A 5-�l droplet of the sample suspension was placed on a
glow-discharged Cu grid (300 mesh) coated with carbon, and
then a 150-�l droplet of 2% phosphotungstic acid solution
(adjusted at pH 7.0 with NaOH) was added. After excess stain-
ing solution was blotted with a filter paper after 1-min incuba-
tion, the grid was dried under illumination of an incandescent
lamp. TEM images were obtained at 120 kV on an FEI Tecnai
F20 transmission electron microscope.

Cytotoxicity assay

Cytotoxicity was measured using a 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay as described
(12). Briefly, HEK293 cells were plated on poly-L-lysine– coated
24-well plates in Dulbecco’s modified Eagle’s medium contain-
ing 2% fetal bovine serum. After 24-h incubation, apoA-I 1– 83/
G26R deletion variants in 10 mM PBS were added, and cells
were further incubated for 24 h. Cell viability was quantitatively
determined by reduction of MTT.

Statistical analysis

Data were analyzed via one-way analysis of variance followed
by Dunnett’s test by means of Prism software (GraphPad Soft-
ware, La Jolla, CA). Results were regarded as significant for p �
0.05.
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40. Sabaté, R., Castillo, V., Espargaró, A., Saupe, S. J., and Ventura, S. (2009)
Energy barriers for HET-s prion forming domain amyloid formation.
FEBS J. 276, 5053–5064 CrossRef Medline

41. Morris, A. M., and Finke, R. G. (2009) �-Synuclein aggregation variable
temperature and variable pH kinetic data: a re-analysis using the Finke-
Watzky 2-step model of nucleation and autocatalytic growth. Biophys.
Chem. 140, 9 –15 CrossRef Medline

42. Buell, A. K., Dhulesia, A., White, D. A., Knowles, T. P., Dobson, C. M., and
Welland, M. E. (2012) Detailed analysis of the energy barriers for amyloid
fibril growth. Angew. Chem. Int. Ed. Engl. 51, 5247–5251 CrossRef
Medline

43. Cohen, S. I. A., Cukalevski, R., Michaels, T. C. T., Šarić, A., Törnquist, M.,
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